
УНИВЕРЗИТЕТ У БЕОГРАДУ

МАТЕМАТИЧКИ ФАКУЛТЕТ

Стефан В. Капунац

Методе за ефикасно решавање
доминациjских проблема на великим

графовима

докторска дисертациjа

Београд, 2026.



UNIVERSITY OF BELGRADE

FACULTY OF MATHEMATICS

Stefan V. Kapunac

Methods for efficient solving of
domination problems on large graphs

doctoral dissertation

Belgrade, 2026.



Ментор:
др Александар Картељ, ванредни професор
Универзитет у Београду, Математички факултет

Чланови комисиjе:
др Владимир Филиповић, редовни професор
Универзитет у Београду, Математички факултет

др Александар Савић, редовни професор
Универзитет у Београду, Математички факултет

др Марко Ђукановић, доцент
Универзитет у Бањоj Луци, Природно-математички факултет

Датум одбране:



Наслов дисертациjе: Методе за ефикасно решавање доминациjских проблема на
великим графовима

Сажетак: У овоj дисертациjи разматраjу се методе за ефикасно решавање више важних
вариjанти доминациjских проблема на графовима, са посебним освртом на инстанце
великих димензиjа коjе се често jављаjу у реалним системима. Доминациjски проблеми
имаjу броjне примене у анализи и управљању комплексним мрежама, укључуjући
друштвене, телекомуникационе, транспортне и биолошке мреже. Истраживање обухвата
четири проблема: минималну тежинску тоталну доминациjу, минималну тежинску
независну доминациjу, k-jаку римску доминациjу и основни проблем минималне
доминациjе на великим графовима.

За проблем минималне тежинске тоталне доминациjе предложен jе метахеуристички
приступ заснован на методи променљивих околина, са пажљиво дефинисаним
механизмима размрдавања, локалне претраге и функциjе прилагођености. Резултати
показуjу да предложени алгоритам постиже оптимална решења на малим и средњим
инстанцама и надмашуjе конкурентске приступе на великим графовима. Додатно,
предложена jе примена овог проблема за убрзавање ширења информациjа на друштвеним
мрежама.

За проблем минималне тежинске независне доминациjе развиjена су два нова модела
целоброjног линеарног програмирања. Решавањем ових модела проналазе се оптимална
решења на свим мањим инстанцама, а показуjу супериорниjе перформансе у односу
на конкурентске егзактне приступе и на већим графовима. Поред тога, предложена jе
похлепна хеуристика коjа надмашуjе конкурентске похлепне приступе на већини инстанци.

У случаjу k-jаке римске доминациjе, развиjена jе похлепна хеуристика заснована
на информациjама о покривености чворова, као и метахеуристички приступ заснован
на методи променљивих околина коjи користи поменути похлепни алгоритам за
инициjализациjу. Оваj проблем jе изузетно изазован због експоненциjалне сложености
провере допустивости решења, те jе уведен концепт квазидопустивости коjи омогућава
ефикасну процену допустивости током претраге. Експериментални резултати показуjу да
предложени алгоритам доследно надмашуjе похлепни приступ и постоjеће конкурентске
методе, поготово на већим графовима. Практична вредност алгоритма илустрована jе кроз
студиjу случаjа коjа обухвата оптимално позиционирање ватрогасних станица и возила у
градским општинама, како би читав град био безбедан у условима поjаве k истовремених
пожара.

За проблем минималне доминациjе предложен jе нови хибридни приступ IRIS.
IRIS jе дизаjниран као оквир опште намене коjи превазилази jаз између егзактних
решавача целоброjног линеарног програмирања и хеуристичке претраге, итеративним
фиксирањем одабраних променљивих ради смањења простора претраге. Научни
допринос огледа се у флексибилном механизму конструкциjе потпроблема, коjи
се може прилагодити коришћењем различитих стратегиjа селекциjе. У овом раду
имплементирана jе и евалуирана специфична конфигурациjа IRIS-а коjа користи
историjске статистичке податке и хеуристику засновану на покривености чворова за
интелигентно идентификовање променљивих коjе ће бити фиксиране. Овакав циљани
приступ омогућава ILP решавачу да пронађе квалитетна решења за инстанце великих
димензиjа коjе су рачунски неизводљиве за егзактне методе. Експериментални резултати
показуjу да IRIS остваруjе конкурентне перформансе у односу на наjбоље постоjеће
методе, што га чини валидном алтернативом за решавање доминациjских и потенциjално
других НП-тешких проблема.
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Dissertation title: Methods for efficient solving of domination problems on large graphs

Abstract: This dissertation addresses methods for efficiently solving several important variants
of domination problems on graphs, with a particular focus on large-scale instances that frequ-
ently appear in real-world systems. Domination problems have numerous applications in the
analysis and management of complex networks, including social, telecommunication, transport,
and biological networks. The study covers four problems: minimum weight total domination,
minimum weight independent domination, k-strong Roman domination, and the canonical mi-
nimum domination problem on large graphs.

For the minimum weight total domination problem, a variable neighborhood search approach
is proposed, with carefully designed mechanisms for shaking, local search, and fitness function
evaluation. The results show that the proposed algorithm achieves optimal solutions on small
and medium instances and outperforms competing approaches on large graphs. Additionally,
an application of this problem for accelerating information spreading in social networks is
proposed.

For the minimum weight independent domination problem, two new integer linear pro-
gramming models are developed. Solving these models finds optimal solutions for all smaller
instances while demonstrating superior performance compared to competing exact approaches
on larger graphs. In addition, a greedy heuristic is proposed that outperforms competing greedy
methods on most instances.

In the case of k-strong Roman domination, a greedy heuristic based on node coverage
information is developed, along with a metaheuristic approach based on variable neighborhood
search that uses the greedy algorithm for initialization. This problem is particularly challenging
due to the exponential complexity of solution feasibility verification, leading to the introduction
of the concept of quasi-feasibility that enables efficient feasibility assessment during the search.
Experimental results show that the proposed algorithm consistently outperforms the greedy
approach and existing competing methods, especially on larger graphs. The practical value
of the algorithm is illustrated through a case study involving the optimal positioning of fire
stations and vehicles in urban municipalities to ensure the entire city is safe in the event of k
simultaneous fires.

For the minimum domination problem, a new hybrid approach called IRIS is proposed. IRIS
is designed as a general-purpose framework that bridges the gap between exact integer linear
programming solvers and heuristic search by iteratively fixing selected variables to reduce the
search space. Тhe novelty lies in its flexible subproblem construction mechanism, which can be
tailored using various selection strategies. In this study, we implement and evaluate a specific
configuration of IRIS that utilizes historical statistical data and a node-coverage-based heuristic
to intelligently identify variables for fixing. This targeted approach allows the ILP solver to find
high-quality solutions for large-scale instances that are computationally prohibitive for exact
methods. Experimental results demonstrate that IRIS achieves competitive performance com-
pared to the best existing methods, establishing it as a valid alternative for solving domination
and potentially other NP-hard problems.

Keywords: domination problems on graphs, variable neighborhood search, integer linear pro-
gramming, hybrid algorithms, large graphs, complex networks

Research area: Computer Science
Research sub-area: Optimization
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Поглавље 1

Увод

Доминациjски проблеми на графовима су интензивно проучавани, како са теориjске,
тако и са практичне стране, пре свега због њихове широке примене у различитим
областима. На пример, у бежичним ад-хок и сензорским мрежама, повезани доминираjући
скуп чворова може да се користи за формирање виртуелне окоснице мреже (енг. backbone
network), односно за одређивање чворова коjи ће бити одговорни за прослеђивање порука у
мрежи [115]. У анализи друштвених мрежа, доминираjући скупови могу бити коришћени
за поналазак наjутицаjниjих корисника, односно корисника чиjе активности допиру до
наjвећег броjа других корисника [33]. Доминираjући скупови су коришћени и у анализи
управљивости мрежа (енг. network controllability) [83], где jе показано да се са малим броjем
чворова може контролисати цео систем [91], као и у анализи протеинских интеракциjа,
где играjу кључну улогу у стабилности мреже и регулаторним функциjама [113]. Поред
тога, коришћени су и у различитим аспектима машинског учења, попут кластеровања у
графовима [22], као и избору атрибута (енг. feature selection) [105]. Доминациjски проблеми
налазе примену и у областима као што су телекомуникациjе [9], распоређивање (енг. sche-
duling) [101], а повезани су и са локациjским проблемима [54].

Поред великог практичног значаjа, доминациjски проблеми имаjу и дубоко развиjену
теориjску основу. Истраживања доминациjских проблема траjу више децениjа, а jедан од
централних теориjских циљева било jе одређивање горњих и доњих граница доминациjског
броjа, односно кардиналности оптималног доминираjућег скупа [15, 19, 74, 94]. Границе
су испитиване, како за опште графове, тако и за специфичне класе графова, попут
бипартитних и хордалних графова, као и усмерених Де Бруjинових графова. Поред тога,
значаjaн броj радова jе посвећен анализи теориjске сложености проблема [28, 34, 81, 51,
41].

Формално, за дати неусмерени граф G = (V,E), доминираjући скуп се дефинише као
подскуп чворова S такав да jе сваки чвор графа или елемент скупа S или jе граном повезан
са чвором из S. Циљ jе пронаћи такав скуп S минималне кардиналности. С обзиром на
то да се доминираjући скупови користе у разним областима, како у научним, тако и у
индустриjским применама, где свака доноси додатне услове, било jе неопходно дефинисати
различите вариjанте овог проблема. Неке од основних и често разматраних вариjанти
доминациjског проблема су:

• доминираjући скуп са капацитетима (енг. Minimum Capacitated Dominating Set,
MCapDS) [92], где сваки чвор има ограничење (капацитет) за броj суседа коjе може
доминирати,

• независни доминираjући скуп (енг. Minimum Independent Dominating Set, MIDS) [98],
где чворови коjи су у скупу S не смеjу да имаjу суседе коjи су такође у S,

• тотални доминираjући скуп (енг. Minimum Total Dominating Set, MTDS) [62], где сви
чворови, укључуjући и елементе скупа S, мораjу да имаjу бар jедног суседа у S,
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ПОГЛАВЉЕ 1. УВОД

• повезани доминираjући скуп (енг. Minimum Connected Dominating Set, MCDS) [21],
где скуп S индукуjе повезани подграф графа G,

• доминираjући скуп позитивног утицаjа (енг. Minimum Positive Influence Dominating
Set, MPIDS) [20], где бар половина суседа сваког чвора припада скупу S.

Додатно, могу се дефинисати и тежинске вариjанте ових проблема, додељивањем тежина
чворовима и/или гранама графа. У том случаjу, циљ jе пронаћи доминираjући скуп
минималне укупне тежине.

У оквиру ове дисертациjе биће решавано неколико вариjанти доминациjских проблема:
проблем минималне тежинске тоталне доминациjе (енг. Minimum Weighted Total Domina-
ting Set, MWTDS), минималне тежинске независне доминациjе (енг. Minimum Weighted
Independent Dominating Set, MWIDS), k-jаке римске доминациjе (енг. k-strong Roman Do-
minating Set, KSRDS), као и основни проблем минималне доминациjе (енг. Minimum Do-
minating Set, MDS), са посебним фокусом на инстанце великих димензиjа. Главни циљ
рада jе развоj ефикасних метода за решавање наведених проблема, са посебном пажњом
усмереном на велике графове. Дисертациjа обухвата и егзактне и хеуристичке методе, као
и њихове хибридне комбинациjе, а истраживање jе усмерено ка разумевању структуре
проблема, побољшању перформанси постоjећих алгоритама и примени развиjених модела
у практичним сценариjима. Конкретни циљеви укључуjу:

• развоj методе променљивих околина за проблем MWTDS и анализа примене у
ширењу информациjа у друштвеним мрежама,

• формулациjа унапређених ILP модела и похлепног алгоритма за проблем MWIDS,

• развоj методе променљивих околина за проблем KSRDS, као и примена на
распоређивање ватрогасних станица и камиона у регионима, тако да граф буде
безбедан у случаjу k истовремених пожара,

• развоj новог хибридног приступа и примена на проблем MDS на великим графовима.

Сви разматрани проблеми су НП-тешки. Због значаjа основне вариjанте проблема, у
наставку ће бити дат доказ за њу, а за све изведене вариjанте се углавном може лако
успоставити свођење и показати да су НП-тешке.

1.1 Сложеност решавања проблема минималне
доминациjе

Основни проблем минималне доминациjе jе НП-тежак, што се може показати свођењем
проблема покривача грана (енг. vertex cover) на њега. Покривач грана jе jедан од 21
проблема за коjе jе Карп првобитно доказао да су НП-комплетни свођењем на проблем
задовољивости исказних формула (енг. satisfiability problem, SAT) [70]. Оваj проблем се
дефинише на следећи начин: покривач грана графа G jе такав скуп чворова да jе свака
грана суседна бар jедном од чворова из скупа.

Свођење се врши тако што се за сваку грану додаjе по jедан чвор – ако се грана састоjи
од чворова u и v, додаjе се чвор w и гране uw и vw, а оригиналну грану uv задржавамо.
Другим речима, уместо сваке гране прави се троугао. Оваква трансформациjа се може
извршити у полиномском времену. Тако добиjени граф G′ има доминираjући скуп
кардиналности k ако и само ако G има покривач грана кардиналности k.
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=> Нека jе S доминираjући скуп графа G′ кардиналности k. S не садржи ниjедан од
новододатих чворова uv. Ако би садржао такав чвор, он би могао да се замени било
чвором u, било чвором v, након чега би скуп S и даље био доминираjући. Како су
сви новододати чворови доминирани, важи да скуп S за сваку грану из G садржи
бар jедан њен краj. Стога jе S и покривач грана графа G кардиналности k.

<= Нека jе сада S покривач грана графа G кардиналности k. По дефинициjи покривача
грана, свака грана има бар jедан краj у S. Односно, сваки новододати чвор из G′ има
суседа из S. Исто важи и за оригиналне чворове, па jе S доминираjући скуп графа
G′ кардиналности k.

Поред тога, одлучива вариjанта проблема jе НП-комплетна. Она припада класи НП jер
jе jедноставно у полиномском времену верификовати решење, односно проверити да ли jе
неки подскуп од k чворова доминираjући скуп.

1.2 Методе за решавање оптимизационих НП-тешких
проблема

Оптимизациони проблеми се могу у општем облику формулисати као минимизациjа
функциjе циља уз одређена ограничења. Односно, формално:

min f(x)

уз ограничења gi(x) ≤ bi, i = 1, 2, . . . ,m

x ∈ S

Треба напоменути да jе проблем максимизациjе еквивалентан проблему минимизациjе, jер
се максимизациjа функциjе f(x) може извршити минимизациjом функциjе −f(x). Слично,
ограничења у облику gi(x) ≥ bi се могу изразити као −gi(x) ≤ −bi. Поред тога, jеднакосна
ограничења се могу представити као пар неjедначина, те наведена формулациjа не губи
на општости.

У случаjу да су функциjа циља и ограничења линеарни, а скуп S = Rn, добиjа се
проблем линеарног програмирања (енг. Linear Programming, LP). Наjраниjи радови на
тему линеарне оптимизациjе датираjу jош из 19. века када jе Фуриjе обjавио методу за
решавање система линеарних неjедначина [106]. Године 1939. Канторович jе формулисао
проблеме алокациjе ресурса као проблеме линеарне оптимизациjе [66, 35]. Међутим, први
практични алгоритам за решавање проблема линеарног програмирања развио jе Данциг
1947. године и назвао га jе симплекс метода [36]. Оваj алгоритам проналази оптимално
решење кретањем дуж темена допустивог региона. Како jе броj темена експоненциjалан
у односу на броj променљивих, у наjгорем случаjу временска сложеност симплекс
методе jе експоненциjална [76]. Упркос томе, симплекс метода се у пракси показала
веома ефикасном [96]. Први полиномски алгоритам за решавање проблема линеарног
програмирања развиjен jе 1979. године [72]. Значаjниjа побољшања у пракси донела jе
метода унутрашње тачке (енг. interior-point method) [69], коjа се заснива на кретању кроз
унутрашњост допустивог региона, а такође jе полиномске сложености.

Уколико се захтева да неке или све променљиве буду целоброjне, добиjа се проблем
целоброjног линеарног програмирања (енг. Integer Linear Programming, ILP), коjи jе jош
jедан од 21 Карпових НП-тешких проблема [70]. Како jе оваj проблем НП-тежак, сви НП-
тешки проблеми могу се свести на њега. Стога jе развиjено доста напредних техника за
његовор решавање, од коjих ће неке бити описане у наставку.
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ПОГЛАВЉЕ 1. УВОД

Генерално, методе за решавање оптимизационих проблема се могу поделити у две
главне групе: егзактне и апроксимативне. Егзактне методе пружаjу теориjску гаранциjу
оптималности добиjеног решења. Другим речима, уз довољно времена и мемориjе,
проналазе оптимално решење. Са друге стране, апроксимативне методе не гарантуjу
оптималност, али своjом ефикасношћу надомешћуjу оваj недостатак. С обзиром на то да
су проблеми НП-тешки, егзактне методе често постаjу неупотребљиве у пракси, поготово
на инстанцама великих димензиjа. Како се у овоj дисертациjи посебан акценат ставља баш
на такве велике инстанце, више пажње ће бити посвећено апроксимативним методама.

1.2.1 Егзактне методе

У класи егзактних метода, између осталих, налазе се динамичко програмирање,
гранање са ограничавањем (енг. branch and bound, BnB), метода одсецаjућих равни,
програмирање ограничења, као и А* породица алгоритама [109]. Због њеног значаjа у
практичним ILP решавачима као што су Gurobi и IBM ILOG CPLEX, у наставку ће бити
описана метода гранања са ограничавањем, као и нека њена унапређења. Ова метода,
инициjално предложена 1960. године [77], заснована jе на „подели-па-владаj“ (енг. divide-
and-conquer) принципу. Проблем се решава итеративном поделом простора претраге на
мање потпросторе (гранање), док се ефикасност постиже одбацивањем (ограничавањем)
оних потпростора за коjе се може доказати да не садрже оптимално решење.

Процес претраге се може представити као дрво претраге, где корен стабла представља
инициjални проблем са целим простором допустивих решења. Сваки чвор у стаблу
представља jедан потпроблем дефинисан додавањем нових ограничења на инициjални
скуп.

За сваки чвор (потпроблем) решава се његова линеарна релаксациjа. Линеарна
релаксациjа се добиjа уклањањем услова целоброjности, чиме се омогућава примена
ефикасних алгоритама попут симплекс методе. Нека jе zLP вредност функциjе циља
релаксираног проблема, а z∗ вредност функциjе циља до тада наjбољег пронађеног
целоброjног решења (енг. incumbent). У контексту проблема минимизациjе (као што jе
проблем доминациjе), zLP представља доњу границу (енг. lower bound) за таj потпроблем,
док z∗ представља глобалну горњу границу (енг. upper bound).

Потпроблем се одсеца (енг. pruning) и даље не разгранава у следећа три случаjа:

1. Недопустивост: Линеарна релаксациjа нема решење (простор претраге тог чвора
jе празан).

2. Оптималност: Решење линеарне релаксациjе jе целоброjно. Уколико jе ово решење
боље од тренутног z∗, оно постаjе ново z∗.

3. Ограничавање: Вредност zLP ≥ z∗. Како решење релаксациjе представља доњу
границу, односно даjе наjбољу могућу вредност у том потпростору, jасно jе да
целоброjно решење у тоj грани не може бити боље од већ пронађеног.

Уколико ниjедан од ових услова ниjе испуњен, врши се гранање. Бира се jедна
променљива xi коjа у LP решењу има нецелоброjну вредност x̂i, и креираjу се два нова
потпроблема (чвора деце) додавањем ограничења: xi ≤ ⌊x̂i⌋ и xi ≥ ⌈x̂i⌉. Избор променљиве
за гранање представља jедан од кључних елемената BnB методе и може значаjно утицати
на брзину конвергенциjе алгоритма. Стога су развиjене броjне хеуристике за избор
променљиве, засноване, између осталог, на децималном делу вредности променљиве у LP
решењу, као и историjском утицаjу променљиве у претходним чворовима [112].

Псеудокод основног алгоритма гранања са ограничавањем приказан jе у aлгоритму 1.
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Алгоритам 1 Основни алгоритам гранања са ограничавањем
Улаз: инстанца ILP проблема P
Излаз: оптимално решење x∗

1: L ← {P} ▷ инициjализациjа листе потпроблема
2: z∗ ←∞ ▷ глобална горња граница
3: x∗ ← null
4: while L ≠ ∅ do
5: Pk ← selectNode(L)
6: L ← L \ {Pk}
7: (xLP , zLP )← solveRelaxation(Pk)
8: if isInfeasible(xLP ) then
9: continue ▷ одсецање због недопустивости

10: end if
11: if zLP ≥ z∗ then
12: continue ▷ одсецање због границе
13: end if
14: if isInteger(xLP ) then
15: z∗ ← zLP
16: x∗ ← xLP

17: else
18: (P1, P2)← branch(Pk, xLP )
19: L ← L ∪ {P1, P2}
20: end if
21: end while
22: return x∗

Савремени решавачи имплементираjу читав низ унапређења ове основне методе.
Наjважниjа међу њима jе метода гранања са одсецањем (енг. branch and cut, BnC).
Ова метода комбинуjе BnB са методом равни одсецања (енг. cutting planes) [112].

Основна идеjа jе да се у сваком чвору стабла претраге, након решавања LP релаксациjе,
покуша додати jедна или више валидних неjеднакости (енг. valid inequalities), односно
резова (енг. cuts). Ове неjеднакости „одсецаjу“ нецелоброjно LP решење, а да притом не
елиминишу ниjедно допустиво целоброjно решење.

У основноj BnC методи, процес у сваком чвору се одвиjа на следећи начин:

1. Решава се LP релаксациjа.

2. Уколико jе решење нецелоброjно, решава се проблем сепарациjе како би се пронашле
нарушене валидне неjеднакости (нпр. Гомориjеви резови, резови покривача, резови
клика [112]).

3. Ако су такве неjеднакости пронађене, додаjу се у модел и враћамо се на корак 1
(поновно решавање оjачане релаксациjе).

4. Уколико резови нису пронађени или jе њихов утицаj занемарљив, приступа се
стандардном гранању као код BnB методе.

Оваj приступ омогућава значаjно jаче доње границе у чворовима стабла, што драстично
смањуjе броj чворова коjе jе потребно експлицитно претражити.

Поред тога, развиjене су и друге вариjанте и унапређења BnB методе, као што су:
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• Метода гранања са оцењивањем (енг. branch and price), где се за решавање линеарне
релаксациjе проблема користи метода генерисања колона [10]. Ова метода jе посебно
корисна код проблема са великим броjем променљивих и структуром погодном за
декомпозициjу.

• Комбинациjа позната под називом гранање са одсецањем и оцењивањем (енг. branch
cut and price) [38], коja користи предности оба приступа.

1.2.2 Метахеуристике

Међу апроксимативним алгоритмима, коjи, као што jе већ споменуто, не даjу
гаранциjу оптималности добиjеног решења, посебно се издваjаjу метахеуристике. Код
метахеуристичких метода, за разлику од стандардних апроксимативних алгоритама, не
постоjи ни гаранциjа максималног одступања од оптималног решења. Упркос томе, ове
методе су се показале као веома успешне у пракси, поготово на великим инстанцама НП-
тешких проблема. За разлику од хеуристика, изузетно су опште и могу се применити на
широк спектар оптимизационих проблема.

У оквиру сваке метахеуристике могу се издвоjити два аспекта: експлорациjа
(диверзификациjа) и експлоатациjа (интензификациjа). Експлорациjа се односи на
истраживање нових региона простора претраге, док се експлоатациjа односи на
фокусирање на регионе коjи су већ истражени и у коjима се налази боље решење. Како
би се показало да су обе ствари неопходне, могу се размотрити две краjности:

• Само експлорациjа – ако би били истраживани само нови региони простора претраге,
практично би била извршена случаjна претрага.

• Само експлоатациjа – уколико би се увек ишло ка наjбољем решењу у региону из ког
jе претрага започета, дошло би до заглављивања у локалном оптимуму.

Дакле, потребно jе успоставити баланс између ова два супротстављена аспекта.
На основу броjа решења коjе користе у току претраге, метахеуристике се могу поделити

у две главне групе: популационе метахеуристике и метахеуристике вођене jедним решењем.
Популационе метахеуристике користе скуп решења коjа утичу jедна на друге на неки
начин, док метахеуристике вођене jедним решењем користе само jедно решење током
читаве претраге. У наставку ће укратко бити описане неке од чешће коришћених, а за
детаљниjи приказ видети [109, 49].

Метахеуристике вођене jедним решењем

Алгоритам коjи у сваком кораку претраге иде ка наjбољем решењу у околини тренутног
решења назива се локална претрага. У претходноj секциjи jе већ показано да нема смисла
самостално користити овакав приступ (само интензификациjа без диверзификациjе) за
решавање НП-тешких оптимизационих проблема. Међутим, локална претрага може да
буде изузетно корисна као градивни елемент разних метахеуристика, обично оних вођених
jедним решењем, али може се користити и унутар популационих. Постоjе две основне врсте
локалне претраге:

• Локална претрага са првим побољшањем (енг. first improvement) – пролази кроз
решења у околини тренутног решења у случаjном редоследу и бира прво коjе jе
боље од тренутног.

• Локална претрага са наjбољим побољшањем (енг. best improvement) – у сваком
кораку претраге се бира наjбоље од свих решења у околини тренутног решења.
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Симулирано каљење (енг. Simulated Annealing) [75] jе метахеуристика коjа се заснива
на аналогиjи са процесом каљења метала, где се метал загрева на одређену температуру
и онда постепено хлади са циљем побољшања његових физичких карактеристика. У
контексту оптимизациjе, као и код локалне претраге, када се у околини тренутног
решења пронађе боље, прелази се на њега. Са друге стране, како бисмо избегли
заглављивање у локалном минимуму, примењуjе се диверзификациjа – са одређеном
вероватноћом прихвата се и лошиjе решење. Та вероватноћа опада током итерациjа,
слично као температура у поступку стварног каљења. Основна идеjа jе да на почетку
рада алгоритма, када jош увек ниjе пронађено висококвалитетно решење, буде омогућена
већа диверзификациjа како би се истражио што већи део простора претраге. Касниjе, у
току рада алгоритма, када jе вероватно већ достигнуто неко квалитетно решење, фокус се
преусмерава на интензивниjе истраживање његове околине како би се додатно унапредио,
и избегло удаљавање од већ пронађених добрих решења.

Критериjум заустављања алгоритма, а и свих других метахеуристика, може бити неки
од следећих услова: укупан броj итерациjа, протекло време (у секундама), проналазак
довољно доброг решења, броj узастопних итерациjа без побољшања. Наравно, може се
користити и адекватна комбинациjа више услова.

Итерирана локална претрага (енг. Iterated Local Search, ILS) [86] се заснива на
jедноставноj идеjи итеративног покретања локалне претраге на промењеном тренутном
решењу. Промена коjа се уводи назива се и пертурбациjа, и углавном се реализуjе
случаjним одабиром суседа коjи jе значаjно даље од тренутног решења у односу на суседе
коjи се разматраjу у току локалне претраге. Након локалне претраге на промењеном
решењу, бира се да ли ће се оно прихватити као ново тренутно решење. Ова одлука може
бити jедноставна – ново решење се прихвата ако jе боље од тренутног, а може бити и
сложениjа – нпр. прихватање новог решења зависи од историjата претраге.

Табу претрага (енг. Tabu Search, TS) [50, 48] jе метахеуристика коjа користи мемориjу
како би избегла заглављивање у локалном оптимуму. Наиме, у току рада алгоритма
одржава се табу листа – скуп претходних решења (или делова решења) коjа су забрањена
у наредним корацима претраге, са циљем избегавања цикличног понашања. Дужина табу
листе представља важан параметар алгоритма – уколико jе превелика, може доћи до
претеране диверзификациjе и изостаjања интензификациjе, док ако jе премала, може
доћи до преране конвергенциjе ка субоптималном решењу. Стога се оваj параметар
може и динамички мењати током рада алгоритма. Поред тога, табу претрага користи и
концепт аспирациjе, коjи омогућава да се табу ограничења превазиђу уколико ново решење
испуњава неки додатни критериjум, попут надмашивања тренутно наjбољег решења.

Похлепна стохастичко-адаптивна претрага (енг. Greedy Randomized Adapti-
ve Search Procedure, GRASP) [43] jе метахеуристика коjа се састоjи из два главна
дела: конструкциjе решења и побољшања решења. Конструкциjа решења jе заснована
на похлепном приступу, али са додатком стохастичког елемента. У сваком кораку
конструкциjе решења, на насумичан начин се бира елемент из скупа наjбољих кандидата,
коjи се затим додаjе у тренутно решење. У случаjу да jе броj кандидата jеднак jедан, оваj
приступ се своди на класичну похлепну хеуристику. Након тога, на добиjено решење се
примењуjе локална претрага са циљем његовог унапређења. Читав алгоритам се састоjи
од итеративног понављања ове две фазе до испуњења критериjума заустављања, а краjње
решење jе наjбоље пронађено током свих итерациjа.

Метода променљивих околина (енг. Variable Neighborhood Search, VNS) [88] се
састоjи од два главна дела: размрдавања (енг. shaking) (задужено за диверзификациjу)
и локалне претраге (као и обично, задужена за интензификациjу). Размрдавањем се на
насумичан начин добиjа ново решење коjе се налази у k-тоj околини тренутног решења.
Потом се на новодобиjено решење примењуjе локална претрага како бисмо га унапредили.
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Оваj процес се понавља док се не испуни критериjум заустављања. Пре свега, потребно
jе дефинисати више околина, од коjих jе свака следећа шира од претходне. Алгоритам
прво покушава да нађе боље решење од тренутног у првоj околини, па у случаjу да не
успе, прелази на следећу. Ако jе боље решење пронађено, оно се прихвата и поступак се
понавља почевши од прве околине. У случаjу да jе нађено решење истог квалитета као
и тренутно, оно се прихвата са вероватноћом одређеном параметром moveProb. Како jе
метода променљивих околина коришћена за решавање више доминациjских проблема у
оквиру ове дисертациjе, дат jе и псеудокод алгоритма 2.

Алгоритам 2 Основна метода променљивих околина
Улаз: инстанца проблема I, kmin, kmax > 0, скуп околина Nkmin

, . . . ,Nkmax , функциjа f ,
moveProb
Излаз: решење s

1: s← initialize(I)
2: while ! terminationCriteriaSatisfied() do
3: k ← kmin

4: while k ≤ kmax do
5: s′ ← shake(s,Nk)
6: s′′ ← localSearch(s′)
7: if f(s′′) < f(s) or (f(s′′) = f(s) and r ∼ U(0, 1) < moveProb) then
8: s← s′′

9: k ← kmin

10: end if
11: k ← k + 1
12: end while
13: end while
14: return sbest

Постоjе различите вариjациjе овог алгоритма, међу коjима су и:

• редукована метода променљивих околина (енг. Reduced VNS, RVNS) [58], где се
користи само размрдавање, без локалне претраге,

• општа метода променљивих околина (енг. General VNS, GVNS) [58], у коjоj се уместо
локалне претраге користи друга метода променљивих околина,

• накошена метода променљивих околина (енг. Skewed VNS, SVNS) [58], коjа у
размрдавању узима у обзир и удаљеност новог решења од тренутног решења,

• метода променљивих околина са декомпозициjом (енг. Decomposition VNS, DVNS)
[58], коjа декомпонуjе решење пре примене локалне претраге.

Популационе метахеуристике

Популационе метахеуристике су углавном инспирисане понашањем животиња или
процесима у природи. Основна идеjа jе да се у сваком кораку претраге користи скуп
решења, коjа међусобно комуницираjу на неки начин и тако обогаћуjу претрагу.

Генетски алгоритам (енг. Genetic Algorithm, GA) [61] спада у већу групу еволутивних
алгоритама коjи су осмишљени по угледу на биолошку еволуциjу. Користи популациjу
jединки, од коjих свака представља jедно решење проблема и има своj код и степен
прилагођености (енг. fitness). Идеjа jе да, као и код природне селекциjе, наjприлагођениjе
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jединке опстаjу. Еволуциjа популациjе се реализуjе путем оператора селекциjе, укрштања
и мутациjе.

Задатак селекциjе jе одабир jединки коjе ће учествовати у укрштању. Постоjе
различите методе селекциjе, од коjих су неке од наjчешће коришћених: рулетска и
турнирска селекциjа. Код рулетске селекциjе, свака jединка добиjа вероватноћу избора
пропорционалну свом степену прилагођености. С обзиром на то да jе могућ велики
дисбаланс у степенима прилагођености, што може довести до преране конвергенциjе,
често се користи нормализациjа или скалирање вредности прилагођености пре примене
ове методе, нпр. коришћењем рангова уместо апсолутних вредности. Турнирска селекциjа
се заснива на насумичном одабиру неколико jединки из популациjе, након чега се као
победник бира она jединка коjа има наjвећи степен прилагођености.

Укрштање представља процес формирања нових jединки комбиновањем генетског
материjала родитеља. Постоjе различити начини укрштања, у зависности од начина
на коjи jе решење кодирано. Неки од често коришћених су n-позиционо укрштање и
униформно укрштање. Код n-позиционог укрштања, насумично се бира n позициjа у
генетском коду родитеља, након чега се генетски материjал укршта на тим позициjама. Са
друге стране, код униформног укрштања, за сваку позициjу у генетском коду се насумично
бира да ли ће таj део генетског материjала бити преузет од првог или другог родитеља.

Мутациjа представља случаjну промену генетског материjала jединке и уобичаjено се
примењуjе са малом вероватноћом након укрштања. Ова операциjа jе задужена за увођење
диверзификациjе у популациjу.

Након примене ових оператора, потребно jе формирати нову популациjу. То се
углавном реализуjе потпуном или делимичном заменом старе популациjе.

Еволутивне стратегиjе (енг. Evolution Strategies, ES) [102, 16] су jош jедан пример
еволутивних алгоритама. Углавном користе за оптимизациjу непрекидних функциjа и
разликуjу се од генетских алгоритама у неколико аспеката. Код еволутивних стратегиjа
се не користи укрштање у класичном смислу, већ се нове jединке формираjу применом
мутациjе на родитеље. Мутациjа се уобичаjено изводи додавањем нормално расподељеног
шума на вредности променљивих. Битна разлика у односу на генетске алгоритме jе у
томе што еволутивне стратегиjе користе адаптивне параметре мутациjе, коjи се такође
еволуираjу током рада алгоритма.

Диференциjална еволуциjа (енг. Differential Evolution, DE) [108] jе jош jедан
популациони еволутивни алгоритам, коjи се примарно користи за оптимизациjу
непрекидних функциjа. Разлика у односу на генетске алгоритме jе у редоследу примене
оператора. Наиме, код диференциjалне еволуциjе се прво врши мутациjа, па онда
укрштање. Мутациjа се састоjи од генерисања нових jединки на основу разлике између
насумичних jединки из тренутне популациjе.

Оптимизациjа роjем честица (енг. Particle Swarm Optimization, PSO) [71] jе пример
алгоритма из области интелигенциjа група (енг. Swarm Intelligence)1. Код алгоритама
из ове групе, свака поjединачна jединка jе jедноставна, али читава група колективно се
понаша на неки начин интелигентно. У случаjу оптимизациjе роjем честица, свака честица
представља jедно решење проблема и креће се кроз простор претраге. Притом, свака
честица зна наjбоље решење до кога jе стигла, као и наjбоље решење коjе jе пронашао читав
роj. Може се прилагодити и за дискретне проблеме, али како се превасходно користи за
непрекидну оптимизациjу, биће дат кратак опис овог случаjа. Брзина, тj. вектор помераjа
честице се у свакоj итерациjи рачуна сабирањем три компоненте:

• инерциjа – претходна брзина,
1Буквалан, и често коришћен, превод би био интелигенциjа роjева. Међутим, са развоjем ове области

и порастом броjа различитих алгоритама коjи нису засновани на роjевима инсеката, уведен jе општиjи
термин интелигенциjа група.
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• когнитивна брзина – вектор од тренутне позициjе честице до позициjе наjбољег
решења до ког jе она стигла,

• социjална брзина – вектор од тренутне позициjе честице до позициjе наjбољег решења
до ког jе читав роj стигао.

Оптимизациjа колониjом мрава (енг. Ant Colony Optimization, ACO) [40] jе
метахеуристика инспирисана понашањем мрава у природи. Мрави при кретању остављаjу
феромоне на тлу, а остали мрави бираjу куда ће ићи на основу количине феромона
коjа се ту налази. Што више мрава иде истим путем, биће више феромона. Са друге
стране, феромони током времена испараваjу, па што jе пут дужи, биће више времена
да феромони испаре. На оваj начин мрави проналазе наjкраћи пут до хране. Како jе у
случаjу оптимизациjе циљ мрава проналазак оптимума, количина феромона се одређуjе на
основу квалитета пронађеног решења. Природна примена овог алгоритма jе у проблемима
проналаска наjкраћег пута, као што jе проблем трговачког путника (енг. Travelling Sale-
sman Problem, TSP).

1.3 Нотациjа

Сви решавани проблеми су дефинисани на простим неусмереним графовима, те ће
у наставку укратко бити дефинисани основни поjмови из теориjе графова коjи ће бити
коришћени у наредним поглављима. Неусмерени граф се означава са G = (V,E), где jе V
скуп чворова, а E скуп грана. Свака грана e ∈ E одговара пару чворова e = {u, v}. За
два чвора u и v се каже да су суседи уколико постоjи грана e = {u, v} коjа их повезуjе. За
сваки чвор v ∈ V , са N(v) се означава (отворена) околина чворa v, односно скуп чворова
коjи су му суседни, тj. формално N(v) = {u ∈ V | {u, v} ∈ E}. Кардиналност овог скупа се
назива степен чвора d(v) = |N(v)|. Са N [v] се означава затворена околина чвора v, односно
скуп N(v) ∪ {v}. Ако jе S подскуп чворова графа, онда се са G[S] = (S,E[S]) означава
индуковани подграф графа G на чворовима из S, где jе E[S] = {{u, v} ∈ E | u, v ∈ S}.
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Поглавље 2

Проблем минималне тежинске тоталне
доминациjе

Тотална доминациjа, као што jе поменуто у уводном поглављу, дефинише се додатним
ограничењем у односу на класичну доминациjу – поред чворова ван решења, и чворови
из решења мораjу имати бар jедног суседа у решењу. Oво jе добро изучен проблем, како
са практичне, тако и са теориjске стране, a првобитно je уведен у раду [30]. Проблем jе
НП-тежак, а доказ се може пронаћи у књизи [59]. Оваj проблем се природно прошируjе
додељивањем тежина чворовима и гранама ради бољег моделовања реалних проблема.
На таj начин се долази до проблема минималне тежинске тоталне доминациjе (MWTDS),
коjи jе предмет овог поглавља, а уведен jе у раду [87]. Резултати представљени у овом
поглављу обjављени су у раду [68].

2.1 Дефинициjа проблема

Оваj проблем се дефинише на неусмереним графовима G = (V,E, f1, f2), где су, као и
обично, V и E скупови чворова и грана графа, а f1 : V → R+ и f2 : E → R+ функциjе
коjе додељуjу тежине чворовима и гранама, респективно. Ради jедноставниjе нотациjе, у
наставку ће тежина чвора v бити означаванa са wv, a тежина гране e = {u, v} са we или
wuv. Циљ проблема MWTDS jе проналазак скупа S ⊆ V коjи испуњава следећа два услова:

1. S jе тотални доминираjући скуп графа G, односно ∀v ∈ V, |N(v) ∩ S| ≥ 1;

2. S има наjмању вредност функциjе циља коjа се дефинише као:

f(S) =
∑
v∈S

wv +
∑

e∈E[S]

we +
∑

v∈V \S

min{wvu | u ∈ S} (2.1)

где jе E[S] скуп грана подграфа индукованог скупом S. Пратећи номенклатуру из рада [6],
прва сума ће бити означавана као цена чворова, друга сума као цена унутрашњих грана, а
трећа сума као цена спољашњих грана. Дакле, унутрашње гране су оне коjе повезуjу два
чвора коjа су оба у решењу, док су спољашње гране оне коjе повезуjу чвор ван решења са
чвором из решења. Притом, ако чвор ван решења има више суседа у решењу, за спољашњу
грану се бира она коjа има наjмању тежину. Другим речима, спољашња грана jе она коjом
jе наjjефтиниjе покрити чвор ван решења.

2.1.1 Пример инстанце

Пример инстанце проблема MWTDS приказан jе на слици 2.1. На овоj слици, тежине
чворова су означене броjевима унутар кругова, док су тежине грана означене на линиjама
коjе представљаjу гране. Оптимално решење проблема MWTDS за ову инстанцу jе скуп
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Слика 2.1: Пример инстанце проблема MWTDS
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Слика 2.2: Оптимално решење проблема MWTDS

чворова обоjених у плаво на слици 2.2, чиjа jе вредност функциjе циља 14. До ове
вредности функциjе циља се долази на следећи начин:

• цена чворова jе 4, jер су у решењу чворови са тежинама 1 и 3;

• цена унутрашњих грана jе 2, постоjи само jедна унутрашња грана са тежином 2;

• цена спољашњих грана jе 8, jер гране наjмање тежине коjе повезуjу чворове ван, са
онима у решењу, имаjу тежине: 1, 3, 2 и 2.

2.2 Преглед литературе

Постоjи неколико ILP модела коjи су предложени за проблем MWTDS. У раду [87]
уведено jе три ILP модела - jедан основни и два унапређена, заснована на елиминациjи
променљивих и додавању нових ограничења. Два побољшана модела су представљена
у раду [6], где jе предложен и приступ заснован на методи гранања са одсецањем коjи
користи валидне неjеднакости (уз помоћ Бендерове декомпозициjе), као и почетне и
прималне хеуристике. Поред тога, у истом раду предложене су и две метахеуристике -
похлепна стохастичко-адаптивна метода претраге (енг. Greedy Randomized Adaptive Search
Procedure, GRASP), самостално, и у комбинациjи са генетским алгоритмом.

Перформансе свих ових алгоритама су тестиране на мањим инстанцама проблема (до
125 чворова), на коjима се егзактне методе показуjу добро и успеваjу да пронађу оптимална
решења на већини инстанци. Дакле, потребно jе увести нове веће инстанце да би се боље
проценио квалитет постоjећих алгоритама. Такође, постоjи и недостатак хеуристичких
приступа коjи се генерално боље понашаjу на већим инстанцама.
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2.3 Метода променљивих околина за проблем MWTDS

Метода променљивих околина, укратко описана у уводном поглављу, показала jе добар
учинак на разним НП-тешким оптимизационим проблемима [55]. Псеудокод VNS-а за
проблем MWTDS дат jе у алгоритму 3. У наставку овог одељка биће описани детаљи
дизаjна и имплементациjе предложеног алгоритма.

Алгоритам 3 VNS за проблем MWTDS
1: Улаз: G = (V,E, f1, f2): инстанца проблема; κmin: минимална величина околине; κmax:

максимална величина околине; itmax: максималан броj итерациjа; tmax: максимално
време извршавања у секундама.

2: S ← random()
3: it← 0
4: κ← κmin

5: while it < itmax ∧ telapsed < tmax do
6: Snew ← shaking(S, κ,G)
7: localSearch1(Snew, G)
8: if S not improved recently ∧ localSearch2 not called recently then
9: localSearch2(Snew, G)

10: end if
11: RV ← U(0, 1)
12: if fit(Snew, G) < fit(S,G) ∨ (fit(Snew, G) = fit(S,G) ∧RV < 0.5) then
13: S ← Snew

14: κ← κmin

15: else
16: κ← κ+ 1
17: if κ ≥ κmax then
18: κ← κmin

19: end if
20: end if
21: it← it+ 1
22: end while
23: Излаз: S

2.3.1 Репрезентациjа решења и инициjализациjа

Решење jе представљено природно, као скуп чворова. Треба напоменути да остали
аспекти функциjе циља, унутрашње и спољашње гране, нису променљиве одлучивања,
већ се израчунаваjу на основу овог решења.

Инициjално решење се конструише на насумичан начин. Сваки чвор има вероватноћу
0.2 да буде укључен у решење, где jе ова вредност одређена емпириjски.

2.3.2 Функциjа прилагођености

Функциjа прилагођености jе дефинисана на следећи начин:

fit(S) = viol(S) +
obj(S)

Wtot + 1
(2.2)
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где jе viol(S) броj чворова коjи нарушаваjу услов тоталне доминациjе, односно броj чворова
без иjедног суседа у S, obj(S) вредност функциjе циља из jедначине 2.1, а Wtot збир
тежина свих чворова и грана у графу. Овако дефинисан Wtot представља тривиjалну
горњу границу за квалитет решења проблема. Стога се вредност obj(S)

Wtot+1
увек налази у

интервалу (0, 1), па jе viol(S) важниjи део функциjе прилагођености.
Код свих допустивих решења вредност viol(S) jе 0, па jе вредност функциjе

прилагођености увек мања од 1. Са друге стране, за сва недопустива решења вредност
viol(S) jе већа од 0, па jе вредност функциjе прилагођености увек већа од 1. Дакле,
свако допустиво решење има строго мању вредност функциjе прилагођености од
сваког недопустивог решења. Због овог корисног своjства овако дефинисане функциjе
прилагођености, омогућен jе суптилан пролазак и кроз допустиве, и кроз недопустиве
регионе простора претраге.

2.3.3 Размрдавање

Размрдавање, задужено за диверзификациjу у алгоритму, у околини κ реализуjе се
избацивањем κ насумичних чворова из решења. Будући да, углавном, поготово у касниjим
фазама рада алгоритма, неће постоjати чворови у решењу коjи су „бескорисни“, тj. не
покриваjу ниjедан чвор, решење Snew добиjено на оваj начин ће у већини случаjева
имати лошиjу вредност функциjе прилагођености од S, односно размрдавањем се може
од претходно допустивог добити недопустиво решење. С обзиром на то, потребно jе након
размрдавања применити локалну претрагу да би се добило допустиво, и, потенциjално,
боље решење.

2.3.4 Локална претрага

Интензификациjа jе реализована комбинациjом две локалне претраге са првим
побољшањем – бржа localSearch1 (LS1) са временском сложеношћу O(|V |) по итерациjи,
и спориjа, али моћниjа localSearch2 (LS2) са временском сложеношћу O(|V |2) по
итерациjи. Детаљи имплементациjе су приказани у псеудокодовима 4 и 5.

LS1 користи оператор 1-инверзиjе до првог побољшања, односно покушава се
избацивање било ког чвора из решења или додавање чвора ван решења. Као и обично код
првог побољшања, постоjи пристрасност у редоследу прихватања бољих решења. Како
би се оваква пристрасност избегла, на почетку сваке итерациjе се одређуjе насумична
пермутациjа чворова. Потом се итерира кроз тако одређен редослед чворова и за сваки
чвор се рачуна функциjа прилагођености решења у ком jе таj чвор избачен (ако jе
претходно био део решења) или додат (уколико jе до сада био ван решења). Кад год
дође до побољшања, односно смањења вредности функциjе прилагођености, промена се
прихвата и излази се из унутрашње петље, а у супротном се прелази на следећи чвор.

С обзиром на то да jе промена у виду додавања или избацивања jедног чвора локална
по своjоj природи, нема потребе за рачунањем вредности функциjе прилагођености од
нуле након сваке промене. Уместо тога, вредност функциjе прилагођености се рачуна на
основу претходне вредности и промене коjа jе настала. Ово се постиже инкременталним
(парциjалним) рачунањем вредности функциjе прилагођености, што jе детаљно описано у
одељку 2.3.5.

LS2 користи стратегиjу 1-замене до првог побољшања. Систематично се пролази кроз
све парове чворова од коjих jе jедан у решењу, а jедан ван, и проверава се ефекат њихове
замене, односно избацивања jедног и убацивања другог чвора. Поред тога, остављена jе
могућност и за само додавање, то jест само избацивање неког чвора. Показало се да jе
у неким случаjевима оваква промена ефективниjа од замене, иако jе замена углавном
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моћниjа (мање локална по природи). Као и код LS1, користи се инкрементално рачунање
вредности функциjе прилагођености како би се убрзало извршавање. Међутим, то ниjе
довољно да надомести већу временску сложеност овог алгоритма, па се LS2 не примењуjе
увек, већ само повремено. Конкретно, користи се само ако су наредна два услова испуњена:

• решење се ниjе побољшало у последњих 100 Vns итерациjа;

• LS2 ниjе позвана у последњих 10 Vns итерациjа.

Алгоритам 4 Функциjа localSearch1
1: Улаз: S: решење; G = (V,E, f1, f2): инстанца проблема.
2: improved← true
3: currF it← fit(S,G)
4: while improved do
5: improved← false
6: for v ∈ randomOrder(V ) do
7: if v ∈ S then
8: newFit← recalcNodeRemoved(S, v,G)
9: if newFit < currF it then

10: S ← S \ {v}
11: currF it← newFit
12: improved← true
13: break
14: end if
15: else ▷ v ∈ V \ S
16: newFit← recalcNodeAdded(S, v,G)
17: if newFit < currF it then
18: S ← S ∪ {v}
19: currF it← newFit
20: improved← true
21: break
22: end if
23: end if
24: end for
25: end while
26: Излаз: S

2.3.5 Инкрементално рачунање вредности функциjе
прилагођености

Као што jе већ поменуто, промена коjа настаjе додавањем jедног чвора v у решење jе
локалне природе. Оваква операциjа утиче само на сам чвор v и његове суседе. Вредност
функциjе прилагођености се може ажурирати на следећи начин:

1. Тежина чвора v се додаjе на вредност функциjе прилагођености, jер jе он додат у
решење.

2. Ако v има суседа у решењу, тежина његове екстерне гране се одузима.

3. Тежине интерних грана чвора v се додаjу.
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Алгоритам 5 Функциjа localSearch2
1: Улаз: S: решење; G = (V,E, f1, f2): инстанца проблема.
2: improved← true
3: currF it← fit(S,G)
4: while improved do
5: improved← false
6: for vout ∈ randomOrder(V \ S) do
7: newFit← recalcNodeAdded(S, vout, G)
8: if newFit < currF it then ▷ додавање без избацивања већ побољшава
9: S ← S ∪ {vout}

10: currF it← newFit
11: improved← true
12: break
13: end if
14: end for
15: if improved then
16: continue
17: end if
18: for vin ∈ randomOrder(S) do
19: newFit← recalcNodeRemoved(S, vin, G)
20: if newFit < currF it then ▷ избацивање без додавања већ побољшава
21: S ← S \ {vin}
22: currF it← newFit
23: improved← true
24: break
25: end if
26: S ← S \ {vin} ▷ избацивање
27: for vout ∈ randomOrder(V \ S) do ▷ провера ефекта додавања
28: newFit← recalcNodeAdded(S, vout, G)
29: if newFit < currF it then ▷ избацивање и додавање (замена) побољшава
30: S ← S ∪ {vout}
31: currF it← newFit
32: improved← true
33: break
34: end if
35: end for
36: if improved then
37: break
38: else
39: S ← S ∪ {vin} ▷ враћање претходно избаченог vin
40: end if
41: end for
42: end while
43: Излаз: S

4. За сваког суседа u чвора v коjи нема суседа у решењу, броj чворова коjи нарушаваjу
услов тоталне доминациjе се смањуjе за jедан (зато што чвор u сада има суседа у
решењу). Додатно, ако u ниjе у решењу, додаjе се тежина његове екстерне гране (ако
u jесте у решењу, ова грана jе у ствари интерна и њена тежина jе већ додата у кораку

16



ПОГЛАВЉЕ 2. ПРОБЛЕМ МИНИМАЛНЕ ТЕЖИНСКЕ ТОТАЛНЕ ДОМИНАЦИJЕ

3).

5. За сваког суседа чвора v ажурира се његова тежина екстерне гране – проверава се
да ли jе чвор v постао његов наjближи сусед у решењу.

Потпуно аналогно резоновање важи и за случаj када се чвор избацуjе из решења.
Псеудокодови ове две функциjе су дати у додатку А.

Да би ова процедура могла да се извршава ефикасно, потребно jе чувати додатне
информациjе о стању решења у адекватноj структури података. Конкретно, за сваки чвор
у графу се чува скуп грана коjе га повезуjу са суседима коjи су у решењу. Током читавог
рада алгоритма, ови скупови се одржаваjу уређени по тежини грана. На оваj начин jе
омогућен O(1) приступ екстерног грани било ког чвора.

2.4 Експериментални резултати

У овом одељку су представљни емпириjски докази квалитета предложеног алгоритма.
Упоређени су сви релевантни приступи за решавање проблема MWTDS коjи су доступни у
литератури на свим постоjећим инстанцама проблема, а уведене су и неке нове. Разматране
су следеће четири методе:

1. F2 ILP модел коjи су предложили Алварез-Миранда и Синл [6], овде означен као Ilp.
Треба напоменути да jе у истом раду предложен и F1 ILP модел, али jе показано да
jе F2 модел бољи на њиховом скупу инстанци (његовим решавањем jе више инстанци
решено до оптималности). Поред тога, исти аутори су комбиновали F1 и F2 моделе
са радним оквиром заснованим на гранању са одсецањем, добивши тако методе под
називом F1+ и F2+. Ове унапређене верзиjе (F1+ и F2+) оствариле су боље резултате
од основних ILP модела (F1 и F2) на малим и средње великим инстанцама. Међутим,
због недостатка информациjа ниjе их било могуће поново имплементирати, нити су
њихове извршне верзиjе биле доступне. Како би поређење било што поштениjе, у
поређење су укључени наjбољи резултати свих ових метода, када год jе то могуће.
Свакако метода гранања са одсецањем припада класи егзактних метода, што jе чини
тешко применљивом на великим инстанцама коjе су уведене у овом раду. Стога
веруjемо да се перформансе F2 модела не би много разликовале од оригиналног F2+
модела на великим инстанцама.

2. Похлепна стохастичко-адаптивна метода претраге (енг. Greedy Randomized Adaptive
Search Procedure, GRASP) коjа jе предложена у раду [6], означена као Grasp.

3. Хибрид Grasp-а и генетског алгоритма, означен као Grasp+Ga, такође предложен
у раду [6].

4. Предложени VNS алгоритам описан у одељку 2.3, означен као Vns.

Сви алгоритми су имплементирани у програмском jезику Python и извршавани помоћу
PyPy интерпретера, коjи представља бржу алтернативу стандардном Python интерпретеру
CPython. Експерименти су извођени на рачунару са Intel Core i9-9900KF процесором са
3.6GHz, уз ограничење мемориjе на 6GB по покретању, под оперативним системом Micro-
soft Windows 10 Pro. Како ни изворни код, ни извршне верзиjе алгоритама из литературе
нису биле доступне, Grasp и Grasp+Ga су пажљиво поново имплементирани. ILP
модели су решавани коришћењем CPLEX 20.1 решавача. Максимално дозвољено време
за решавање сваке инстанце jе било постављено на 30 минута (1800 секунди), осим за
инстанце друштвених мрежа из одељка 2.5 где jе коришћено дуже временско ограничење.
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Ради фер поређења и конзистентности са методологиjом успостављеном у релевантноj
литератури [6, 87], сви алгоритми извршавани су тачно jедном по инстанци.

2.4.1 Инстанце проблема

Коришћена су два скупа случаjно генерисаних инстанци из литературе. Први скуп
означен као MA [87] садржи 45 инстанци величине између 20 и 100 чворова. Други скуп
означен као AMS [6] састоjи се од 125 инстанци од коjих наjвеће имаjу 125 чворова.
Генерисане су коришћењем Ердош-Ренjи модела [42] G(n, p), где генерисани граф има
n чворова и вероватноћу p за постоjање гране између свака два чвора. Да би се испитао
утицаj различитих тежина чворова и грана на рад алгоритама, тежине чворова, односно
грана, додељиване су на случаjан начин из униформне расподеле U{a, b}, односно U{c, d},
где су (a, b, c, d) ∈ {(1, 50, 1, 10), (1, 25, 1, 25), (1, 10, 1, 50)}. На оваj начин постоjи три
различите групе инстанци са различитим односом тежина чворова и грана. У првоj групи
су тежине чворова веће од тежина грана, а самим тим су и битниjе за квалитет решења.
Друга група се састоjи од инстанци код коjих су тежине чворова и грана у истом распону,
па су jеднако битне. Коначно, трећа група садржи инстанце код коjих су тежине грана
веће од тежина чворова, па су гране битниjе за квалитет решења.

Како jе у овом раду главни фокус на поређењу хеуристичких метода, поред
ова два скупа инстанци мале и средње величине, претходно описаном методологиjом
генерисан jе и нови скуп великих инстанци означен са NEW. Броj чворова у овом
скупу jе из скупа {250, 500, 1000}, док jе вероватноћа постоjања гране између два
чвора p ∈ {0.2, 0.5, 0.8}. Пошто jе генерисано по 5 графова за сваку од 27 различитих
конфигурациjа {(1, 50, 1, 10), (1, 25, 1, 25), (1, 10, 1, 50)} × {250, 500, 1000} × {0.2, 0.5, 0.8},
укупан броj инстнаци у скупу NEW износи 135.

Jавни репозиториjум са (ре)имплементациjом сва четири метода коjа су поређена, свим
инстанцама проблема, сировим резултатима извршавања, као и додатним материjалима
доступан jе на адреси https://github.com/StefanKapunac/wtdp_public.

2.4.2 Параметри алгоритма

Спроведено jе више прелиминарних експеримената како би се утврдиле адекватне
вредности контролних параметара Vns алгоритма. Као резултат, следеће вредности су
одабране као наjбоље:

• κmin = 1;

• κmax = min{20, |V |
5
};

• itmax = 3900.

Параметар itmax постављен jе на 3900 ради фер поређења са наjбољом хеуристичком
методом из литературе, што jе Grasp+Ga алгоритам. Почетна популациjа од 100 jединки
генерисана jе употребом Grasp алгоритма. Након тога, у свакоj од 20 итерациjа генетског
алгоритма, сви парови jединки из тренутне популациjе су коришћени за генерисање нове
популациjе. Како jе величина популациjе била 20, укупан броj могућих парова jединки
износио jе 20·19

2
= 190. Стога jе укупан броj итерациjа алгоритма Vns jеднак укупном

броjу корака алгоритма Grasp+Ga и износи 100 + 20 · 190 = 3900.
Избор κmin = 1 jе разуман узевши у обзир величину разматраних инстанци и задато

временско ограничење. Веће вредности κmin доводе до jачих промена у фази размрдавања,
што може проузроковати нестабилност и спориjу конвергенциjу. Са друге стране, веће
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вредности κmin могу бити корисне у раду са већим графовима, као што jе случаj са
инстанцама друштвених мрежа анализираним у одељку 2.5.

За подешавање параметра κmax коришћен jе следећи скуп од дванаест конфигурациjа:
{min{x, y}|(x, y) ∈ {10, 20, 40} × {logn,

√
n, n

5
, n
2
}}. Процес подешавања извршен jе на

подскупу инстанци, тако што jе из сваке групе инстанци одабран по jедан представник (од
укупно пет). Будући да jе укупан броj инстанци jеднак 315, за подешавање овог параметра
коришћен jе подскуп од 315

5
= 63 инстанце. Наjбољи резултати, у погледу просечног

квалитета решења, на овом подскупу инстанци добиjени су за конфигурациjу x = 20 и
y = n

5
, те су ове вредности коришћене у коначноj евалуациjи алгоритма Vns.

2.4.3 Опис резултата

Сумарни резултати су приказани у табелама 2.1 и 2.2. Табела 2.1 приказуjе резултате
метода Ilp и Vns на инстанцама из скупа MA. Прва колона представља групу инстанци; на
пример, MA-20 означава групу инстанци са |V | = 20 из референтног скупа MA. Друга колона
садржи броj инстанци у датоj групи, док трећа колона (best) приказуjе просечан квалитет
наjбољег решења, узимаjући у обзир сва доступна решења из литературе, укључуjући и
резултате предложеног Vns алгоритма.

Следећа два блока приказуjу резултате метода Ilp и Vns. Први блок се састоjи од
две колоне: колона obj представља просечан квалитет решења за све инстанце у групи,
док колона #opt приказуjе броj инстанци коjе су оптимално решене. Други блок, коjи се
односи на Vns, садржи четири колоне: колона t означава просечно време извршавања у
секундама (усредњено по свим инстанцама у групи), obj даjе просечан квалитет решења,
pg% представља просечну релативну разлику решења у односу на наjбоље решење (у
процентима), тj. (obj−best

best
)×100, док колона #b приказуjе броj инстанци за коjе jе добиjено

решење jеднако наjбољем.
На основу резултата из Табеле 2.1, могу се извући следећи закључци:

• Метод Ilp може оптимално да реши свих 45 инстанци.

• Vns такође долази до оптималних решења на свим инстанцама, а његова ефикасност
се огледа у малом просечном времену извршавања (наjвеће време jе 19.3s).

Табела 2.1: Валидациjа оптималности Vns-a

Ilp VNS
инстанце # best obj #opt t obj pg% #b
MA-20 15 45.5 45.5 15 1.6 45.5 0 15
MA-50 15 88.7 88.7 15 5.2 88.7 0 15
MA-100 15 151.8 151.8 15 19.3 151.8 0 15
All 45 95.3 95.3 45 8.7 95.3 0 45

Табела 2.2 даjе упоредни приказ резултата метода Ilp, Vns, Grasp и хибридног
приступа Grasp+Ga. Прве три колоне су идентичне онима у Табели 2.1, док наредна
четири блока представљаjу резултате за сваки од метода. У блоку за Ilp, колоне имаjу
исто значење као у претходноj табели, док су структуре осталих блокова аналогне блоку
Vns из Табеле 2.1.

Анализом резултата из табеле 2.2 може се закључити следеће:

• Ilp оптимално решава свих 45 инстанци у групи AMS-75, а исте резултате постиже
и Vns. Друге две методе нису толико успешне - Grasp+Ga проналази оптимална
решења на 39 инстанци, док Grasp на само 17.
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• На скуповима AMS-100 и AMS-125, Ilp jош увек успева да успешно реши велики
броj инстанци (70 од 90). Међутим, Vns проналази наjбоље или резултате jеднаке
наjбољим на 87 од 90 инстанци. Други наjуспешниjи метод jе Ilp, а затим следи
Grasp+Ga, коjи даjе наjбоље решење у 66 случаjева. Наjслабиjи jе, очекивано,
метод Grasp. Слични закључци могу се извести и анализом просечног квалитета
решења.

• За инстанце из референтног скупа NEW (где jе |V | ∈ {250, 500, 1000}), метод Ilp
се показао као неприменљив jер ниjе могао да реши ниjедну од 135 инстанци. Са
друге стране, метод Vns даjе боље резултате од осталих хеуристичких приступа.
Ово jе посебно изражено код наjвеће групе (45 инстанци са |V | = 1000), где jе
просечан квалитет решења добиjених помоћу Vns 3076.8, док jе други наjбољи метод
Grasp+Ga са 3193.5. За 107 инстанци, Vns постиже наjбоље резултате (или jеднаке
наjбољим), док jе Grasp+Ga други наjуспешниjи са 64 наjбоља решења. Као што
jе очекивано, просечно време извршавања два наjуспешниjа приступа jе упоредиво.

Табела 2.2: Vns у односу на Grasp и Grasp+Ga

Ilp Vns Grasp Grasp+Ga
инстанце # best obj #opt t obj pg% #b t obj pg% #b t obj pg% #b
AMS-75 45 421.7 421.7 45 11.5 421.7 0 45 1.3 443.8 4 17 9.9 423.9 0.34 39
AMS-100 45 524.5 524.5 44 20.2 524.6 0.01 44 2.5 539.2 2.3 16 23.1 526.5 0.32 32
AMS-125 45 610.1 610.1 26 31.1 610.4 0.03 43 5 636.9 3.49 12 47.8 611.8 0.23 34
NEW-250 45 1030.9 1149.9 0 198.5 1032.4 0.1 40 25.8 1115.3 7.41 1 196.6 1035.1 0.35 29
NEW-500 45 1763.5 2408.4 0 1068 1770.5 0.29 33 240.5 1908.3 7.42 0 1136.8 1773.9 0.54 24
NEW-1000 45 3059.7 5932.5 0 1813.3 3076.8 0.4 34 1482.2 3319.3 7.75 0 1834.2 3193.5 4.2 11
All 270 1235.1 1841.2 115 523.8 1239.4 0.14 239 292.9 1327.1 5.4 46 541.4 1260.8 1 169

2.4.4 Детаљни резултати

Имаjући у виду да су сумарни резултати показали да Vns постиже оптимална решења
на готово свим инстанцама са до 100 чворова (134 од 135 оваквих инстанци jе оптимално
решено), у наставку неће бити даље анализиране. Пажња ће бити усмерена на инстанце
средње величине из скупа AMS-125 и велике инстанце из скупа NEW.

Табела 2.3 даjе детаљно поређење методе Vns са методама Ilp, Grasp и Grasp+Ga
на AMS-125 инстанцама. Сваки ред у табели представља резултатe за jедну инстанцу. Прва
колона садржи ознаку инстанце у формату AMS-|V |-p-c-w-id , где параметри (|V |, p, c, w)
описуjу карактеристике инстанце (за више информациjа о генерисању инстанци погледати
рад [6]). Следећа колона приказуjе наjбољи познат резултат за дату инстанцу, након чега
следе четири блока резултата.

Први блок представља резултате метода Ilp, где колона obj приказуjе квалитет
решења, а колона ind. статус завршетка алгоритма. Ознака TL (енг. time limit) означава да
jе достигнуто временско ограничење, што значи да оптималност решења ниjе потврђена,
док opt указуjе на оптимално решење. Наредна три блока приказуjу резултате метода
Vns, Grasp и Grasp+Ga. У сваком блоку налазе се четири колоне: време извршавања у
секундама (t), квалитет решења (obj ), процентуална разлика у односу на наjбоље познато
решење за дату инстанцу (pg) и индикаторска колона (ind.). Индикаторска колона има три
могуће вредности: best означава да jе постигнуто наjбоље познато решење, opt означава да
jе решење и оптимално, док празно поље означава да ниjе у питању ниjедна од претходне
двe опциjе.

На основу детаљних резултата приказаних у табели 2.3, могу се извући следећи
закључци:
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• На свим инстанцама, изузев две где jе p = 0.2 (релативно ретки графови), Vns
постиже наjбоље познато решење. Са друге стране, Grasp+Ga не долази до
наjбољег решења на 11 инстанци.

• Наjвећа процентуална разлика у односу на наjбоље решење за методу Vns износи
1.33%.

• Vns успева да пронађе оптимално решење у 25 од 26 случаjева у коjима jе Ilp дао
оптимална решења, док Grasp+Ga ово постиже у 19 случаjева.

Табела 2.3: Детаљно поређење Vns-a у односу на Grasp и Grasp+Ga на скупу AMS-125

Ilp Vns Grasp Grasp+Ga
инстанца best obj ind. t obj pg% ind. t obj pg% ind. t obj pg% ind.
AMS-125-0.2-10-50-1 1026 1026 TL 28.8 1026 0 best 2 1112 8.38 24 1026 0 best
AMS-125-0.2-10-50-2 1038 1038 TL 28.1 1038 0 best 2 1069 2.99 22 1038 0 best
AMS-125-0.2-10-50-3 935 935 opt 24.5 935 0 opt 2 1124 20.21 23 947 1.28
AMS-125-0.2-10-50-4 1050 1050 TL 26.1 1064 1.33 2 1121 6.76 21 1051 0.1
AMS-125-0.2-10-50-5 974 974 TL 25.7 974 0 best 2 1112 14.17 25 975 0.1
AMS-125-0.2-25-25-1 720 720 opt 25.7 720 0 opt 2 803 11.53 26 720 0 opt
AMS-125-0.2-25-25-2 746 746 opt 22.8 746 0 opt 2 768 2.95 24 748 0.27
AMS-125-0.2-25-25-3 715 715 opt 26.9 715 0 opt 2 752 5.17 21 717 0.28
AMS-125-0.2-25-25-4 701 701 opt 25.4 701 0 opt 2 726 3.57 22 705 0.57
AMS-125-0.2-25-25-5 684 684 opt 23.4 685 0.15 2 747 9.21 23 697 1.9
AMS-125-0.2-50-10-1 455 455 opt 23.2 455 0 opt 2 457 0.44 21 455 0 opt
AMS-125-0.2-50-10-2 477 477 opt 22.4 477 0 opt 2 493 3.35 23 477 0 opt
AMS-125-0.2-50-10-3 490 490 opt 22 490 0 opt 2 501 2.24 21 490 0 opt
AMS-125-0.2-50-10-4 467 467 opt 22.5 467 0 opt 2 504 7.92 23 467 0 opt
AMS-125-0.2-50-10-5 457 457 opt 23.1 457 0 opt 2 468 2.41 24 459 0.44
AMS-125-0.5-10-50-1 817 817 TL 33.8 817 0 best 4 817 0 best 41 817 0 best
AMS-125-0.5-10-50-2 815 815 TL 34.4 815 0 best 5 827 1.47 45 815 0 best
AMS-125-0.5-10-50-3 836 836 TL 35.8 836 0 best 4 880 5.26 45 872 4.31
AMS-125-0.5-10-50-4 867 867 TL 33.7 867 0 best 4 914 5.42 55 867 0 best
AMS-125-0.5-10-50-5 867 867 TL 28.6 867 0 best 5 906 4.5 55 867 0 best
AMS-125-0.5-25-25-1 566 566 TL 32 566 0 best 5 566 0 best 48 566 0 best
AMS-125-0.5-25-25-2 533 533 opt 28.6 533 0 opt 5 561 5.25 48 533 0 opt
AMS-125-0.5-25-25-3 538 538 opt 30.4 538 0 opt 5 567 5.39 49 538 0 opt
AMS-125-0.5-25-25-4 552 552 TL 31.1 552 0 best 4 565 2.36 53 552 0 best
AMS-125-0.5-25-25-5 545 545 TL 31.7 545 0 best 5 548 0.55 48 548 0.55
AMS-125-0.5-50-10-1 334 334 opt 29.3 334 0 opt 4 336 0.6 40 334 0 opt
AMS-125-0.5-50-10-2 330 330 opt 28.5 330 0 opt 4 330 0 opt 38 330 0 opt
AMS-125-0.5-50-10-3 315 315 opt 26.5 315 0 opt 5 315 0 opt 49 315 0 opt
AMS-125-0.5-50-10-4 316 316 opt 29.2 316 0 opt 5 316 0 opt 51 316 0 opt
AMS-125-0.5-50-10-5 311 311 opt 28.9 311 0 opt 4 311 0 opt 40 311 0 opt
AMS-125-0.8-10-50-1 793 793 TL 39.5 793 0 best 9 793 0 best 78 793 0 best
AMS-125-0.8-10-50-2 845 845 TL 40.4 845 0 best 8 854 1.07 72 845 0 best
AMS-125-0.8-10-50-3 787 787 TL 41.8 787 0 best 9 829 5.34 74 787 0 best
AMS-125-0.8-10-50-4 777 777 TL 40.8 777 0 best 9 829 6.69 83 777 0 best
AMS-125-0.8-10-50-5 813 813 TL 40.7 813 0 best 8 827 1.72 77 813 0 best
AMS-125-0.8-25-25-1 508 508 opt 37.4 508 0 opt 9 521 2.56 69 510 0.39
AMS-125-0.8-25-25-2 498 498 opt 38.3 498 0 opt 9 499 0.2 65 498 0 opt
AMS-125-0.8-25-25-3 513 513 TL 37 513 0 best 9 523 1.95 77 513 0 best
AMS-125-0.8-25-25-4 493 493 opt 38.9 493 0 opt 8 506 2.64 75 493 0 opt
AMS-125-0.8-25-25-5 504 504 TL 38.3 504 0 best 8 519 2.98 76 504 0 best
AMS-125-0.8-50-10-1 307 307 opt 33.6 307 0 opt 8 307 0 opt 64 307 0 opt
AMS-125-0.8-50-10-2 296 296 opt 37.6 296 0 opt 8 296 0 opt 57 296 0 opt
AMS-125-0.8-50-10-3 294 294 opt 33.6 294 0 opt 8 294 0 opt 71 294 0 opt
AMS-125-0.8-50-10-4 270 270 opt 34.8 270 0 opt 9 270 0 opt 86 270 0 opt
AMS-125-0.8-50-10-5 278 278 opt 33.6 278 0 opt 9 278 0 opt 77 278 0 opt

Резултати за инстанце из скупа NEW са 250 и 500 чворова дати су у додатку Б, у табелама

21



ПОГЛАВЉЕ 2. ПРОБЛЕМ МИНИМАЛНЕ ТЕЖИНСКЕ ТОТАЛНЕ ДОМИНАЦИJЕ

Б.1 и Б.2. Tабела 2.4 приказуjе резултате за NEW инстанце са 1000 чворова. Из ње се могу
извести следећи закључци:

• Ilp успева да пронађе прималне границе само за ретке графове (p = 0.2). У другим
случаjевима, модел ниjе могао бити изграђен због ограничења мемориjе (6GB), што
jе означено као ML (енг. memory limit).

• Vns проналази наjбоља решења за 34 од 45 инстанци, док jе Grasp+Ga то успева
у само 11 случаjева.

• Интересантно jе да код ретких графова (p = 0.2), Grasp+Ga углавном даjе
боље резултате од Vns. Међутим, за гушће графове (p ∈ 0.5, 0.8), Vns постиже
наjбоље резултате у свим случаjевима, док Grasp+Ga не проналази ниjедно наjбоље
решење.

Табела 2.4: Детаљно поређење Vns-a у односу на Grasp и Grasp+Ga на скупу NEW-1000

Ilp Vns Grasp Grasp+Ga
инстанца best obj ind. t obj pg% ind. t obj pg% ind. t obj pg% ind.
NEW-1000-0.2-10-50-1 4990 10851 TL 1802.9 5106 2.32 809.3 5661 13.45 1844.6 4990 0 best
NEW-1000-0.2-10-50-2 5233 9687 TL 1806.7 5316 1.59 824.3 5803 10.89 1912 5233 0 best
NEW-1000-0.2-10-50-3 5044 9995 TL 1800.1 5044 0 best 829 5790 14.79 2030.3 5196 3.01
NEW-1000-0.2-10-50-4 5079 9760 TL 1803.5 5321 4.76 829.2 5742 13.05 1901.6 5079 0 best
NEW-1000-0.2-10-50-5 5098 10617 TL 1802.4 5260 3.18 811.6 5887 15.48 1817.7 5098 0 best
NEW-1000-0.2-25-25-1 3167 5340 TL 1803.2 3233 2.08 804.9 3525 11.3 1903.5 3167 0 best
NEW-1000-0.2-25-25-2 3163 5845 TL 1804.6 3163 0 best 827.8 3611 14.16 1954.9 3179 0.51
NEW-1000-0.2-25-25-3 3148 5003 TL 1800.7 3148 0 best 810.7 3520 11.82 1802.9 3159 0.35
NEW-1000-0.2-25-25-4 3227 4863 TL 1802.4 3268 1.27 808.1 3583 11.03 1839.1 3227 0 best
NEW-1000-0.2-25-25-5 3234 5349 TL 1801 3234 0 best 813.6 3600 11.32 1848.6 3285 1.58
NEW-1000-0.2-50-10-1 1907 2419 TL 1807.6 1930 1.21 802.7 2072 8.65 1876.6 1907 0 best
NEW-1000-0.2-50-10-2 1882 2275 TL 1803.2 1890 0.43 812.5 2034 8.08 1826.3 1882 0 best
NEW-1000-0.2-50-10-3 1899 2401 TL 1820.8 1921 1.16 802.3 2042 7.53 1851.7 1899 0 best
NEW-1000-0.2-50-10-4 1914 2281 TL 1801.6 1916 0.1 816.2 2133 11.44 1842 1914 0 best
NEW-1000-0.2-50-10-5 1934 2302 TL 1807.3 1936 0.1 807.5 2095 8.32 1883.9 1934 0 best
NEW-1000-0.5-10-50-1 4483 - ML 1817.9 4483 0 best 1813.7 4918 9.7 1817.8 4869 8.61
NEW-1000-0.5-10-50-2 4462 - ML 1802.6 4462 0 best 1805.5 4857 8.85 1814.3 4807 7.73
NEW-1000-0.5-10-50-3 4567 - ML 1809.1 4567 0 best 1820.4 4983 9.11 1819.8 5015 9.81
NEW-1000-0.5-10-50-4 4480 - ML 1847.1 4480 0 best 1811.4 4855 8.37 1804.8 4967 10.87
NEW-1000-0.5-10-50-5 4469 - ML 1812.2 4469 0 best 1822.7 4765 6.62 1805.9 4862 8.79
NEW-1000-0.5-25-25-1 2743 - ML 1826.7 2743 0 best 1821.6 2927 6.71 1822.6 2961 7.95
NEW-1000-0.5-25-25-2 2771 - ML 1814.8 2771 0 best 1817.7 2914 5.16 1811.8 2905 4.84
NEW-1000-0.5-25-25-3 2783 - ML 1813.2 2783 0 best 1820.9 2940 5.64 1815.7 2923 5.03
NEW-1000-0.5-25-25-4 2757 - ML 1800 2757 0 best 1812.2 2987 8.34 1812 2942 6.71
NEW-1000-0.5-25-25-5 2752 - ML 1800.1 2752 0 best 1822 2949 7.16 1818.3 2946 7.05
NEW-1000-0.5-50-10-1 1612 - ML 1801.3 1612 0 best 1801.7 1702 5.58 1810.5 1699 5.4
NEW-1000-0.5-50-10-2 1631 - ML 1808 1631 0 best 1816.3 1698 4.11 1814 1697 4.05
NEW-1000-0.5-50-10-3 1625 - ML 1801.3 1625 0 best 1804.3 1699 4.55 1819.2 1711 5.29
NEW-1000-0.5-50-10-4 1629 - ML 1836 1629 0 best 1821.5 1714 5.22 1805 1710 4.97
NEW-1000-0.5-50-10-5 1597 - ML 1825.2 1597 0 best 1814.1 1677 5.01 1814 1694 6.07
NEW-1000-0.8-10-50-1 4334 - ML 1806.3 4334 0 best 1803.1 4518 4.25 1827.1 4678 7.94
NEW-1000-0.8-10-50-2 4352 - ML 1800.3 4352 0 best 1813.7 4577 5.17 1807.2 4630 6.39
NEW-1000-0.8-10-50-3 4358 - ML 1841.2 4358 0 best 1821.3 4623 6.08 1800.8 4698 7.8
NEW-1000-0.8-10-50-4 4375 - ML 1818.5 4375 0 best 1829.3 4713 7.73 1817.2 4660 6.51
NEW-1000-0.8-10-50-5 4373 - ML 1857.4 4373 0 best 1816.4 4606 5.33 1814 4587 4.89
NEW-1000-0.8-25-25-1 2580 - ML 1885 2580 0 best 1828.7 2719 5.39 1802.1 2723 5.54
NEW-1000-0.8-25-25-2 2605 - ML 1848.6 2605 0 best 1807.4 2756 5.8 1811.4 2736 5.03
NEW-1000-0.8-25-25-3 2577 - ML 1818.6 2577 0 best 1817.6 2752 6.79 1824.2 2742 6.4
NEW-1000-0.8-25-25-4 2574 - ML 1815.1 2574 0 best 1818.7 2647 2.84 1803.4 2668 3.65
NEW-1000-0.8-25-25-5 2613 - ML 1800.5 2613 0 best 1830.2 2773 6.12 1840.6 2726 4.32
NEW-1000-0.8-50-10-1 1525 - ML 1803.7 1525 0 best 1801.2 1594 4.52 1820.5 1597 4.72
NEW-1000-0.8-50-10-2 1549 - ML 1800.9 1549 0 best 1803.2 1632 5.36 1819.9 1637 5.68
NEW-1000-0.8-50-10-3 1526 - ML 1815.5 1526 0 best 1826.1 1624 6.42 1800.5 1594 4.46
NEW-1000-0.8-50-10-4 1526 - ML 1801 1526 0 best 1821 1566 2.62 1801.1 1579 3.47
NEW-1000-0.8-50-10-5 1541 - ML 1801.8 1541 0 best 1825.7 1584 2.79 1806.2 1596 3.57
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2.4.5 Статистичка анализа

Ради провере статистичке значаjности уочених разлика између четири разматране
методе, примењена jе следећа статистичка методологиjа. Прво jе примењен Фридманов
тест [47] за анализу свих метода, прво засебно на скуповима AMS и NEW, а потом и на свим
инстанцама из оба скупа. Након тога, у случаjу када jе нулта хипотеза одбачена, где H0

означава да су методе статистички jеднаке, примењен jе Неменjиjев пост-хок тест [93] за
упоредно поређење парова.

Резултати су приказани помоћу графика критичне разлике (енг. critical difference,
CD). На овом графику свака метода jе постављена на хоризонтално осу на позициjи коjа
одговара њеном просечном рангу на посматраном подскупу инстанци. Критична разлика
jе израчуната за ниво значаjности p = 0.05. Уколико jе разлика између метода мала,
односно уколико ниjе детектована статистички значаjна разлика, каже се да су методе
статистички jеднаке и на графику се повезуjу хоризонталном линиjом.

Резултати су подељени у три групе: прво су приказани резултати за све инстанце из
скупа AMS, затим за све инстанце из скупа NEW, и на краjу за све инстанце за оба скупа
заjедно. Одговараjући графици су приказани на сликама 2.3, 2.4 и 2.5 и из њих произлазе
следећи закључци:

• На референтном скупу AMS, коjи се састоjи од малих и средње великих инстанци,
Ilp успева да пронађе оптимална решења на 115 од укупно 135 инстанци. Стога не
чуди што ова метода има наjмањи просечан ранг (2.04) на овом скупу инстанци. Vns
има незнатно лошиjи просечан ранг (2.07), док су преостале методе значаjно лошиjе.
Нема статистички значаjне разлике између метода Ilp, Vns и Grasp+Ga, упркос
наизглед лошиjем просечном рангу Grasp+Ga (2.40). Метода Grasp показуjе
статистички значаjно лошиjе резултате на овом скупу инстанци, са просечним рангом
3.48.

• На референтном скупу NEW, коjи се састоjи од великих инстанци, постоjи статистички
значаjна разлика између свих метода. Конкретно, Vns надмашуjе Grasp+Ga,
коjи jе пак супериорниjи у односу на Grasp. Као што jе очекивано, Ilp постиже
наjслабиjе резултате због немогућности решавања проблема већих димензиjа.

• Када се анализираjу резултати на инстанцама из оба скупа заjедно, уочава се да jе
Vns наjбоља метода. Друга наjбоља jе Grasp+Ga, затим следи Ilp, а наjслабиjа
метода jе Grasp.

Слика 2.3: График критичне разлике за резултате на свим инстанцама из референтног
скупа AMS
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Слика 2.4: График критичне разлике за резултате на свим инстанцама из референтног
скупа NEW

Слика 2.5: График критичне разлике за резултате на свим инстанцамa из референтних
скупова AMS и NEW заjедно

2.5 Примена у ширењу информациjа на друштвеним
мрежама

У овом делу рада биће анализиран утицаj избора почетних чворова (ширитеља) на
процес ширења информациjа у великим друштвеним мрежама. Ширење информациjа,
као што су гласине или вирални маркетинг, представља важан аспект комуникациjе и
може утицати на целокупно друштво. Наиме, ширење информациjа може имати дубоке
социjалне и економске последице, jер утиче на поверење у друштву, креирање jавног
мњења, као и на маркетиншке стратегиjе компаниjа коjе зависе од брзог и ефикасног
преношења информациjа. Због тога jе разумевање како се информациjе крећу од jедног
до другог поjединца, као и коjи фактори утичу на оваj процес, кључно за ефикасно
управљање информациjама у различитим контекстима, од политике и новинарства до
комерциjалних кампања. Самим тим, не изненађуjе што jе ова тема широко истраживана
у области науке о подацима.

У неким од броjних радова на ову тему, попут [90, 116, 7], предложени су различити
модели засновани на SIR парадигми. SIR модел се наjчешће користи у епидемиологиjи
и представља модел ширења заразних болести. У овом моделу, читава популациjа jе
подељена у три групе: S - подложни инфекциjи (енг. susceptible), I - заразни (енг. in-
fected) и R - опорављени (енг. recovered). Другим речима, S чворови су они коjи могу бити
заражени, I чворови су они коjи су већ заражени и могу заразити S чворове, а R чворови
су они коjи су се опоравили и не могу више ни да се инфицираjу, нити да заразе друге
чворове. У контексту ширења информациjа, терминологиjа jе следећа:

• S чворови представљаjу оне коjи нису упознати са информациjом, називаjу се и
неупућени (енг. ignorants);
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• I чворови су они коjи су већ чули информациjу и могу да jе пренесу другим
чворовима, односно ширитељи (енг. spreaders);

• R чворови су они коjи су чули информациjу, али jе не шире даље, називаjу се и
гушитељи (енг. stiflers).

Основна правила ширења информациjа у оквиру SIR модела су следећа:

1. Када ширитељ ступи у контакт са неупућеним, оваj постаjе ширитељ са
вероватноћом β (стопа ширења или инфективност).

2. Када ширитељ ступи у контакт са другим ширитељем или гушитељем, он постаjе
гушитељ са вероватноћом γ (стопа опоравка или имунитета).

Процес ширења почиње тако што се одређени подскуп чворова у мрежи означи као
инициjално информисан, а завршава се када у графу више не постоjе ширитељи.

Користећи оваj модел, у раду [82] jе анализирано ширење гласина на микроблог
мрежама. У раду [80] jе такође коришћен модел заснован на SIR парадигми, али jе
уместо гласина анализирано ширење информациjа у динамичким друштвеним мрежама.
У раду [73] аутори користе SIR модел за симулациjу ширења лажних вести путем
апликациjе WhatsApp. Jедна од комерциjално привлачних примена овог концепта jе
вирални маркетинг, где корисници друштвене мреже путем међусобних препорука могу
значаjно утицати на продаjу и препознатљивост производа или услуге. Рана истраживања
у овоj области дата су у [79], где се поред осталих модела разматра и SIR. Новиjа
истраживања, попут рада [103], анализираjу утицаj параметара SIR модела на примену у
маркетиншким кампањама.

У овом раду, фокус jе на избору почетних чворова ширитеља. Размотримо случаj у
коме jе скуп инициjалних ширитеља постављен на решење проблема MWTDS, при чему
су параметри β = 0 и γ = 1. Сви остали чворови су неупућени, као и увек на почетку
процеса. Према дефинициjи MWTDS решења, сваки неупућени чвор у графу има суседа
коjи jе ширитељ. Међутим, пошто jе β = 0, ниjедан неупућени неће променити стање.
Такође, сваки ширитељ има бар jедног суседа коjи jе такође ширитељ, па због γ = 1 сви
ширитељи постаjу гушитељи након само jедне итерациjе и, како више нема ширитеља,
читав процес се завршава.

Када параметри β и γ нису постављени на вредности 0 и 1, процес ширења информациjа
више ниjе детерминистички. У сваком случаjу, хипотеза jе да ће избор почетних ширитеља
на основу решења проблема MWTDS довести до бржег ширења информациjа у односу на
насумично одабран скуп ширитеља исте кардиналности.

Извршени су експерименти на SNAP скупу података са друштвеним мрежама [78].
Инстанце из овог скупа су реални, велики графови коjи представљаjу делове популарних
друштвених мрежа попут Феjсбука и Твитера, коjи су од посебног значаjа у области
ширења информациjа. Коришћено jе 27 различитих инстанци, величине од 1912 до 81306
чворова и од 31299 до 1342310 грана.

У табели 2.5 приказани су резултати извршавања на свим инстанцама, а последњи ред
садржи просечне резултате. Метрика коjа jе коришћена jе време конвергенциjе, односно
броj итерациjа до завршетка ширења. Прве три колоне приказуjу назив инстанце, броj
чворова (|V |) и броj грана (|E|). Тестиране су различите комбинациjе параметара (β, γ) ∈
{0.1, 0.5, 0.9} × {0.1, 0.5, 0.9}. За сваку комбинациjу приказане су две колоне: у првоj jе
време конвергенциjе када се користи MWTDS решење добиjено методом Vns (означено
као V.), а у другоj када се користи насумичан избор инициjалних ширитеља (означено као
R.).
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Табела 2.5: Поређење времена конвергенциjе

(0.1, 0.1) (0.1, 0.5) (0.1, 0.9) (0.5, 0.1) (0.5, 0.5) (0.5, 0.9) (0.9, 0.1) (0.9, 0.5) (0.9, 0.9)
инстанца |V | |E| V. R. V. R. V. R. V. R. V. R. V. R. V. R. V. R. V. R.
deezer_HR 54573 498202 80 75 10 64 10 49 77 90 11 16 7 10 86 69 14 15 6 7
deezer_HU 47538 222887 71 82 13 70 12 69 63 76 15 13 7 8 87 75 16 16 6 8
deezer_RO 41773 125826 91 93 15 67 10 60 91 71 17 17 8 11 94 80 16 18 6 8
Slashdot0811 77360 546487 48 48 12 10 6 8 48 57 9 11 6 8 46 51 11 10 5 9
Slashdot0902 82168 582533 63 67 16 84 6 50 65 80 12 13 6 9 75 84 15 14 6 7
Wiki-Vote 7115 100762 61 52 12 43 5 30 87 78 11 14 6 8 106 80 14 18 6 6
facebook_artist 50515 819306 58 88 15 43 8 51 72 71 14 20 6 8 75 126 15 16 6 8
facebook_athletes 13866 86858 60 85 12 53 9 29 55 70 12 16 6 8 73 61 14 16 6 7
facebook_company 14113 52310 75 72 14 48 9 48 76 61 11 16 6 15 96 77 13 12 6 8
deezer_europe 28281 92752 71 80 15 53 9 62 104 82 14 16 8 9 81 95 17 15 7 10
facebook_combined 4039 88234 38 28 9 14 11 18 45 96 9 11 6 9 39 39 9 12 4 8
facebook_government 7057 89455 49 47 12 29 11 36 67 41 11 13 6 9 48 61 11 12 6 7
lastfm_asia 7624 27806 67 67 11 54 7 85 94 81 13 19 6 8 68 63 11 14 6 8
musae_DE 9498 153138 37 62 8 41 7 19 66 57 10 14 6 6 52 76 12 13 5 7
musae_ENGB 7126 35324 67 52 10 24 8 40 65 69 11 16 5 7 99 84 12 15 5 8
musae_ES 4648 59382 37 50 9 29 8 41 68 40 10 10 6 7 50 53 10 12 5 9
musae_FR 6549 112666 53 38 8 18 8 7 54 80 13 10 5 6 65 96 12 10 6 7
musae_PTBR 1912 31299 21 43 13 11 6 7 50 61 8 11 5 6 60 56 8 10 5 7
musae_RU 4385 37304 72 42 10 38 7 36 60 59 10 13 5 9 57 65 14 12 5 6
musae_facebook 22470 171002 64 92 12 56 9 47 88 78 11 16 7 9 74 84 12 14 6 9
musae_git 37700 289003 73 71 13 64 7 44 95 90 14 16 6 8 115 85 16 15 7 7
facebook_new_sites 27917 206259 55 60 14 65 9 45 93 53 16 15 8 9 76 106 12 13 6 8
facebook_politician 5908 41729 50 82 12 44 9 47 53 84 12 13 6 11 53 61 11 13 5 9
facebook_public_figure 11565 67114 53 103 15 65 8 60 74 70 15 16 6 12 71 87 15 15 5 9
soc-Epinions1 75879 405740 94 107 14 80 7 139 107 102 19 19 7 15 100 104 18 21 7 10
facebook_tvshow 3892 17262 58 71 10 36 9 45 60 55 12 19 6 12 62 67 12 14 6 7
twitter_combined 81306 1342310 56 53 11 15 13 20 74 116 13 21 7 8 82 80 15 15 6 8
Average 27288 233442.6 60.1 67 12 45.1 8.4 44.1 72.3 72.9 12.3 15 6.3 9.1 73.7 76.5 13.1 14.1 5.7 7.9

Из добиjених резултата могу се издвоjити следећи закључци:

• Када jе стопа ширења ниска, тj. β = 0.1, MWTDS приступ обезбеђуjе знатно бржу
конвергенциjу у односу на насумичан избор. Посебно се истиче случаj (β = 0.1, γ =
0.9), где jе просечно време конвергенциjе 8.4 за MWTDS у поређењу са 44.1 за
насумичан избор. Овакви резултати су очекивани, с обзиром на то да када jе стопа
ширења ниска, избор инициjалних ширитеља има већи значаj.

• Насупрот томе, при веома високоj стопи ширења (што jе у пракси ређе), квалитет
избора почетних ширитеља постаjе мање битан. И у таквим случаjевима MWTDS
решење показуjе боље резултате од насумичног избора, али jе разлика мања. На
пример, у случаjу (β = 0.9, γ = 0.5), време конвергенциjе jе 13.1 (MWTDS) наспрам
14.1 (насумично).

• Више стопе опоравка γ такође погодуjу примени MWTDS решења, jер отежаваjу
ширење информациjе. То се може емпириjски показати праћењем релативне
ефикасности при фиксном β и растућем γ. На пример, за β = 0.9, однос просечног
времена конвергенциjе (просек колоне V. подељен просеком колоне R.) се смањуjе:
0.96, 0.93, 0.72.

• Закључак jе да комбинациjа ниске стопе ширења и високе стопе опоравка представља
наjповољниjи сценарио за примену Vns MWTDS решења.

Треба нагласити да jе коначна расподела ширитеља, неупућених и гушитеља, након
завршетка процеса слична, као што jе приказано на слици 2.6. Дакле, насумичним избором
почетних ширитеља може се доћи до прилично добре покривености мреже. Међутим, у
том случаjу jе потребно много више итерациjа да би се постигла конвергенциjа, што jе
главна предност MWTDS решења добиjеног применом предложеног VNS алгоритма.
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(а) VNS (б) Насумично

Слика 2.6: SIR динамика на инстанци musae-facebook са β = 0.1 and γ = 0.9. Инициjални
скуп ширитеља jе:
(a) MWTDS решење добиjеном употребом VNS-а,
(b) насумичан скуп чворова исте кардиналности као у (a).

Упоредимо сада расподеле ширитеља, неупућених и гушитеља по итерациjама, што jе
на другачиjи начин приказано на слици 2.7. На самом почетку, броj ширитеља, неупућених
и гушитеља jе исти у оба случаjа. Већ у другоj итерациjи примећуjе се jасна предност
MWTDS решења: броj неупућених у MWTDS случаjу jе 913, у поређењу са 488 у
случаjу насумичне инициjализациjе. У петоj итерациjи MWTDS приступа остаjе само jедан
ширитељ, а процес се завршава већ у шестоj. Насупрот томе, насумични приступ траjе
jош три итерациjе и завршава се тек у осмоj.

(а) VNS - итерациjа 0 (б) VNS - итерациjа 2 (в) VNS - итерациjа 5

(г) Насумично - итерациjа 0 (д) Насумично - итерациjа 2 (ђ) Насумично - итерациjа 5

Слика 2.7: SIR динамика кроз итерациjе на инстанци musae-PTBR са β = 0.1 and γ = 0.9.
Ширитељи су приказани плавом, гушитељи црвеном, а неупућени зеленом боjом.
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2.6 Завршна разматрања

У овом поглављу развиjена jе ефикасна метода променљивих околина за проблем
минималне тежинске тоталне доминациjе, заснована на размрдавању и две вариjанте
локалне претраге. Кључан допринос представља пажљиво дефинисана функциjа
прилагођености и њено инкрементално израчунавање, што омогућава стабилно и ефикасно
кретање кроз допустиве и недопустиве регионе простора претраге. Експериментални
резултати показуjу да предложени алгоритам достиже оптимална решења на скоро свим
малим и средњим инстанцама, док на великим графовима надмашуjе конкурентске
приступе. Приказана примена на модел ширења информациjа у друштвеним мрежама
додатно илуструjе практичну релевантност проблема, као и развиjене методе. Постигнути
резултати постављаjу основу за даље истраживање и примену метахеуристичких приступа
у домену великих комплексних мрежа.
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Поглавље 3

Проблем минималне тежинске
независне доминациjе

Независна доминациjа jе вариjациjа класичног проблема доминациjе, где постоjи
додатно ограничење да ниjедна два чвора из решења не смеjу бити суседи. Оваj проблем
jе нашао примену у разним областима, као што су: одабир атрибута (енг. feature selec-
tion) [105, 11, 3], формирање виртуелне окоснице мреже (енг. backbone network) у ад-хок
мрежама [114], те кластеровање у бежичним сензорским мрежама [111]. Природно се може
проширити увођењем тежина чворова и грана како би се боље описали сложениjи реални
проблеми. Тако настаjе проблем минималне тежинске независне доминациjе (MWIDS),
уведен у раду [23], коjи jе главна тема овог поглавља. Очекивано, и тежинска вариjанта
овог проблема применљива jе у сличним сценариjима, jер омогућава додељивање тежина,
како чворовима, тако и гранама графа. На пример, у контексту кластеровања бежичних
мрежа, тежине чворова могу бити одређене различитим факторима, као што су степен
чвора, покретљивост и преостала енергиjа [25], док тежине грана природно могу
представљати растоjања између чворова.

Садржаj овог поглавља се заснива на резултатима обjављеним у раду [67].

3.1 Дефинициjа проблема

Скуп S ⊆ V назива се независним ако за сваки пар чворова u, v ∈ S не постоjи грана
коjа их повезуjе {u, v} ∈ E. Скуп S jе независан доминираjући скуп ако jе истовремено и
независан и доминираjући. Проблем тежинске независне доминациjе разматра неусмерене
графове са позитивним тежинама придруженим чворовима и гранама. Циљ jе пронаћи
независан доминираjући скуп S коjи минимизуjе следећу функциjу циља:

obj(S) =
∑
v∈S

wv +
∑

v∈V \S

min{we | e = {v, u}, u ∈ S} (3.1)

Вредност функциjе циља за скуп S добиjа се као збир тежина чворова коjи припадаjу
скупу S, уз додатак тежина грана наjмање тежине коjе повезуjу чворове ван скупа
S са чворовима унутар скупа S.1 Практична примена овог проблема проналази се
у алгоритмима за кластеровање у мобилним бежичним ад-хок мрежама, где скуп
доминираjућих чворова представља такозване управљаче кластера (енг. cluster heads).
Оваква функциjа циља jе мотивисана потребом да се истовремено минимизуjе цена
успостављања тих центара (тежине чворова) и цена комуникациjе, односно повезивања
преосталих корисника са њима (тежине грана).

1У поглављу 2 су овакве гране биле називане спољашње гране, а сада не постоjе унутрашње, jер по
дефинициjи проблема нема грана између чворова унутар решења.
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Слика 3.1: Пример инстанце проблема MWIDS
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Слика 3.2: Оптимално решење проблема MWIDS

3.1.1 Пример инстанце

На слици 3.1 jе приказан пример инстанце проблема MWIDS. Тежине чворова су
означене броjевима унутар њих, а тежине грана на њима. Оптимално решење проблема
MWIDS за ову инстанцу jе приказано на слици 3.2. Решење се састоjи од чворова обоjених
плавом боjом, а гране коjе су обоjене црвеном боjом представљаjу гране минималне тежине
коjе повезуjу чворове ван решења са чворовима из решења. Вредност функциjе циља,
односно збир тежина плавих чворова и црвених грана са слике, за ово решење износи
(4 + 3) + (1 + 3 + 2 + 3) = 7 + 9 = 16.

3.2 Преглед литературе

У раду [23] предложен jе алгоритам линеарне временске сложености за решавањее
проблема MWIDS на сериjски-паралелним графовима (енг. series-parallel graphs). За случаj
општих графова, у литератури постоjе два рада. У раду [37] предложено jе више приступа:

• Три модела целоброjног линеарног програмирања:

1. Ilp-1 jе модел коjи користи три скупа индикаторских променљивих: бинарне
променљиве xv коjе означаваjу да ли jе чвор v изабран у решење, бинарне
променљиве ye коjе означаваjу да ли jе грана e подобна за избор, и бинарне
променљиве ze коjе означаваjу да ли jе грана e изабрана ради повезивања чвора
ван решења са неким из решења. Укупно, модел има |V |+ 2 · |E| променљивих
и 3 · |V |+ 5 · |E| ограничења.
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2. Ilp-2 jе сличан модел коjи елиминише скуп променљивих ye. Ограничења везана
за ye су замењена новим скупом неjедначина над x и z променљивама, па jе броj
променљивих смањен на |V |+ |E|, а укупан броj ограничења: 3 · |V |+ 4 · |E|.

3. Ilp-3 jе структурно другачиjи модел, коjи се заснива на експлицитном
моделовању доприноса тежина грана за сваки чвор, коришћењем целоброjних
променљивих qv. Укупно користи 2·|V | променљивих и 5·|V |+3·|E| ограничења.

• Два похлепна алгоритма:

1. Greedy-1 почиње од празног решења S и итеративно додаjе чвор v коjи има
наjвећу вредност |NG′ (v)|

wv
, где G′ представља преостали граф након претходно

изабраних чворова, а NG′(v) jе скуп суседа чвора v у графу G′. Након додавања
чвора v у S, таj чвор, његови суседи и све њихове инцидентне гране се уклањаjу
из графа G′.

2. Greedy-2 додатно узима у обзир и тежине грана. Конкретно, користи се
помоћна функциjа циља faux дефинисана као збир доприноса чворова у односу
на парциjално решење S. За чвор v ∈ S допринос jе wv, док jе за чвор v /∈ S
допринос дефинисан као min{wuv | u ∈ S} ако има суседа у S, а у супротном се
поставља на максималну тежину гране у целом графу.

• Популациони итеративни похлепни алгоритам Pbig (енг. Population-Based Itera-
tive Greedy) – метахеуристика заснована на пробабилистичкоj верзиjи Greedy-2
хеуристике, коjа jе примењена самостално и у комбинациjи са Construct-Merge-Solve-
Adapt (CMSA) алгоритмом [17].

Наjбоље резултате постиже алгоритам локалне претраге инспирисан учењем
поткрепљивањем предложен у раду [110]. У оквиру овог приступа дефинисане су
три различите функциjе за бодовање (енг. scoring functions), прилагођене различитим
своjствима тежина чворова и грана, коjе се користе у оквиру похлепне хеуристике и
алгоритма локалне претраге.

3.3 Предложени ILP модели за проблем MWIDS

У овом одељку биће представљена два ILP модела за решавање проблема MWIDS коjи,
као што ће бити показано у секциjи 3.5, надмашуjу резултате досадашњих модела из рада
[37].

3.3.1 ILP модел New-1

Први од два нова предложена ILP модела, означен са New-1, користи два скупа
бинарних индикаторских променљивих:

• xu – бинарна променљива коjа означава да ли jе чвор u изабран у решење,

• yuv – бинарна променљива коjа означава да ли jе чвор v ∈ V повезан са чвором u ∈ S,
односно да ли чвор u покрива чвор v.

У овом случаjу, потребно jе разликовати гране (u, v) и (v, u), па jе стога потребно увести
скуп усмерених грана A = {(u, v) ∪ (v, u) | ∀e = {u, v} ∈ E}, где за сваку неусмерену
грану постоjи пар усмерених. Пре саме формулациjе модела, неопходно jе дефинисати два
скупа:
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• δ−(u) – скуп свих усмерених грана коjе улазе у чвор u,

• δ+(u) – скуп свих усмерених грана коjе излазе из чвора u.

Користећи ову нотациjу, MWIDS проблем се може формулисати на следећи начин:

min
∑
u∈V

wuxu +
∑

(u,v)∈A

wuvyuv (3.2)

уз услове

xu + xv ≤ 1, ∀e = {u, v} ∈ E (3.3)

xu +
∑

(v,u)∈δ−(u)

yvu = 1, ∀u ∈ V (3.4)

yuv ≤ xu, ∀(u, v) ∈ A (3.5)

xu ∈ {0, 1}, ∀u ∈ V (3.6)

yuv ∈ {0, 1}, ∀(u, v) ∈ A (3.7)

Ограничења (3.3) обезбеђуjу да ниjедна два суседна чвора не могу истовремено бити
део решења, чиме се гарантуjе да решење представља независан скуп. Ограничења (3.4)
осигураваjу да jе сваки чвор u или укључен у решење, или га покрива тачно jедан
његов сусед v коjи припада решењу. Даље, ограничења (3.5) провераваjу да чвор u мора
бити укључен у решење уколико покрива свог суседа v. У комбинациjи са другим делом
функциjе циља (3.2), ова ограничења омогућаваjу тачно рачунање тежина грана коjе
повезуjу чворове ван решења са онима коjи су у решењу. Последња два скупа ограничења,
(3.6) и (3.7), формално дефинишу претходно наведену тврдњу да су променљиве x и y
бинарне.

Укупан броj променљивих у овоj формулациjи износи |V | + 2 · |E|, док укупан броj
ограничења износи 2 · |V |+ 5 · |E|.

3.3.2 ILP модел New-2

У другом ILP моделу, коjи jе означен као New-2, примењена jе Бендерова
декомпозициjа [13]. Ова техника jе заснована на идеjи подели-па-владаj (енг. divide-and-
conquer), где се скуп променљивих дели на два подскупа – тзв. мастер проблем се решава
на првом подскупу, а потом се за дате вредности променљивих из првог подскупа решава
потпроблем на другом подскупу. Ако се при решавању потпроблема покаже да одлуке
донете у првоj фази нису допустиве, додаjу се нова ограничења (Бендерова одсецања). У
контексту разматраног проблема, променљиве y из модела New-1 се елиминишу, а уместо
њих се уводе непрекидне променљиве q, коjе представљаjу тежину наjjефтиниjе гране коjа
повезуjе чвор ван решења са неким чвором у решењу.

Нека jе N ′(u) низ суседних чворова чвора u, сортиран растуће по тежинама грана коjе
их повезуjу са u. Уз таj додатак нотациjи, оваква формулациjа, инспирисана претходним
радовима на сличним проблемима [46, 6], омогућава да се MWIDS проблем изрази на
следећи начин:

min
∑
u∈V

wuxu + qu (3.8)

уз услове

xu + xv ≤ 1, ∀e = {u, v} ∈ E (3.9)
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xu +
∑

v∈N(u)

xv ≥ 1, ∀u ∈ V (3.10)

qu ≥ wsu −
s−1∑
t=1

(wsu − wtu)xt − wsuxu, ∀u ∈ V, ∀s ∈ {1, . . . , |N ′(u)|} (3.11)

xu ∈ {0, 1}, ∀u ∈ V (3.12)

qu ≥ 0, ∀u ∈ V (3.13)

Ограничења (3.9), као и у моделу New-1, гарантуjу да решење чини независан скуп.
Ограничења (3.10) обезбеђуjу да сваки чвор буде или укључен у решење, или доминиран
од стране неког свог суседа коjи jе у решењу. Трећи скуп ограничења (3.11) одговоран
jе за коректно израчунавање променљиве qu и може се боље разумети разматрањем два
случаjа:

• Уколико jе xu = 0, тj. чвор u ниjе део решења, ограничења постаjу
слична Бендеровим оптималним одсецаjућим равнима за проблеме попут простог
локациjског проблема (енг. Uncapacitated Facility Location Problem, UFLP) [46] и
проблема MWTDS, разматраног у поглављу 2. У том случаjу, променљива qu
преузима вредност тежине гране наjмање тежине коjа повезуjе чвор u са неким
чвором у решењу.

• Са друге стране, уколико jе xu = 1, тj. чвор u jе део решења, десна страна
неjеднакости постаjе наjвише нула, а самим тим и qu = 0. Ово jе у складу са
дефинициjом проблема – цена постоjи само за чворове коjи нису у решењу.

Ограничења (3.12) и (3.13) формално дефинишу тип променљивих: x су бинарне, док су
q непрекидне и ненегативне.

Укупан броj променљивих у овом моделу износи 2 · |V |, док jе броj ограничења jеднак
3 · |V | + 3 · |E|. Треба нагласити да броj ограничења (3.11) одговара збиру степени свих
чворова у графу, односно 2·|E|, што произлази из чињенице да се за сваки чвор u генерише
по jедно ограничење за сваког његовог суседа s ∈ N ′(u). Броj осталих ограничења се може
jедноставно израчунати.

3.4 Похлепни алгоритам за проблем MWIDS

Предложени похлепни алгоритам за решавање проблема MWIDS, означен као Greedy-
New, започиње од празног решења S. Затим се, у свакоj итерациjи, у решење додаjе чвор
v∗ са наjвећом вредношћу функциjе оцене (енг. scorе function), коjа се дефинише као:

score(v) =

∑
u∈N(v) (wu +

∑
t∈N(u)\{v}wut)

wv +
∑

u∈N(v) wuv

(3.14)

Притом, избор се врши из скупа свих чворова коjи до тог тренутка нису покривени,
означеног са V ′. Чвор се сматра покривеним уколико jе или део решења S, или има бар
jедног суседа коjи jе у S.

Пошто jе циљ максимизовати вредност функциjе оцене, пожељно jе да броjилац буде
што већи, а именилац што мањи. Именилац представља суму тежина чвора v и свих њему
суседних грана. Будући да се функциjа циља (3.1) минимизуjе, пожељно jе да чвор v
има малу тежину, а његови суседи велике. Стога се тежина чвора v налази у имениоцу, а
тежине суседа у броjиоцу. Поред тога, у вредност функциjе циља улазе и тежине грана коjе
повезуjу чворове ван решења са чворовима у решењу. Дакле, пожељно jе да чвор v коjи се
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додаjе у решење има суседне гране мале тежине, те се и њихова сума налази у имениоцу.
Са друге стране, повољно jе да сви његови суседни чворови имаjу велике тежине суседних
грана, осим гране коjа их повезуjе са самим чвором v. Оваj део симболизуjе добитак коjи
се постиже покривањем тих чворова помоћу v – пошто се они више не мораjу експлицитно
покривати, њихова велика тежина и повезаност се неће поjавити у вредности функциjе
циља.

Важно jе напоменути да се након додавања чвора v∗ у решење, он и сви његови суседи
уклањаjу из графа, jер су сада покривени. Конкретно, уклањаjу се сви чворови u ∈ N [v∗]
и све гране коjе су им суседне. Услед тога, ови чворови више ни на коjи начин не утичу на
вредност функциjе оцене у наредним итерациjама, чиме се избегава вишеструко покривање
истих чворова.

Псеудокод jе приказан у алгоритму 6. У свакоj итерациjи се избацуjе бар jедан чвор
из графа, па jе броj итерациjа у наjгорем случаjу jеднак |V |. У оквиру jедне итерациjе, за
сваки чвора од преосталих чворова v ∈ V ′, потребно jе проћи кроз све његове суседе NG′(v),
што укупно даjе

∑
v∈V ′ degG′(v) = O(|E|), будући да jе, како jе већ поменуто, збир степени

свих чворова у графу пропорционалан броjу грана. Дакле, укупна сложеност алгоритма
jе O(|V | · |E|).
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Алгоритам 6 Greedy-New
Input: граф G = (V,E)
Output: решење S

1: S ← ∅
2: G′ = (V ′, E ′)← G = (V,E)
3: edgeWeights← [

∑
v∈N(u) wuv|u ∈ V ]

4: while size(V ′) > 0 do
5: v∗ ← −1
6: scoreMax← −1
7: for v ∈ V ′ do
8: nodeWeights← 0
9: uvEdgeWeights← 0

10: otherEdgeWeights← 0
11: for u ∈ NG′(v) do
12: nodeWeights← nodeWeights+ wu

13: uvEdgeWeights← uvEdgeWeights+ wuv

14: otherEdgeWeights← otherEdgeWeights+ edgeWeightsu − wuv

15: end for
16: score← (nodeWeights+ otherEdgeWeights)/(wv + uvEdgeWeights)
17: if score > scoreMax then
18: scoreMax← score
19: v∗ ← v
20: end if
21: end for
22: S.add(v∗)
23: for v ∈ NG′ [v∗] do
24: for u ∈ NG′(v) do
25: edgeWeightsu ← edgeWeightsu − wuv

26: end for
27: remove node v from G′

28: end for
29: end while
30: return S

3.5 Експериментални резултати

Квалитет предложених ILP модела и похлепног алгоритма jе процењен на скупу
инстанци коjи jе претходно установљен у литератури. Резултати су упоређени са осам
постоjећих приступа описаних у одељку 3.2. Све методе су имплементиране у програмском
jезику Python. Експерименти су извршени на рачунару са Intel Core i9-11900 @ 2.5GHz
процесором, уз ограничење од 4GB RAM мемориjе по извршавању, под оперативним
системом Ubuntu 22.04. ILP модели су решавани коришћењем CPLEX решавача верзиjе
20.1.

3.5.1 Инстанце проблема

Коришћен jе исти скуп референтних инстанци као у досадашњим радовима [37, 110].
У овом скупу постоjе две врсте графова:

• Случаjни графови – генерисани коришћењем Ердош-Ренjи модела [42], где jе
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вероватноћа гране између свака два чвора означена са ep. Дакле, параметар ep
одређуjе густину графа. Коришћене су вредности ep ∈ {0.05, 0.15, 0.25}, и тако су
добиjени графови различитих густина.

• Случаjни геометриjски графови су добиjени тако што се сваком чвору додељуjу
случаjне координате унутар jединичног квадрата, а чворови се повезуjу ако jе
растоjање између њих мање од задатог радиjуса r. Ова метода jе позната као модел
jединичног диска (енг. Unit disk model) [29] и често се користи за симулациjу ад-хок
бежичних мрежа [44]. У овом случаjу, густина графа зависи од вредности радиjуса
r, а коришћене вредности су r ∈ {0.14, 0.24, 0.34}, одабране са циљем приближног
поклапања густине са случаjним графовима.

За обе врсте, генерисани су графови различитих величина – |V | ∈ {100, 500, 1000}.
Тeжине чворова и грана су генерисане на три начина:

1. И чворови и гране имаjу тежине изабране из униформне расподеле U{0, 100}. Ови
графови се називаjу неутрални (енг. neutral graphs, NG).

2. Тежине чворова су изабране из расподеле U{0, 1000}, а тежине грана из расподеле
U{0, 10}. На оваj начин су добиjени графови у коjима jе одабир чворова важниjи од
одабира грана, те се називаjу графови ориjентисани на чворове (енг. vertex oriented
graphs, VG).

3. И обрнуто, тежине чворова су изабране из расподеле U{0, 10}, а тежине грана из
расподеле U{0, 1000}. У оваквим графовима jе одабир грана кључан, па се називаjу
графови ориjентисани на гране (енг. edge oriented graphs, EG).

За сваку комбинациjу типа графа, броjа чворова, густине (параметар ep или r), и шеме
тежина, генерисано jе по 10 инстанци. Укупан броj инстанци износи 540, од чега jе 270
случаjних и 270 случаjних геометриjских графова.

Инстанце и имплементациjа предложених метода jавно су доступне на адреси https:
//github.com/StefanKapunac/mwids_public.

3.5.2 Резултати

Резултати су представљени у четири табеле: за сваки тип графова (случаjни или
геометриjски) и за сваку класу алгоритама (егзактни или хеуристички). Табеле 3.1 и
3.2 приказуjу резултате егзактних метода за случаjне и случаjне геометриjске графове,
тим редом. Табеле 3.3 и 3.4 садрже резултате хеуристичких метода. Структура свих
табела jе иста. Прве три колоне у табелама означаваjу броj чворова |V |, шему тежина и
параметар густине (ep или r). Наредне колоне представљаjу просечне вредности добиjене
за 10 инстанци по групи: result – просечан броj чворова у решењу, time2 – просечно
време извршавања у секундама, а за ILP моделе додатно и gap – просечна разлика
између добиjеног решења и наjбоље могуће вредности у процентима (енг. optimality gap).
У сваком реду су наjбољи резултати подебљани, а наjбољи међу похлепним хеуристикама
су подвучени.

На основу експерименталних резултата егзактних метода, могу се извући следећи
закључци:

• Модели New-1 и New-2 постижу боље резултате у великоj већини случаjних
графова у поређењу са остала три ILP модела. Поред тога, ови модели оптимално

2Информациjе о просечном времену извршавања за ILP моделе из рада [37] нису биле доступне.
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Табела 3.1: Нумерички резултати егзактних метода на случаjним графовима

|V | weight ep Ilp-1 Ilp-2 Ilp-3 New-1 New-2

scheme result gap result gap result gap result gap time result gap time

100

NG
0.05 3049.8 0.7 3049.8 0 3051.9 0.5 3049.8 0 0.2 3049.8 0 0.1
0.15 2445.2 30.4 2396.3 28.3 2398.4 44.6 2330.2 0 2.2 2330.2 0 2.5
0.25 2161.1 31.3 2114.3 24.3 2167.6 58.8 2069.3 0 8.3 2069.3 0 8.8

VG
0.05 7715.4 0 7715.4 0 7715.4 0 7715.4 0 0.2 7715.4 0 0.1
0.15 3046.6 0 3046.6 0 3046.6 0 3046.6 0 0.8 3046.6 0 0.5
0.25 1808.4 0 1808.4 0 1808.4 0 1808.4 0 1.1 1808.4 0 0.5

EG
0.05 14378.7 0 14378.7 0 14378.7 0 14378.7 0 0.4 14378.7 0 0.1
0.15 15473 42.4 15198.9 39.6 15098.3 57.7 14563.3 0 17.7 14563.3 0 11.1
0.25 16001.7 61.5 14557.7 28.5 15346.3 69.3 14382.2 0 35.3 14382.2 0 28.5

500

NG
0.05 11857.9 51.9 11809.3 50.5 12882.6 91.7 10869.1 30.7 TLE 11163.6 32.5 TLE
0.15 10050.1 69.4 9928.8 68.1 13196.7 98.1 9568.7 55.1 TLE 9348.5 54.4 TLE
0.25 11341.1 78 9465.7 73.9 12722.4 99 9078.9 62.5 TLE 9099.1 62.5 TLE

VG
0.05 12557.6 52.6 11403 47.1 12059.3 58 10529.8 34.7 TLE 10048.3 29.5 TLE
0.15 5940.1 61.3 6122.4 59.3 5474.6 80.5 4815.5 48.7 TLE 4107.2 31.3 TLE
0.25 8166.2 79.4 10145.8 82.9 3628.7 85.6 3514.6 45.1 TLE 2749.4 14.3 TLE

EG
0.05 97915.3 82.9 89580.7 81.1 107463.5 98.7 87091.4 70.5 TLE 83820.5 69.6 TLE
0.15 107834.7 93.4 91564.1 91.7 117036.1 99.9 84871.4 84 TLE 86965 84.5 TLE
0.25 100750.3 95 88687.7 94 113798 99.9 87735.9 87.6 TLE 100113 89 TLE

1000

NG
0.05 25156.1 69.5 25986 68.7 27158.7 97 21151.2 51.9 TLE 21308.9 52.5 TLE
0.15 21117.8 81.1 18282.9 76.5 22984.5 99.1 18554.6 68.1 TLE 21105.9 71.9 TLE
0.25 158097.1 93.2 88053.8 88.7 21821.5 99.5 17600.2 73.1 TLE 19726.8 75.9 TLE

VG
0.05 35766.3 83.3 39356.1 83.3 15464.1 77.4 14648.2 56.7 TLE 13056.9 50.4 TLE
0.15 35678.2 91.3 35904.3 97 11586.3 92.3 6596.4 51.8 TLE 5733.7 42.4 TLE
0.25 35838.9 96.5 22569.5 100 11674.7 96.7 7311 60.7 TLE 4242.6 38.2 TLE

EG
0.05 209391.8 91.1 198540.7 90.1 229778.7 99.7 190225.4 84.7 TLE 197814.4 85.7 TLE
0.15 832437.1 97.7 191911.2 96.2 229888.1 100 304074.6 94.7 TLE 194334.6 91.8 TLE
0.25 1128240.1 98.6 2041102.4 99.7 221492 100 363299.1 97.1 TLE 186606.1 93.2 TLE

Табела 3.2: Нумерички резултати егзактних метода на случаjним геометриjским
графовима

|V | weight ep Ilp-1 Ilp-2 Ilp-3 New-1 New-2

scheme result gap result gap result gap result gap time result gap time

100

NG
0.14 3261.1 0 3261.1 0 3261.1 0 3261.1 0 <0.1 3261.1 0 <0.1
0.24 2942.9 21.7 2917.5 15.6 2884.5 3 2882.5 0 0.6 2882.5 0 0.4
0.34 2878.5 26.5 2841.8 8.6 2876.7 17.6 2828 0 1.3 2828 0 1.5

VG
0.14 5731.8 0 5731.8 0 5731.8 0 5731.8 0 <0.1 5731.8 0 <0.1
0.24 1981.8 0 1981.8 0 1981.8 0 1981.8 0 <0.1 1981.8 0 <0.1
0.34 940.5 0.3 940.5 0 940.5 0 940.5 0 0.2 940.5 0 <0.1

EG
0.14 19179.4 0 19179.4 0 19179.4 0 19179.4 0 <0.1 19179.4 0 <0.1
0.24 22519.7 20.5 22325.5 16.5 22065.9 8.2 22065.9 0 0.6 22065.9 0 0.4
0.34 24295.9 31.1 23717.6 7 24009.2 19 23717.6 0 1.4 23717.6 0 1.7

500

NG
0.14 14942.7 56 15016.4 54.9 15457.2 85.1 13726.8 15.7 TLE 13565 12.7 TLE
0.24 19028.3 72.7 15668.7 66.5 16788.4 95.5 13375.1 27.8 TLE 13352.3 28.3 TLE
0.34 18602.1 75.8 15468.3 67.8 18948.1 97.6 13379.3 29.6 TLE 13253.1 29.5 TLE

VG
0.14 4377 0.4 4377 0 4381.6 1.4 4377 0 4.9 4377 0 0.6
0.24 2619.3 7.6 2596.4 5.8 2665.1 39 2573.7 0 49.3 2573.7 0 5.9
0.34 3933.7 51.2 2205.3 17 2305.3 63.8 2181.6 0 294 2181.6 0 12.4

EG
0.14 128902.8 66.2 128784.8 65.7 129521.2 91.8 116047.1 21.1 TLE 115232 19.7 TLE
0.24 175979.6 76.6 147009 71.5 162967.5 98.3 124047.4 31.1 TLE 122879.2 31.5 TLE
0.34 180632.5 78.4 149305.9 71.2 188131.4 99 125499.8 31.2 TLE 126997.4 33 TLE

1000

NG
0.14 38289.8 73.1 33123.7 68.5 38904.3 95.8 27649.2 30.7 TLE 27066.6 29.6 TLE
0.24 61533.9 86.9 33744.7 79.7 38610.1 98.3 33758.1 48 TLE 35032.5 50 TLE
0.34 121566.1 100 48329.9 95.9 38549.2 98.9 50289.4 100 TLE 34725.5 49.6 TLE

VG
0.14 6071.9 11.6 6614.5 14.1 6144.7 43.9 5830.7 0 335.9 5830.7 0 21.7
0.24 11493 64.6 12485.5 92.3 4528.1 74.7 4356.6 10 TLE 4279.4 0 669.7
0.34 17662.5 100 9742.4 100 6214.7 88.7 4211.3 20.8 TLE 3975.1 2 2085.2

EG
0.14 362985.2 78.8 311510.5 75.5 350946.2 98.4 252929.5 35.5 TLE 255236.5 36.6 TLE
0.24 347041.7 88.6 326670.5 83.2 375956.1 99.4 375018.2 62.4 TLE 362021.8 56.7 TLE
0.34 1232171.4 99.7 476998.4 97.3 370791.1 99.6 498328.3 100 TLE 360711.3 56.2 TLE
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решаваjу све инстанце са 100 чворова, за разлику од модела из [37], коjи постижу
оптималност у само 4 или 5 од укупно 9 група инстанци са тим броjем чворова.
Просечно време извршавања модела New-1 и New-2 за инстанце са 100 чворова jе
кратко, где се приближно половина решава за мање од jедне секунде, а максимално
време достиже за групу наjгушћих графова ориjентисаних на гране, где траjе 35.3
секунде.

• Модели New-1 и New-2 такође надмашуjу резултате сва три конкурентска ILP
модела на већини случаjних геометриjских графова. Оба модела успешно решаваjу
све инстанце са 100 чворова. Поред тога, достижу оптималност и на свим графовима
ориjентисаним на чворове величине 500, као и на неким величине 1000. Међу тим
наjвећим графовима са 1000 чворова коjи су ориjентисани на чворове, New-1 решава
групу наjмање густине (r = 0.14), док New-2 решава скоро све инстанце ориjентисане
на чворове, осим три из наjгушће групе (r = 0.34). Важно jе напоменути и да су
времена извршавања модела New-1 и New-2 у неким случаjевима значаjно мања од
метахеуристичких метода, поготово на инстанцама мање густине.

Табела 3.3: Нумерички резултати хеуристичких метода на случаjним графовима

|V | weight ep Greedy-1 Greedy-2 Greedy-New Pbig Cmsa-Pbig Lsrr

scheme result time result time result time result time result time result time

100

NG
0.05 3589.1 <0.1 3519.1 <0.1 3340.2 <0.1 3049.8 0.54 3049.8 8 3049.8 <0.1
0.15 3014.4 <0.1 2981.3 <0.1 2768.3 <0.1 2330.9 28.31 2338.1 48.3 2230.2* 0.15
0.25 2883.5 <0.1 2796.1 <0.1 2577.4 <0.1 2070.9 0.16 2093.9 54.1 2069.3 0.66

VG
0.05 10465.6 <0.1 11756.6 <0.1 10785.4 <0.1 7747 76.47 7860 59.4 7715.4 0.13
0.15 4891.6 <0.1 5845.4 <0.1 4941.6 <0.1 3050.3 16.9 3070.3 40.6 3046.6 0.41
0.25 3297.5 <0.1 3488.9 <0.1 2962.6 <0.1 1808.4 3.5 1808.4 15.5 1808.4 0.79

EG
0.05 25698.7 <0.1 22269.3 <0.1 19976.7 <0.1 14378.7 0.78 14378.7 37.9 14378.7 <0.1
0.15 27528.4 <0.1 23404.5 <0.1 20973 <0.1 14687.8 0.19 14563.3 17.2 14563.3 <0.1
0.25 25451.4 <0.1 21770 <0.1 21302.8 <0.1 14506.6 <0.1 14382.2 37.7 14382.2 <0.1

500

NG
0.05 14143.1 <0.1 13535.1 <0.1 12272 0.4 10327.3 127.37 10140.6 667.3 10041.5 619.14
0.15 12268.5 <0.1 11558 <0.1 10793.8 0.4 8297.5 47.33 8046.2 688.2 7989 869.88
0.25 11630.3 <0.1 10429.5 0.1 10038.2 0.5 7633.7 10.16 7443 538.6 7374.3 841.53

VG
0.05 15501.5 <0.1 18298.1 <0.1 14745.2 0.3 9822.6 924.21 9588.2 912.1 8421.1 848.96
0.15 6496.3 <0.1 7300.1 <0.1 6021.8 0.4 3581.7 219.52 3557.8 599.8 3497 815.76
0.25 4212.4 <0.1 4463.7 0.1 4112.9 0.6 2590.6 52.82 2586.5 521.1 2572.5 725.55

EG
0.05 125357.6 <0.1 108178 <0.1 100325.8 0.4 70028.6 1008.89 67528.9 713.6 65441.3 599.88
0.15 114951 <0.1 102365.1 <0.1 90468.8 0.6 64673.8 109.71 62950.1 798.1 61456.5 930.79
0.25 111012.3 <0.1 99018.2 0.1 90066.8 0.5 64112.7 33.26 61411.1 294.9 60637.4 769.72

1000

NG
0.05 25569.6 <0.1 23489.7 0.1 22880 2.4 17723.7 1750.12 17819.4 1262.1 17478 1985.83
0.15 20827.1 <0.1 20689.1 0.2 19301.5 2 14731.3 260.52 14461.9 813.3 14340.7 1762.62
0.25 20858.8 <0.1 19280.5 0.4 18828.8 2.4 13968.5 340.14 13685.6 1480.6 13397.9 1688.65

VG
0.05 18048.6 <0.1 20142.3 0.1 17464 1.4 11301.7 2018.01 11034.6 1363.5 10392.2 1690.35
0.15 7408.3 <0.1 7987.4 0.2 6790.6 2.7 4540.3 695.71 4456.4 1362.7 4440.7 1638.47
0.25 4941.9 <0.1 5566.6 0.4 4802.3 2.4 3519 306.67 3460.4 1049.3 3454 1610.84

EG
0.05 238600 <0.1 202992 0.1 192329.5 1.7 133667.8 2121.82 130889.2 1786.2 127796 1906.56
0.15 209709.3 <0.1 182726.6 0.2 176920.4 2 123760.9 99.67 120997.2 1478.6 119250.3 1781.76
0.25 198537 <0.1 181150 0.4 170618.2 2.4 124193.3 447.95 120288.7 1359.1 114124.2 1793.35

* Делуjе да jе дошло до штампарске грешке у раду [110], пошто jе просек оптималних решења пронађених новим ILP моделима већи,
али се састоjи од сличних цифара (2330.2).
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Табела 3.4: Нумерички резултати хеуристичких метода на случаjним геометриjским
графовима

|V | weight ep Greedy-1 Greedy-2 Greedy-New Pbig Cmsa-Pbig Lsrr

scheme result time result time result time result time result time result time

100

NG
0.14 3870.6 <0.1 3646.4 <0.1 3506.2 <0.1 3261.1 11.9 3261.1 3.3 3261.1 0.1
0.24 3798.8 <0.1 3378.1 <0.1 3248.7 <0.1 2882.5 3 2882.5 2.7 2882.5 <0.1
0.34 3766.6 <0.1 3388.1 <0.1 3175.6 <0.1 2828 0.7 2828 27.9 2828 <0.1

VG
0.14 7364.9 <0.1 7514.3 <0.1 7471.2 <0.1 5731.8 12.4 5740 2 5731.8 <0.1
0.24 2880.1 <0.1 2724.2 <0.1 2808.3 <0.1 1981.8 <0.1 1981.8 2.2 1981.8 <0.1
0.34 1741 <0.1 1832.3 <0.1 1718.6 <0.1 968.8 <0.1 940.5 1.2 940.5 <0.1

EG
0.14 29011.6 <0.1 24998.3 <0.1 21463.6 <0.1 19313.2 117.6 19179.4 10.1 19179.4 <0.1
0.24 35312.1 <0.1 28647.1 <0.1 26572.3 <0.1 22108.3 6.4 22065.9 5.5 22065.9 <0.1
0.34 37929.4 <0.1 30503.4 <0.1 27020.8 <0.1 23900 1.1 23717.6 76.7 23717.6 <0.1

500

NG
0.14 18408.3 <0.1 16208.4 <0.1 15574.6 0.2 13341.5 835.4 13301.2 548.6 13269.4 551.1
0.24 18548.8 <0.1 15882.9 <0.1 15613.7 0.2 12943.1 195.7 12783.3 129.6 12764 180.1
0.34 18311.4 <0.1 15497.8 0.1 16497.8 0.3 13065.5 6.2 12954.8 327.5 12887.5 86.1

VG
0.14 6807.8 <0.1 7087.8 <0.1 6974.8 0.2 4400.9 513.7 4389.7 165.8 4377 554.1
0.24 3526.6 <0.1 3121.1 <0.1 3553.5 0.2 2573.7 9.7 2573.7 17.8 2573.7 3.6
0.34 2632.2 <0.1 2830.7 0.1 2438 0.3 2181.6 7.2 2181.6 13.1 2181.6 2

EG
0.14 177816.7 <0.1 148267 <0.1 136384.9 0.2 112404.8 731 111638.2 680.5 110988.7 190.3
0.24 181739.2 <0.1 149980.2 <0.1 148916.9 0.2 118765.6 16.3 117439.8 405.9 117020.2 23.5
0.34 190996.4 <0.1 155128.6 0.1 159464 0.3 122977.3 5.2 120883.7 346.4 120381.3 31.4

1000

NG
0.14 36214.6 <0.1 32393.4 0.1 31882 0.6 25892.9 776.7 25719 1695.2 25563.3 1792.2
0.24 36750.4 <0.1 31462.5 0.2 31698.7 0.9 25570.6 524.8 25138.9 1081.1 25111.7 1388.1
0.34 36913.2 <0.1 30752.1 0.3 33603.5 1.2 25714.2 17.2 25345 1698 25114.3 704.2

VG
0.14 8552.3 <0.1 8613.7 0.1 8193.4 0.7 5869 1778.5 5890.4 950.4 5830.7 1244.3
0.24 4977.4 <0.1 5146.2 0.2 4901.6 0.9 4281.2 109.1 4283.6 90.1 4279.4 177.8
0.34 4656.5 <0.1 4693.1 0.4 4417.7 1.2 3974.5 63.4 3974.3 264.2 3970.8 44.2

EG
0.14 358550.4 <0.1 305034.7 0.1 289269.1 0.7 236226.6 2582.6 233127.8 1711.2 230030.4 1327
0.24 357735.8 <0.1 295099.4 0.2 307039.9 0.9 239560.7 451.8 238364.5 1277.3 236439.8 907
0.34 369051.9 <0.1 303712.9 0.3 323414.4 1.2 244685.7 24.3 246171.8 1195.2 243178.8 793.7

Резултати хеуристичких метода указуjу на следеће:

• Алгоритам Greedy-New у већини случаjева надмашуjе резултате постоjећих
похлепних алгоритама на скоро свим случаjним графовима. Jедина два изузетка
су групе инстанци ориjентисаних на чворове величине 100 са густином ep = 0.25 и
500 са густином ep = 0.05 и ep = 0.15, где Greedy-1 постиже нешто боље резултате.

• На случаjним геометриjским графовима ситуациjа ниjе толико убедљива. Ипак, у
просеку, Greedy-New постиже боље резултате од осталих похлепних метода.

• Метахеуристике постижу боље резултате од похлепних метода, нарочито на већим
графовима, при чему жртвуjу време извршавања у корист квалитета решења.
Посебно се истиче алгоритам Lsrr као тренутно наjбоље решење, коjи постиже
оптималне резултате у свим случаjевима где jе оптимум познат, достижући резултате
предложених ILP модела.

3.5.3 Статистичка анализа

Примењена jе иста статистичка методологиjа као и у поглављу 2, коjа се састоjи од
две фазе. У првоj фази су сви алгоритми анализирани заjеднички применом Фридмановог
теста [47]. Уколико би нулта хипотеза, коjа претпоставља статистичку jеднакост поређених
метода, била одбачена, у другоj фази би се применио Неменjиjев пост-хок тест [93].

Резултати добиjени овом анализом приказани су на слици 3.3 у облику графика
критичне разлике (енг. critical difference, CD). Као што jе раниjе поменуто, на овим
графицима сваки алгоритам jе позициониран дуж хоризонталне осе на основу просечног
ранга коjи jе постигао на анализираном скупу инстанци. Критична разлика, рачуната за
ниво значаjности 0.05, између два алгоритма представља минималну разлику у просечном
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рангу коjа jе потребна да би се сматрали статистички различитим. Статистичка jеднакост
два алгоритма jе на графику представљена црном хоризонталном линиjом између њих.

Анализом графика са слике 3.3 може се закључити следеће:

• Метахеуристички приступи имаjу наjнижи просечни ранг, што указуjе на
квалитетниjа решења у односу на преостале методе. Посебно се истиче Lsrr
алгоритам, коjи jе остварио наjнижи просечни ранг међу свим поређеним методама.
Ипак, када се све инстанце узму у обзир, не постоjи статистички значаjна разлика
између резултата добиjених помоћу три метахеуристике (Pbig, Cmsa-Pbig и Lsrr)
и ILP модела New-2. Што се тиче модела New-1, само Lsrr показуjе статистички
значаjно боље резултате. Међу похлепним алгоритмима, Greedy-New има наjнижи
ранг и статистички значаjно jе бољи од Greedy-2, али не и од Greedy-1.

• Када се посматраjу само егзактне методе, модели New-1 и New-2 се издваjаjу
и статистички значаjно надмашуjу преостала три ILP модела. Притом, међу
новопредложеним моделима нема статистички значаjне разлике. Такође, ни међу
моделима Ilp-1, Ilp-2 и Ilp-3 не постоjи статистички значаjна разлика.

• При анализи само похлепних метода, Greedy-New jе статистички значаjно бољи од
Greedy-1 и Greedy-2. Иако Greedy-2 има нешто нижи просечни ранг од Greedy-
1, не постоjи статистички значаjна разлика између њих.

Поред претходне анализе на свим инстанцама, спроведена jе и поjединачна анализа на
различитим типовима графова из коришћеног скупа инстанци. Графици критичне разлике
посебно за случаjне и случаjне геометриjске графове приказани су на слици 3.4. На основу
ових графика, могу се извући следећи закључци:

• При анализи групе случаjних графова, алгоритам Lsrr се истиче као jедина метода
коjа jе статистички значаjно боља од оба предложена ILP модела – New-1 и New-2.
Као и раниjе, не постоjи статистички значаjна разлика међу три метахеуристике.
Иако Greedy-New има нижи просечни ранг од Ilp-1, Ilp-2, Ilp-3, Greedy-1 и
Greedy-2, та разлика ниjе статистички значаjна.

• У случаjу случаjних геометриjских графова, не постоjи статистички значаjна
разлика између предложених ILP модела (New-1 и New-2) и метахеуристичких
метода (Lsrr, Pbig и Cmsa-Pbig), иако и у овом случаjу метахеуристике имаjу нижи
просечни ранг. Похлепни алгоритам Greedy-New поново постиже боље просечне
резултате од осталих похлепних метода, али та разлика ниjе статистички значаjна.
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(а) Сви приступи

(б) Егзактне методе

(в) Похлепне хеуристике

Слика 3.3: Графици критичне разлике за све инстанце из два референтна скупа
41



ПОГЛАВЉЕ 3. ПРОБЛЕМ МИНИМАЛНЕ ТЕЖИНСКЕ НЕЗАВИСНЕ
ДОМИНАЦИJЕ

(а) Случаjни графови

(б) Случаjни геометриjски графови

Слика 3.4: Графици критичне разлике за две групе инстанци
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3.6 Завршна разматрања

У оквиру овог поглавља предложена су два ILP модела и похлепна хеуристика
за решавање проблема минималне тежинске независне доминациjе. ILP модели
показуjу се као веома ефикасни на малим и средњим инстанцама, где углавном
надмашуjу постоjеће егзактне приступе. Поред тога, постижу конкурентне перформансе
у односу на метхеуристичке приступе из литературе и на одређеним класама великих
инстанци. Развиjени похлепни алгоритам показуjе супериорне перформансе у односу на
конкурентске похлепне приступе, а на већим инстанцама надмашуjе и неке ILP моделе.
Предложени приступи представљаjу наjбоље доступне методе у своjим категориjама,
егзактних, односно похлепних алгоритама, што их чини погодним градивним блоковима
за будуће метахеуристичке и хибридне методе.
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Поглавље 4

Проблем k-jаке римске доминациjе

Jош jедна значаjна класа доминациjских проблема су проблеми римске доминациjе.
Основни проблем римске доминациjе има занимљиву историjску позадину инспирисану
воjном стратегиjом Римског царства. Наиме, Константин Велики jе осмислио ефикасан
начин одбране великог царства пажљивим распоређивањем легиjа по различитим
регионима. Регион се сматрао безбедним уколико се на његовоj териториjи налазила
бар jедна легиjа, док су области без иjедне легиjе биле небезбедне. Таква небезбедна
подручjа су штићена премештањем jедне легиjе из суседног обезбеђеног региона. Међутим,
премештање легиjе ниjе дозвољено ако би полазни регион остао необезбеђен. Другим
речима, легиjа се могла преместити у суседни регион само ако су у почетном региону
постоjале бар две легиjе.

Оваj проблем jе формално уведен у раду [32], а уследиле су разне вариjациjе и, како
практична, тако и теориjска истраживања [26, 27, 12, 1, 4]. Jедан од проблема из ове класе
jе проблем k-jаке римске доминациjе (енг. k-Strong Roman Domination Problem, k-SRDP),
коjи jе предложен у раду [84]. Овде се разматра k истовремених напада, где jе k броj већи
од jедан. Било коjи подскуп величине k може бити нападнут и у сваком од тих случаjева
потребно jе да постоjи план одбране. Такав сценарио jе реалистичан и проналази примену
у ситуациjама као што су: борба против тероризма, управљање у ванредним ситуациjама
и поремећаjима у ланцу снабдевања. Тежина овог проблема произлази из чињенице да jе
за саму проверу допустивости решења потребно експоненциjално много корака у општем
случаjу.

Садржаj овог поглавља jе базиран на раду [39].

4.1 Дефинициjа проблема

Као и до сада, проблем jе дефинисан на неусмереним графовима, где jе са d(v) означен
степен чвора, а са ∆(G) = max{d(v) | v ∈ V } максималан степен у графу. Броj jединица,
тj. легиjа, у сваком чвору се моделуjе функциjом f : V 7→ N0. Дакле, f(v) представља броj
jединица у чвору v. Укупан броj jединица у целом графу jе ω(f,G) =

∑
v∈V f(v). Сваки

чвор за коjи jе f(v) = 0 jе небрањен и њега мора да обрани jедан од суседа.
За фиксиран параметар k напад се дефинише као подскуп чворова кардиналности k,

односно формално P := {v1, v2, . . . , vk} ⊆ V . Броj различитих подскупова величине k jе(|V |
k

)
, а скуп свих могућих напада се означава са P(G) := {P1, . . . , P(|V |

k )
}. У зависности

од параметра k броj различитих напада може да расте и експоненциjално са величином
графа, што чини оваj проблем изазовним.

Циљ jе пронаћи што ефикасниjу, у смислу укупног броjа jединица, стратегиjу
распоређивања jединица по чворовима графа, коjа гарантуjе одбрану од сваког могућег
напада. Формално, функциjа f : V 7→ {0, 1, . . . ,min(∆(G), k) + 1} jе валидна k-SRD
функциjа ако jе сваки могући напад из P(G) одбрањен, уз следећа правила одбране:
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• Чвор са f(v) = 1 може да брани само себе.

• Чвор са f(v) ≥ 2 може да брани себе и наjвише f(v) − 1 суседних чворова коjи су
нападнути, а имаjу вредност 0.

• Сваки нападнути чвор са f(v) = 0 мора бити одбрањен од стране бар jедног суседа.

Потребно jе пронаћи такву функциjу са минималним укупним броjем jединица ω(f,G).
Броj jединица у оптималном решењу се означава са γk-SRD(G) и назива се k-SRD броjем
графа, а функциjа за коjу се та вредност достиже се назива γk-SRD(G) функциjом.

Како jе сваки чвор коме jе додељена вредност већа од 0 одбрањен, тривиjално решење
за било коjе k jесте додела вредности 1 сваком чвору. У том случаjу, сваки чвор брани
самог себе, па jе испуњен услов да су сви чворови одбрањени без обзира на то коjи jе напад
у питању. Дакле, броj чворова у графу |V | представља горњу границу за γk-SRD(G), па су
интересантна само она решења у коjима jе бар jедан чвор означен са 0.

4.1.1 Пример инстанце

На слици 4.1 приказан jе jедноставан граф за напад величине 3. Нападнути чворови
су обоjени сивом боjом. Броjеви унутар чворова представљаjу броj jединица у том
чвору, односно вредности функциjе f . Укупан броj распоређених jединица jе 4. Међутим,
функциjа f са ове слике ниjе валидна k-SRD функциjа, jер постоjе напади коjе ниjе могуће
одбранити.

0

v1

0

v2

3 v3

0 v4

1

v5

(а) Одбрањив напад P = {v1, v2, v5}

0

v1

0

v2

3 v3

0 v4

1

v5

(б) Неодбрањив напад P = {v1, v2, v4}

Слика 4.1: Пример инстанце и субоптималне стратегиjе за 3-SRD

Са друге стране, на слици 4.2 jе приказано оптимално решење за ту инстанцу. Укупан
броj искоришћених jединица jе 5, али jе сада могуће одбранити сваки напад.

1
v1

0
v2

2 v3

1 v4

1
v5

Слика 4.2: Оптимална стратегиjа за 3-SRD
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4.2 Преглед литературе

Kao што jе већ поменуто, проблем jе уведен у раду [84]. Аутори су предложили
два егзактна алгоритма: ILP модел и приступ заснован на Бендеровоj декомпозициjи.
Броj променљивих у ILP моделу jе велики и износи O

((
n
k

)
· n2

)
, а броj ограничења jе

O
((

n
k

)
· n

)
, што значи да величина модела експоненциjално расте са величином инстанце.

Стога су у случаjу већих инстанци за саму конструкциjу модела потребни изузетно велики
рачунарски ресурси. Алтернативни приступ заснован на Бендеровоj декомпозициjи такође
има значаjно ограничење у примени на велике графове, jер алгоритам показуjе спору
конвергенциjу ка висококвалитетним решењима.

Поред тога, предложени приступи су тестирани искључиво на скупу случаjно
генерисаних инстанци са до 30 чворова и до k = 5. Ове димензиjе графова нису довољно
велике за реалне сценариjе, што указуjе на поменуте проблеме са скалабилношћу. Осим
тога, случаjни графови често нису погодни за моделовање стварних система.

У литератури постоjи jош jедан рад у коме jе k-SRD проблем изучаван са теориjске
стране [95]. Одређене су и доказане тачне вредности k-SRD броjева за познате класе
графова као што су потпуни графови, путеви, точкови и потпуни бипартитни графови.

Дакле, проблем jе решаван само егзактним методама, коjе, како jе већ поменуто,
нису погодне за инстанце већих димензиjа у случаjу овако тешких комбинаторних
проблема. Због тога jе природно размотрити употребу апроксимативних метода као што
су метахеуристике.

4.3 Метода променљивих околина за проблем k-SRD

Метода променљивих околина се показала као ефикасна у поглављу 2, као и у
решавању како других доминациjских проблема [63, 100, 45], тако и проблема у разним
областима међу коjима су и: распоређивање [104, 2], алокациjски проблеми [57], рутирање
[65, 60], биоинформатика [24, 52]. Стога jе природно дизаjнирати и применити ову методу
на проблем k-SRD.

4.3.1 Унапред дефинисани напади и концепт квазидопустивости

Пре детаљног описа основних компоненти алгоритма, као што су размдравање и
локална претрага, неопходно jе истаћи суштински изазов везан за проверу допустивости
решења овог проблема. Наиме, броj потенциjалних напада коjи се мораjу проверити да
би се утврдило да ли jе решење допустиво или не, расте експоненциjално са величином
инстанце. Ради превазилажења овог проблема, уведена jе идеjа о унапред дефинисаним
нападима и квазидопустивости. Укратко, у случаjу превеликог броjа могућих напада,
уместо провере сваког од њих, провераваjу се само они напади коjи су унапред
дефинисани. На оваj начин jе омогућено решавање великог броjа инстанци у разумном
времену.

Унапред дефинисани напади

Напади се деле у две групе:

• Интензивни напади (означени са intenseAttacks) – користе се у циљу строже и
поузданиjе провере квазидопустивости решења.
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• Лакши напади (означени са lightweightAttacks) – користе се, како ће бити
поjашњено у наставку, током локалне претраге, као релаксирани облик провере
квазидопустивости.

Код инстанци мале до средње величине, могуће jе испитати све нападе, па се тада и
за интензивне, и за лакше нападе користи потпуна провера квазидопустивости, коjа
тада постаjе еквивалентна допустивости. Граница до коjе jе могуће испитати све нападе
дефинисана jе параметром combTakeAllBound. У случаjу да jе

(
n
k

)
< combTakeAllBound,

користе се сви могући k-напади P . У супротном, генерише се подскуп P ′ ⊆ P на следећи
начин. За сваки чвор v дефинише се скуп Nl(v), коjи садржи све чворове на удаљености
наjвише l од v. За дати скуп чворова s и параметар k, са comb(s, k) се означава скуп свих
k-комбинациjа чворова из s, под условом да jе |s| ≥ k. Интензивни напади се дефинишу
kao

⋃
v∈V comb(N3(v), k). Вредност l = 3 je одабрана jер обезбеђуjе добар баланс између

добре апроксимациjе допустивости и рачунске ефикасности. Уколико jе броj интензивних
напада мањи или jеднак вредности combTakeAllBound, исти скуп се користи и као скуп
лакших напада. У супротном, лакши напади се формираjу као

⋃
v∈V comb(N1(v), k).

На пример, за граф приказан на слици 4.1, скуп лакших напада, односно comb(N1(v), k),
био би jеднак {{v1, v2, v3}, {v1, v2, v5}, {v2, v3, v5}, {v3, v2, v4}, {v1, v3, v4}}. Напад {v1, v4, v5}
не би био укључен у скуп лакших напада, jер не постоjи чвор коме су сви они суседи. Са
друге стране, оваj напад би био део скупа интензивних напада, коjи би се у овом случаjу
састоjао од свих могућих комбинациjа од 3 чвора, што jе укупно 10 различитих напада.

Квазидопустивост

На основу претходно дефинисаних напада, концепт квазидопустивости омогућава
практичну проверу допустивости решења, уместо провере свих напада. На оваj начин
се егзактан експоненциjалан алгоритам испитивања допустивости мења полуодлучивим
алгоритмом полиномске сложености. У овом контексту, полуодлучивим алгоритмом се
сматра онаj коjи ако врати негативан одговор, онда jе решење недопустиво, али у случаjу
позитивног одговора не гарантуjе допустивост решења.

Конкретно, за сваки напад из скупа интензивних напада, проверава се да ли се
он може успешно одбранити у складу са дефинициjом проблема. Уколико се пронађе
бар jедан напад коjи jе неодбрањив, решење се сматра недопустивим. У супротном,
решење jе квазидопустиво. Провера одбрањивости неког конкретног напада приказана
jе у алгоритму 7.

За потребе заштите чворова унутар одабраног скупа напада развиjене су две
стратегиjе одбране: детерминистичка и стохастичка, дате у алгоритмима 15 и 16 (детаљи
имплементациjе у прилогу В). Избор између ове две стратегиjе врши се на основу броjа
алтернативних бранилаца свих тренутно незаштићених чворова, као и параметра cutoff.
Уколико jе броj алтернатива релативно мали, могуће jе исцрпно испитати све комбинациjе
потенциjалних бранилаца. У супротном, примењуjе се стохастички приступ заснован на
рулетскоj селекциjи, где чворови коjи имаjу већи потенциjал да успешно одбране други
чвор имаjу већу вероватноћу да буду одабрани као браниоци. Пошто ова стратегиjа не
гарантуjе успешну одбрану, поступак се понавља више пута, при чему се броj покушаjа
контролише параметром tries > 0.

Главна функциjа, названа quasiInfeasibility (алгоритам 8), за сваки напад h ∈
intenseAttacks позива функциjу isAttackDefended (алгоритам 7). Уколико се за дати
напад не пронађе валидна одбрана, повећава се броjач неуспешно одбрањених напада. На
краjу, функциjа враћа укупан броj таквих напада као индикатор степена недопустивости
решења.
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Алгоритам 7 Функциjа isAttackDefended
Улаз: решење s, G = (V,E), k, attack, cutoff > 0, tries > 0
Излаз: пар attackDefended, defendingNodes

1: allAlternatives, reducedAttack ← ∅
2: for v ∈ attack do
3: if s[v] > 0 then
4: defendingNodes← defendingNodes ∪ v
5: continue
6: end if
7: alternatives← {u ∈ N(v) | isAvailable(u)} ▷ чворови коjи могу да бране v
8: if alternatives = ∅ then
9: return False, ∅

10: end if
11: reducedAttack ← reducedAttack ∪ v
12: allAlternatives← allAlternatives× alternatives
13: end for
14: if |allAlternatives| < cutoff then
15: return deterministicDefense(allAlternatives, reducedAttack, defendingNodes)
16: else
17: return rouletteDefense(reducedAttack, defendingNodes, tries)
18: end if

Алгоритам 8 Функциjа quasiInfeasibility
Улаз: решење s, G = (V,E), k, attacks, cutoff > 0, tries > 0
Излаз: пар nonDefendedCount, coverageInfo

1: nonDefendedCount← 0
2: coverageInfo← ∅
3: for attack ∈ attacks do
4: defended, defendingNodes← isAttackDefended(s, G, k, attack, cutoff, tries)
5: if defended then
6: updateCoverageInfo(defendingNodes, attack)
7: else
8: nonDefendedCount← nonDefendedCount+ 1
9: end if

10: end for

4.3.2 Репрезентациjа решења и инициjализациjа

Решење jе представљено као листа ненегативних целих броjева дужине |V |, где се
за сваки чвор чува броj jединица коjе су постављене на њега. Да би се на ефикасан
начина генерисало почетно решење, развиjен jе похлепни алгоритам заснован на принципу
покривања чворова у графу. У наставку jе дата детаљна анализа предложене методе, уз
псеудокод у алгоритму 9.

На почетку, свим чворовима се додељуjе лабела 0, чиме се добиjа инициjално решење
облика s = [0, . . . , 0]. Такође, инициjализуjе се и скуп covered = ∅, коjи ће у току рада
алгоритма чувати све чворове коjи су већ заштићени у односу на све могуће нападе.

У свакоj итерациjи се бира наредни чвор за лабелирање на основу похлепног
критериjума g(·). Оваj критериjум се за сваки jош необрађени чвор рачуна као броj
његових суседа (укључуjући и сам таj чвор) коjи jош увек нису покривени, односно нису
у скупу covered. Формално, за сваки чвор v ∈ V \ covered вредност похлепне функциjе g(v)
се рачуна као:

g(v) = |N [v] \ covered|

Од свих таквих чворова, бира се онаj са наjвећом вредношћу функциjе g, означен каo
v∗. Уколико постоjи више чворова са истом максималном вредношћу, предност се даjе
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чворовима коjи jош увек нису покривени. Овакав секундарни критериjум у случаjу
нерешених резултата има следеће оправдање:

• Ако, на пример, чвор v има g(v) = 3 и ниjе покривен, он треба да покриjе самог себе
и jош два суседа, што значи да су довољне 3 jединице.

• Насупрот томе, ако jе чвор v већ покривен и такође има g(v) = 3, тада мора да
покриjе три суседа, али и да сам буде заштићен, што укупно захтева 4 jединице.

Изабраном чвору v∗ се додељуjе вредност lv∗ = min(k + 1, g(v∗) + Iv∗∈covered), где jе
Iv∗∈covered индикаторска функциjа коjа враћа 1 уколико jе чвор v∗ већ покривен, а 0 у
супротном. Овом лабелом се ажурира решење s[v∗] = lv∗ , а сви суседи чвора v∗, као и
сам таj чвор, додаjу се у скуп covered. Алгоритам се завршава када сви чворови постану
покривени.

Алгоритам 9 Функциjа greedy
Улаз: инстанца I k-SRD проблема, k
Излаз: решење s

1: s← [0, . . . , 0]
2: covered← ∅
3: while covered ̸= V do
4: v∗ ← argmax{g(v) | v ∈ V \ covered} ▷ у случаjу jеднакости, предност имаjу

непокривени чворови
5: uncovv∗ ← N [v∗] \ covered
6: if v∗ ∈ uncovv∗ then
7: countSelf ← 0
8: else
9: countSelf ← 1

10: end if
11: s[v∗]← min(k + 1, g(v∗) + countSelf)
12: covered← covered ∪ uncovv∗
13: end while

4.3.3 Функциjа прилагођености

Функциjа прилагођености за дато решење s дефинисана jе као уређени пар fitness(s) =
(quasi-infeasibility(s), sum(s)), где:

• quasi-infeasibility(s) представља броj неодбрањивих напада за решење s,

• sum(s) означава збир свих лабела у решењу s.

За потребе локалне претраге, имплементирана jе убрзана процедура за израчунавање
вредности функциjе прилагођености. При сваком позиву функциjе quasiInfeasibility,
генерише се информациjа о покривености напада, коjа се чува у одговараjућоj структури
података под називом coverageInfo. Ова структура бележи за сваку одбрањени напад h ∈
lightweightAttacks чвор v коjи jе искоришћен за одбрану при том нападу. Захваљуjући овом
механизму, знатно се убрзава процес локалне претраге, jер омогућава ефикасну проверу
да ли су неки од напада из скупа lightweightAttacks већ одбрањени за решења s′ коjа се
налазе у околини решења s.

Размотримо граф са слике 4.1. Вредност функциjе прилагођености решења
s = (1, 0, 2, 1, 1) износи (0, 5). Наиме, у оквиру скупа intenseAttacks, при примени
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детерминистичке стратегиjе за проверу одбране (видети одељак 4.3.1), може се
утврдити да за сваки од 10 напада постоjи валидна стратегиjа одбране у складу са
условима проблема. Са друге стране, решење s = (1, 0, 2, 1, 0) има вредност функциjе
прилагођености (6, 4). У овом случаjу, сваки напад коjи укључуjе чвор v5 остаjе
неодбрањив, при чему постоjи управо 6 =

(
4
2

)
таквих напада коjи се могу формирати

унутар скупа intenseAttacks.

4.3.4 Размрдавање

У оквиру методе променљивих околина, ова фаза jе задужена за диверзификациjу,
односно уношење разноврсности у процес претраге. Реализована jе функциjом shake(s, r),
где jе s тренутно решење, а r индекс околине Nr. Излаз ове функциjе jе измењено решење
s′, добиjено на следећи начин. За дато решење s, извршава се r случаjних увећања за 1 и
r + 1 случаjних умањења за 1 елемената решења, при чему се умањења примењуjу само
на позициjе чиjе лабеле нису нула. Избор позициjа на коjима се врши умањење заснива
се на рулетскоj селекциjи постоjећих лабела у решењу s, што значи да позициjе са већим
вредностима имаjу већу вероватноћу да буду изабране.

На пример, за решење s = [2, 3, 4, 1] и вредност r = 2, након два случаjна увећања
добиjамо, рецимо, s′ = [3, 3, 4, 2], а након три умањења можемо добити s′ = [1, 3, 3, 2].
Дакле, ω(s)− ω(s′) = 1, односно укупан броj jединица у решењу се смањуjе за jедан.

4.3.5 Локална претрага

Основна намена локалне претраге jе интензификациjа, односно проналазак
квалитетниjег локалног оптимума у блискоj околини тренутног решења. За проблем k-
SRD осмишљена jе ефективна локална претрага са првим побољшањем коjа jе заснована
на принципу квазизамене (енг. quasi-swap). Имаjући у виду да процес локалне претраге
може бити временски захтеван, користи се релаксирана провера допустивости, уз помоћ
унапред дефининисаног скупа напада lightweightAttacks.

Како jе у фази размрдавања смањен укупан броj jединица у решењу, наjвероватниjе,
осим у случаjу велике редундантности, добиjено решење jе недопустиво. Циљ локалне
претраге jе да без промене укупног броjа jединица у решењу, пронађе ново квазидопустиво
решење.

Оператор квазизамене ради на паровима чворова, а с обзиром на то да се прихвата прво
побољшање, потребно jе на почетку сваке итерациjе конструисати насумичну пермутациjу
скупа парова чворова (i, j), при чему jе i < j, ради уклањања евентуалне пристрасности у
редоследу. Након тога, за сваки пар (i, j), разматраjу се све могуће 2-декомпозициjе збира
s[i] + s[j]. На пример, ако jе s[i] = 2, а s[j] = 3, разматра се 2-декомпозициjа броjа 5, што
даjе скуп: {(0, 5), (1, 4), (3, 2), (4, 1), (5, 0)}. Затим се, за сваку 2-декомпозициjу, формира
кандидатско решење заменом вредности s[i] и s[j] компонентама дате декомпозициjе, нпр.
{(s[i] = 0, s[j] = 5), (s[i] = 1, s[j] = 4), . . .}.

Проверава се квазидопустивост сваког кандидата, тако што се израчунава броj
неодбрањивих напада. Уколико jе броj неодбрањивих напада мањи од броjа неодбрањивих
напада у тренутном решењу, тада се ново решење прихвата. У супротном се одбацуjе и
прелази се на наредну 2-декомпозициjу. У случаjу да ниjедна 2-декомпозициjа не даjе боље
решење, прелази се на следећи пар (i, j) и поступак се понавља.

Ако се ни за jедан пар (i, j) не пронађе боље решење, локална претрага се завршава
и враћа се инициjално решење заjедно са његовом вредношћу функциjе прилагођености.
У противном, ако се током локалне претраге броj неодбрањивих напада сведе на нулу,
што указуjе на то да jе пронађено ново (квази)допустиво решење, локална претрага се

50



ПОГЛАВЉЕ 4. ПРОБЛЕМ k-JАКЕ РИМСКЕ ДОМИНАЦИJЕ

завршава и враћа се ново решење са побољшаном вредношћу функциjе прилагођености.

4.3.6 Целокупна структура VNS алгоритма

На краjу, у овом одељку jе представљена целокупна структура предложеног VNS
алгоритма за решавање k-SRD проблема, како jе приказано у алгоритму 10.

Алгоритам 10 Vns за k-SRD проблем
Улаз: инстанца I k-SRD проблема, k, rmin, rmax,moveprob, tmax, itermax, tries, cutoff
Излаз: решење sbest

1: intenseAttacks, lightweightAttacks← generateAttacks(I, k)
2: sbest ← greedy(I, k)
3: infeasibilitysbest ← quasiInfeasibility(sbest, intenseAttacks, cutoff, tries)
4: fitnesssbest ← (infeasibilitysbest , sum(sbest))
5: while ! terminationCriteriaSatisfied() do
6: for r = rmin to rmax do
7: s′ ← shake(sbest, r)
8: s′, fitnesss′ ← LS(s′, lightweightAttacks, tries)
9: if fitnesss′ < fitnesssbest ∨ (fitnesss′ = fitnesssbest ∧ moveprob < u ∈ U(0, 1)) then

10: intenseInfeasibilitys′ ← quasiInfeasibility(s′, intenseAttacks, cutoff, tries)
11: if intenseInfeasibilitys′ = 0 then
12: sbest ← s′

13: fitnesssbest ← (intenseInfeasibilitys′ , sum(s′))
14: break
15: end if
16: end if
17: end for
18: end while

У првоj линиjи алгоритма 10 генеришу се две врсте напада, описане у одељку 4.3.1.
Након тога, инициjално решење се генерише похлепним алгоритмом из одељка 4.3.2. Потом
се проверава квазидопустивост почетног решења уз помоћ функциjе quasiInfeasibility
(видети одељак 4.3.1) и израчунава се вредност функциjе прилагођености дефинисане у
одељку 4.3.3.

Након инициjализациjе, започиње главна петља VNS алгоритма, коjа се извршава
све док не буде премашено дозвољено време или максималан броj итерациjа. Основна
итерациjа VNS алгоритма састоjи се од следећих корака. Систематски се пролази кроз
различите околине, почевши од наjмање, означене са rmin. У оквиру текуће околине r,
позива се функциjа shake (видети одељак 4.3.4), коjа генерише ново решење s′. Ово
решење се затим унапређуjе применом локалне претраге LS (видети одељак 4.3.5). Следи
упоређивање тренутног наjбољег решења sbest и новодобиjеног решења s′. Уколико ново
решење има бољу вредност функциjе прилагођености, односно броj неодбрањивих напада
у s′ je мањи него у sbest, или ако jе броj jеднак, али jе укупан броj jединица у s′

мањи, тада се врши додатна верификациjа решења s′. Та верификациjа подразумева
поновно извршавање функциjе quasiInfeasibility са пуним скупом intenseAttacks.
Поред тога, ако су вредности функциjе прилагођености решења s′ и sbest идентичне,
примена верификациjе квазидопустивости за s′ се врши са вероватноћом дефинисаном
параметром moveprob.

Ако jе након верификациjе броj неодбрањивих напада у решењу s′ jеднак нули, оно
се прихвата као ново наjбоље решење. Наредна итерациjа VNS алгоритма тада почиње
поново од наjмање околине. У случаjу да се прође кроз све околине, а да ниjедно ново
решење не буде прихваћено, наредна итерациjа поново почиње од наjмање околине.
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4.4 Експериментални резултати

Предложени Vns алгоритам jе упоређен са конкурентским приступима из литературе,
што су методе засноване на целоброjном линеарном програмирању и Бендеровоj
декомпозициjи, означене са Ilp и Benders, описане у раду [84]. Поред тога, у поређење jе
укључен и похлепни алгоритам из одељка 4.3.2, означен као Greedy, са циљем процене
релативног побољшања квалитета решења добиjених применом комплетне Vns методе, у
односу на инициjална решења генерисана похлепним алгоритмом.

Изворни код конкурентских метода Ilp и Benders jе добиjен од првог аутора рада
[84]. Методе Vns и Greedy су имплементиране у програмском jезику C++17, превођене
су уз Ofast оптимизациони ниво, а извршаване су на оперативном систему Ubuntu 20.
Ради лакше употребе, развиjен jе Python модул ksrdp, коjи пружа интерфеjс за рад са
оригиналним C++ кодом. Омогућена jе jедноставна инсталациjа путем следеће команде:
pip install ksrdp. Поред тога, комплетан изворни код, скупови инстанци и сирови
резултати експеримената слободно су доступни на GitHub репозиториjуму на адреси:
https://github.com/StefanKapunac/ksrdp. Сви експерименти су изрвшавани у режиму
са jедном нити, на процесору Intel Xeon E5-2640 са радним тактом од 2.40GHz и 32 GB
мемориjе.

4.4.1 Инстанце проблема

Експериментална евалуациjа jе спроведена на три скупа референтних инстанци: Ran-
dom, Wireless и Real. Скуп Random садржи насумично генерисане графове, првобитно
преедложене у раду [84], где се могу наћи додатни детаљи. За сваку величину графа
n ∈ {10, 15, 20, 30, 45, 50, 100} генерисано jе по 5 графова различитих густина, што укупно
даjе 35 инстанци.

Скуп Wireless се састоjи од 16 инстанци коjе симулираjу ад-хок бежичне мреже
различитих густина. За генерисање ових графова коришћен jе модел jединичног диска
(енг. Unit disc model) [29]. У овом моделу постоjе два параметра: полупречник r и
броj чворова n. Прво се генерише n насумичних тачака унутар jединичног квадрата у
равни. Потом се сваки пар тачака на удаљености мањоj од r повезуjе граном и добиjа
се граф. Укупно jе генерисано 16 инстанци, за вредности n ∈ {20, 30, 50, 100} и r ∈
{0.3, 0.4, 0.5, 0.6}. За имплементациjу jе коришћена Python библиотека NetworkX, тачниjе
функциjа random_geometric_graph.

Скуп Real се састоjи од инстанци коjе су посебно осмишљене за потребе
студиjе случаjа стварне примене k-SRD проблема, представљене у одељку 4.5. За
креирање ових графова искоришћена jе колекциjа GeoJSON датотека доступних на Git-
Hub репозиториjуму: https://github.com/blackmad/neighborhoods.git. Наведени скуп
садржи 168 фаjлова коjи кодираjу географске карактеристике коришћењем структура
као што су тачке, линиjе и полигони. На пример, могу представљати градове подељене
на општине, државе подељене на регионе, или континенте подељене на државе. За обраду
ових података коришћени су Python модули PySAL и GeoPandas, специjализовани за рад
са геопросторним форматима као што jе GeoJSON. Поступак генерисања графа из оваквог
формата састоjи се од два корака. Прво, за сваки полигон одређуjе се центроид коjи постаjе
чвор графа. Потом се конструише матрица суседства, у коjоj су два чвора повезана ако
се полигони коjи им одговараjу додируjу, односно деле бар jедну граничну тачку. Због
тога се овакав граф, по угледу на кретање истоимене шаховске фигуре, назива краљичин
(енг. Queen’s graph) [53]. Илустрациjа jедне овакве инстанце, коjа представља поделу града
Берлина на општине, дата jе на слици 4.3.
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Слика 4.3: Граф општина у Берлину

4.4.2 Параметри алгоритма

На основу прелиминарних резултата, инстанце су категорисане у три групе:

• мале – инстанце са мање од 30 чворова,

• средње – инстанце са више од 30 и мање од 100 чворова,

• велике – остале инстанце.

За мале инстанце дозвољено време извршавања jе 300 секунди, за средње инстанце лимит
jе продужен на 600 секунди, а за велике инстанце временско ограничење jе 1200 секунди,
односно 20 минута. Важно jе напоменути да jе исто временско ограничење примењено на
сва четири поређена приступа. Поред тога, Vns има додатни критериjум заустављања, а
то jе броj итерациjа коjи jе ограничен на 5000 за све инстанце.

Следеће вредности параметара коришћене су у Vns алгоритму у свим експериментима:
rmin = 1, moveprob = 0.5, cutoff = 100. Подешавање параметара rmin на наjмању могућу
вредност jе уобичаjена пракса у литератури [89, 56]. Слично jе и са параметром moveprob,
коjи jе подешен на 0.5, односно одговара вероватноћи бацања новчића, што jе такође честа
стратегиjа у литератури. Вредност параметра cutoff одабрана jе у складу са величином
наjвећих инстанци. Не очекуjе се значаjниjи утицаj овог параметра на перформансе
алгоритма код великих графова, jер се у таквим случаjевима користити пробабилистичка
стратегиjа за проверу одбране од напада.

Параметри rmax и tries представљаjу наjосетљивиjе вредности у оквиру алгоритма,
jер директно утичу на делотворност кључних делова алгоритма, попут локалне претраге,
размрдавања и евалуациjе функциjе прилагођености. Стога jе извршена анализа утицаjа
ова два параметра на перформансе алгоритма коjа ће бити представљена у одељку 4.4.3.
На основу ове анализе су изабране коначне вредности параметара Vns алгоритма чиjи су
резултати укључени у поређење.

4.4.3 Резултати

У овом одељку су изложени експериментални резултати четири конкурентска
приступа. Сви експерименти су изведени за k ∈ {2, 3, 4, 5}, уз примену исте методологиjе
као у [84].
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Табела 4.1: Анализа утицаjа параметара алгоритма Vns: просечан квалитет решења на
скупу Random

tries/rmax 5 10 50 100
5 27.39 28.49 27.89 27.89
10 27.39 27.52 27.88 27.89
50 27.40 27.52 27.87 27.88

Табела 4.2: Анализа утицаjа параметара алгоритма Vns: просечан квалитет решења на
скупу Wireless

tries/ rmax 5 10 50 100
5 12.12 12.16 12.17 12.16
10 12.10 12.15 12.16 12.17
50 12.12 12.13 12.15 12.15

Резултати на скупу инстанци Random дати су у седам табела, груписаних према броjу
чворова, односно вредностима n ∈ {10, 15, 20, 30, 45, 50, 100}. Резултати на скупу Wireless
представљени су у четири табеле, по jедна за сваку вредност параметра k. Пре детаљне
анализе добиjених нумеричких резултата, дата jе анализа утицаjа два наjзначаjниjа
параметра приступа Vns – rmax и tries.

Анализа утицаjа параметара

Анализа jе изведена над следећим доменима параметара: rmax ∈ {5, 10, 50, 100} и
tries ∈ {5, 10, 50}. Свака комбинациjа ових вредности дефинише jедну конфигурациjу
приступа Vns, што укупно даjе 12 различитих конфигурациjа. Анализа jе спроведена
одвоjено за сваки од два скупа инстанци – Random и Wireless. Сумарни резултати, коjи
представљаjу просечне вредности квалитета решења на свим инстанцама унутар сваког
од скупова, дати су у табелама 4.1 и 4.2.

На основу агрегираних резултата добиjених за 12 различитих конфигурациjа на оба
скупа, изводе се следећи закључци:

• На скупу Random, наjбољи резултати постижу се при конфигурациjама tries = 5
и rmax = 5, односно tries = 10 и rmax = 5. Уочава се да повећање вредности
параметра rmax доводи до погоршања резултата. На пример, значаjна jе разлика
између резултата за rmax = 5 и rmax = 50. Са друге стране, параметар tries не утиче
значаjно на перформансе.

• На скупу Wireless, наjбоља конфигурациjа jе tries = 10 и rmax = 5. Повећање
параметра rmax доводи до благог смањења квалитета решења, али ове разлике нису
статистички значаjне. Као и у претходном случаjу, параметар tries показуjе мањи
утицаj у односу на rmax.

Укратко, за финалну конфигурациjу алгоритма Vns изабрана jе вредност rmax = 5 и
tries = 10 за оба скупа инстанци. Треба напоменути да jе фино подешавање параметара
могло бити спроведено и уз помоћ алата за аутоматску конфигурациjу, као што jе Irace
[85], чиме би можда били постигнути jош бољи резултати. Међутим, оваква врста анализе
jе изостављена због ограничених рачунарских ресурса и већ спроведене анализе, коjа jе
указала на стабилну и поуздану конфигурациjу.
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Резултати на скупу Random

Резултати експеримената на скупу инстанци Random за инстанце код коjих jе n ∈
{30, 50, 100} приказани су у табелама 4.3–4.5. Остали резултати дати су у прилогу Г, у
табелама Г.1–Г.4. Све табеле су организоване на исти начин. Прве две колоне приказуjу
карактеристике инстанце, односно броj чворова n и густину index. У трећоj колони се
налази вредност параметра k. Следећа четири блока садрже резултате приступа Greedy,
Vns, Ilp и Benders. За сваки од два егзактна приступа, дате су две статистике: квалитет
добиjеног решења (obj ) и време извршавања у секундама (t[s]). Код Benders приступа
додатно jе приказана вредност доњег (дуалног) ограничења (dual). Време извршавања
за Greedy алгоритам ниjе приказано, jер jе у свим случаjевима било мање од jедне
секунде, што jе значаjно брже у поређењу са осталим приступима. За Vns, поред просечног
квалитета решења и просечног времена проналаска наjбољег решења у 10 извршавања,
приказана jе и релативна стандардна девиjациjа (у процентима) квалитета добиjених
решења (σ[%]). Наjбољи резултати међу четири приступа су подебљани.

Из добиjених нумеричких резултата (табеле 4.3–4.5) могу се извући следећи закључци:

• За инстанце са n = 30 и малим k ∈ {2, 3}, Ilp jе успео да пронађе оптимална решења
за све инстанце. Време извршавања драстично расте при преласку са k = 2 на k = 3.
Benders приступ jе у два случаjа премашио ограничење у времену, али jе дао дуалне
границе коjе одговараjу вредностима оптималних решења. Предложени Vns jе дао
решења квалитета jеднаког оптималним, а у већини случаjева имао jе краће време
извршавања од Ilp-а. Почетна решења добиjена помоћу Greedy алгоритма значаjно
су побољшана током претраживања унутар Vns-а.

• За инстанце са n = 30 и већим k ∈ {4, 5} ниjе било могуће ни конструисати
одговараjући ILP модел услед ограничења мемориjе. Benders приступ ниjе успео
да нађе доказано оптимално решење ни за jедан пример. Просечни квалитет решења
Vns приступа био jе значаjно бољи од оног код Greedy приступа. Доње границе
добиjене Benders методом указуjу да решења Vns-а нису далеко од оптималних, а
понекад и достижу оптимум.

• Код инстанци са n = 50 и k = 2, Ilp jе постигао оптимална решења на свих пет
инстанци, док jе Benders то успео на три, а на преостале две jе прекорачено време
извршавања. Просечни квалитет решења Vns приступа био jе jеднак оптималним на
три од пед инстанци. Vns jе на свим инстанцама значаjно побољшао почетна решења
у односу на Greedy.

• За инстанце са n = 50 и k ∈ {3, 4, 5}, егзактни приступи Ilp и Benders нису успели
да пронађу оптимално решење услед проблема са мемориjским или временским
ограничењима. Vns jе поново дао значаjно боља просечна решења од Greedy
алгоритма.

• На инстанцама са n = 100 и k = 2, Ilp jе пронашао оптимална решења у свих пет
случаjева, док Benders ниjе постигао ниjедно, при чему су дуалне границе биле
релативно слабе. Vns jе дао решења коjа просечно одступаjу од оптимума око 4%.
Опет, Vns значаjно побољшава почетна решења добиjена Greedy методом.

• Код инстанци са n = 100 и k ∈ {3, 4, 5}, Ilp ниjе могао да пронађе оптимална решења
због проблема са мемориjом. Benders jе пробио временско ограничење и дао слабе
дуалне границе. Vns jе поново дао знатно боља просечна решења од Greedy метода
– у неким случаjевима релативна побољшања достижу и 10%.
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Табела 4.3: Упоредни резултати на скупу Random за n = 30.

инстанца k Greedy Vns Ilp Benders

n index obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
30 1 2 20 17.0 0.00 2.0 17 4.7 17 17 41.2

2 20 17.0 0.00 16.1 17 6.5 17 17 28.4
3 21 17.0 2.8 2.2 17 8.3 17 17 87.4
4 17 16.0 0.0 0.1 16 1.1 16 16 36.0
5 18 17.0 8.0 12.63 17 6.6 17 17 23.3

30 1 3 23 19.0 0.0 44.1 19 208.9 0 19 TL
2 23 20.0 0.0 21.0 20 222.2 20 20 373.6
3 25 20.0 0.0 8.9 20 380.5 0 19 TL
4 21 19.0 0.0 3.7 19 185.2 19 19 423.9
5 22 20.0 0.0 21.7 20 19.6 20 20 491.9

30 1 4 26 20.6 2.0 226.0 - - 0 19 TL
2 26 21.0 0.0 70.1 - - 0 20 TL
3 29 21.0 0.0 148.6 - - 0 19 TL
4 24 20.2 1.6 142.6 - - 0 19 TL
5 25 21.5 2.2 139.1 - - 0 20 TL

30 1 5 28 22.1 2.3 134.6 - - 0 19 TL
2 29 22.6 4.1 165.4 - - 0 20 TL
3 30 23.4 2.7 194.4 - - 0 19 TL
4 26 21.1 3.2 249.8 - - 0 19 TL
5 27 23.0 2.0 164.6 - - 0 20 TL

Табела 4.4: Упоредни резултати на скупу Random за n = 50.

инстанца k Greedy Vns Ilp Benders

n index obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
50 1 2 31 29.0 0.0 15.0 29 32.9 0 28 TL

2 31 28.0 0.0 7.0 28 15.2 28 28 439.6
3 34 28.2 0.0 116.1 28 28.7 28 28 399.8
4 33 28.0 0.0 5.6 28 21.6 28 28 375.8
5 36 29.2 0.0 137.8 29 25.2 0 28 TL

50 1 3 36 33.4 1.6 253.3 - - 0 28 TL
2 36 32.4 1.5 164.0 - - 0 28 TL
3 40 32.2 1.2 377.3 - - 0 28 TL
4 38 32.7 2.2 311.1 - - 0 28 TL
5 43 34.7 3.0 238.5 - - 0 29 TL

50 1 4 40 36.0 2.0 107.4 - - 0 28 TL
2 40 35.1 2.0 262.6 - - 0 28 TL
3 44 36.9 2.4 236.4 - - 0 28 TL
4 42 35.0 1.5 213.4 - - 0 28 TL
5 47 37.6 2.5 242.1 - - 0 28 TL

50 1 5 44 40.4 2.9 257.7 - - 0 28 TL
2 44 39.6 2.0 307.4 - - 0 28 TL
3 48 41.5 2.4 429.2 - - 0 27 TL
4 45 40.0 2.5 378.6 - - 0 28 TL
5 50 43.4 2.9 337.2 - - 0 29 TL
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Табела 4.5: Упоредни резултати на скупу Random за n = 100.

инстанца k Greedy Vns Ilp Benders

n index obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
100 1 2 65 58.9 313.6 505.1 57 402.6 0 49 TL

2 68 61.2 1.2 461.2 58 752.2 0 49 TL
3 66 62.2 0.9 460.0 60 775.1 0 52 TL
4 64 60.4 2.1 492.1 58 296.5 0 50 TL
5 61 59.0 0.5 189.6 57 315.7 0 50 TL

100 1 3 79 73.5 2.8 964.8 - - 0 49 TL
2 82 75.6 2.4 915.2 - - 0 49 TL
3 79 76.3 1.1 441.7 - - 0 51 TL
4 77 75.5 1.1 600.2 - - 0 50 TL
5 72 69.5 1.0 681.1 - - 0 49 TL

100 1 4 86 77.4 3.0 898.8 - - 0 49 TL
2 92 81.6 1.4 878.0 - - 0 49 TL
3 89 81.8 1.8 822.4 - - 0 51 TL
4 86 79.0 2.2 573.4 - - 0 50 TL
5 81 75.0 2.0 603.8 - - 0 50 TL

100 1 5 92 89.4 2.2 864.4 - - 0 49 TL
2 98 90.1 1.4 1050.8 - - 0 49 TL
3 95 91.8 1.3 936.2 - - 0 51 TL
4 94 90.7 1.6 1020.3 - - 0 49 TL
5 88 85.9 1.4 870.7 - - 0 49 TL

Резултати на скупу Wireless

Експериментални резултати на скупу Wireless груписани су према различитим
вредностима параметра k и приказани у четири одвоjене табеле (по jедна табела за сваку
вредност k). Резултати за инстанце са k ∈ {3, 4} приказани су у табелама 4.6–4.7, док
се остали резултати могу наћи у табелама Г.5–Г.6 у прилогу Г. Табеле су организоване
слично као у претходноj секциjи, осим колона коjе приказуjу карактеристике инстанце.
Прва колона приказуjе величину графа (n), док друга колона приказуjе вредност радиjуса
(R), коjи одговара густини графа (што jе већи радиjус, већа jе густина графа). Поново су
наjбољи резултати међу четири поређена приступа приказани подебљано.

Из ових резултата могу се извући следећи закључци:

• За инстанце са n = 20 и k = 3, Ilp и Benders приступи су ефикасно пронашли
оптимална решења на свим инстанцама. Vns jе постигао оптимална решења уз
изузетно кратко време извршавања. Резултати Greedy приступа не одступаjу много
од оптималних решења. Приметно jе да се инстанце веће густине лакше решаваjу.

• На већим инстанцама са n ≥ 50 и k = 3, егзактни приступи нису успели да пронађу
оптимална решења, услед мемориjских и временских ограничења. Изузетак jе jедна
инстанцу где jе Benders био успешан, али уз дуже време извршавања. У седам
од осам случаjева, решења Vns приступа су значаjно боља од решења добиjених
Greedy методом.

• За наjмање инстанце са n = 20 и k = 4, егзактни Ilp приступ jе имао потешкоће и
успео jе да реши само jедну инстанцу (n = 20 и R = 0.3). Benders показуjе боље
перформансе, решивши три од четири инстанце. Vns jе достигао оптимална решења
за све ове инстанце у оквиру jедног минута.

• За веће инстанце са n ≥ 50 и k = 4, егзактни Ilp и Benders приступи нису успели да
реше ниjедну инстанцу због проблема са мемориjским и временским ограничењима.
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Табела 4.6: Упоредни резултати на скупу Wireless за k = 3.

инстанца Greedy Vns Ilp Benders

n R obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
20 0.3 15 14.0 0.0 0.2 14 5.73 14 14 31.1

0.4 12 12.0 0.0 0.0 12 51.11 12 12 101.0
0.5 7 6.0 0.0 1.7 6 41.56 6 6 44.6
0.6 4 4.0 0.0 0.0 4 3.14 4 4 9.8

50 0.3 18 16.0 0.0 205.4 - - 0 15 TL
0.4 14 13.1 0.0 106.9 - - 0 11 TL
0.5 10 8.3 0.0 173.5 - - 0 7 TL
0.6 7 6.0 0.0 90.6 - - 6 6 1402.7

100 0.3 23 21.3 10.1 461.6 - - 0 13 TL
0.4 17 14.3 8.3 393.5 - - 0 10 TL
0.5 12 12.0 0.0 0.0 - - 0 7 TL
0.6 9 8.2 5.1 222.7 - - 0 6 TL

Табела 4.7: Упоредни резултати на скупу Wireless за k = 4.

инстанца Greedy Vns Ilp Benders

n R obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
20 0.3 17 16.0 0.0 1.9 16 135.2 16 16 144.3

0.4 14 13.0 0.0 44.2 19 TL 0 13 TL
0.5 8 7.0 0.0 13.1 43 TL 7 7 267.9
0.6 5 5.0 0.0 0.0 46 TL 5 5 33.1

50 0.3 21 21.0 2.8 0.0 - - 0 15 TL
0.4 16 15.4 0.0 78.1 - - 0 12 TL
0.5 12 11.5 0.0 67.9 - - 0 8 TL
0.6 8 7.0 0.0 17.5 - - 0 7 TL

100 0.3 28 27.5 0.0 352.0 - - 0 14 TL
0.4 21 20.3 3.3 210.2 - - 0 10 TL
0.5 15 15.0 5.1 0.0 - - 0 8 TL
0.6 11 10.7 0.0 218.3 - - 0 7 TL

Vns jе постигао боља решења у шест од осам инстанци у поређењу са резултатима
Greedy алгоритма.

Сумарни резултати на скупу Real

Ради провере ефективности предложеног Vns приступа на реалним инстанцама из
скупа Real, примењена jе следећа методологиjа. Узете су у обзир оне инстанце за коjе
оба егзактна приступа могу обезбедити оптимална решења. Затим се квалитет добиjених
решења Greedy и Vns приступа упоређуjе са оптималним решењима, груписаних по
вредностима k ∈ {2, 3, 4, 5} (по jедан ред за сваку вредност k). Ови резултати приказани
су у табели 4.8. Због великог броjа инстанци Vns jе извршаван само jедном по инстанци.
С обзиром на релативно малу стандардну девиjациjу добиjену за решења Vns-а на
скуповима Random и Wireless, не очекуjе се да закључци добиjени у сценариjу са jедним
извршавањем буду битно другачиjи од оних коjи би били добиjени са десет извршавања.

Из наведених резултата може се закључити следеће:

• Броj инстанци коjе се могу решити оптимално брзо опада са повећањем вредности
k.

• Vns проналази оптимална решења у свим случаjевима где Ilp или Benders
решаваjу инстанцу (са неколико изузетака за случаj k = 2).
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Табела 4.8: Поређење на скупу Real – случаjеви коjе могу решити Ilp и Benders

k Greedy Vns Ilp/Benders броj инстанци
2 20.98 20.18 20.11 66
3 15.58 14.74 14.74 43
4 13.96 13.00 13.00 25
5 12.47 11.59 11.59 17

• Greedy jе значаjно надмашен од стране Vns-а.

• Важно jе нагласити да оба предложена хеуристичка приступа пружаjу
апроксимативна решења разумног квалитета (значаjно боља од тривиjалног
решења) и за оне инстанце где егзактне методе могу обезбедити било какво решење.

4.4.4 Поређење хеуристичких приступа

Да би се додатно упоредиле перформансе два хеуристичка приступа, Greedy и Vns,
дате су слике 4.4а–4.4б за скуп инстанци Random и слике 4.5а–4.5б за скуп Wireless.
Ови графици приказуjу просечно релативно побољшање квалитета решења добиjених
Vns приступом у односу на Greedy. Инстанце су груписане по величини графа n и по
вредности k (вредности приказане на x-оси) посебно, те су по два графика генерисана
за сваки скуп. Додатно, слика 4.6 приказуjе просечно релативно побољшање квалитета
решења добиjених Vns-ом у односу на Greedy за све инстанце скупа Real, при чему су
инстанце груписане по вредности k.
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Слика 4.4: Релативна просечна побољшања Vns-а у односу на Greedy на скупу Random
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Слика 4.5: Релативна просечна побољшања Vns-а у односу на Greedy на скупу Wireless
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Слика 4.6: Релативна просечна побољшања Vns-а у односу на Greedy на скупу Real

Следећи закључци се могу извући из добиjених графика:

• За инстанце из скупа Random груписане по величини графа n, просечнa
релативнa побољшања квалитета решења Vns-а у односу на Greedy крећу се од
респектабилних 12–16% за 10 ≤ n ≤ 50, док jе за групу наjвећих инстанци са n = 100
ова вредност и даље остаjе значаjна, око 5%.

• За инстанце из скупа Random груписане по различитим вредностима k, просечна
релативна побољшања Vns-а крећу се од 8.5% за k = 2 до око 14% за k = 4.

• За инстанце из скупа Wireless груписане по величини графа n, просечнa
побољшања Vns-а крећу се око 6% за наjвећи n = 100 и приближно 7.7% за мање
n ∈ {20, 50}.

• За инстанце из скупа Wireless груписане по различитим вредностима k, просечна
побољшања, очекивано, слабе са повећањем вредности k. За наjмањe k = 2 износе
око одличних 15%, док се за наjвећи случаj (k = 5) смањуjу на 3%. То jе
углавном последица великог броjа генерисаних напада коjи мораjу бити проверени у
смислу постоjања стратегиjе одбране, што значаjно смањуjе укупан броj извршених
итерациjа Vns-а.

• За инстанце из скупа Real, просечна релативна побољшања Vns-a крећу се од
приближно 4% за k ∈ {2, 3} до око 10% за наjвећи случаj k = 5.
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4.4.5 Статистичка анализа

Ради провере статистичке значаjности уочених разлика између четири приступа,
примењена jе следећа статистичка методологиjа. Прво, за све четири конкурентске методе
jе извршен Фридманов тест [47] на свим инстанцама проблема из скупова Random и Wi-
reless, посматрано одвоjено. Након тога, у случаjу одбацивања нулте хипотезе (H0 тврди
да су све конкурентске методе статистички подjеднако добре), спроведена су упоредна
испитивања у паровима коришћењем Неменjиjевог пост-хок теста [93].

Резултати добиjени овом анализом приказани су коришћењем графика критичне
разлике (енг. critical difference, CD). Као што jе раниjе поменуто, на овим графицима сваки
приступ jе позициониран на хоризонталноj оси у складу са просечним рангом. Затим се
за ниво значаjности 0.05 израчунава критична разлика (CD). Уколико jе разлика довољно
мала, односно ниjе откривена статистички значаjна разлика, црта се хоризонтална линиjа
коjа повезуjе статистички jеднаке приступе. У случаjу да алгоритам ниjе дао резултат,
додељуjемо велику вредност (нпр. 1000) како би се омогућио наjвећи могући ранг.

(а) Скуп Random (б) Скуп Wireless

(в) Скуп Real

Слика 4.7: Графици критичне разлике – статистичке разлике међу 4 поређена приступа

Следећи закључци се могу извући из спроведене статистичке анализе, приказане на
сликама 4.7а–4.7в:

• За скуп инстанци Random, Vns постиже наjбољи просечан ранг у смислу квалитета
решења. Остала три приступа су значаjно иза, са просечним рангом близу три. Поред
тога, Vns jе статистички значаjно бољи од остала три конкурента. Међу ова три
приступа ниjе откривена статистички значаjна разлика.

• За скуп инстанци Wireless, Vns поново осигурава наjбољи просечни ранг, коjи jе за
целу jединицу бољи од другопласираног приступа Greedy. Наjгори просечни ранг
имаjу Benders и Ilp, редом. Опет, наjбоље рангирани приступ Vns статистички
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значаjно надмашуjе Greedy, коjи пак има статистички значаjно бољи ранг од
Ilp. Упркос мањем просечном рангу Greedy, ниjе откривена статистички значаjна
разлика између Greedy и Benders. Приступи Benders и Ilp нису статистички
различити, нити су могли да доставе било какво решење за веће вредности k.

• За скуп инстанци Real, Vns поново постиже наjбољи просечни ранг. Други наjбољи
просечни ранг остваруjе приступ Greedy, углавном због конзистентног достављања
допустивих решења за све инстанце, за разлику од два егзактна конкурента. Треба
напоменути да су решења Vns-а статистички значаjно боља од решења Greedy
методе.

4.4.6 Анализа утицаjа поjединачних компоненти алгоритма

Спроведена jе анализа утицаjа поjединачних компоненти Vns алгоритма на квалитет
добиjених решења. Конкретно, испитанo jе следеће:

• Утицаj квалитета почетног решења коjе се прослеђуjе Vns-у. Проверена jе
осетљивост на почетно решење добиjено Greedy методом у односу на тривиjално
почетно решење. Ова верзиjа Vns-а коjа користи тривиjално решење као инициjално
назива се Vns-trivial-init.

• Утицаj Ls методе. Верзиjа Vns-а без Ls назива се редуковани Vns и означава се као
Rvns.

Eкспериментална методологиjа коришћена за ове експерименте прати методологиjу из
претходних секциjа. Сумирани резултати су приказани у табелама 4.9–4.10. Табела 4.9
приказуjе резултате за скуп инстанци Random, груписане по различитим вредностима n
(редови). Следећи закључци се могу извући из тих резултата:

• За мале инстанце са n ∈ {10, 15}, квалитет почетног решења не игра значаjну улогу
за Vns. Кључна разлика овде jе присуство локалне претраге, коjа се показуjе као
веома ефективна и неопходна за мање инстанце.

• За средње инстанце са n ∈ {20, 30}, и квалитет почетног решења и коришћење
локалне претраге делуjу подjеднако важно за укупну ефикасност предложеног
приступа.

• За велике инстанце са n ≥ 45, утицаj почетног решења, очекивано, постаjе jош
значаjниjи, jер процедура локалне претраге захтева много више итерациjа да би
се побољшало тривиjално решење.

Табела 4.10 приказуjе резултате за скуп инстанци Wireless, груписане по различитим
вредностима k (редови). Из тих резултата могу се извући следећи закључци:

• За случаj k ∈ {2, 3}, улога локалне претраге jе важна, заjедно са добрим почетним
решењем коjе се прослеђуjе главноj петљи Vns-а.

• За случаj k ∈ {4, 5}, улога добрих почетних решења постаjе jош значаjниjа. Међутим,
без коришћења локалне претраге, односно коришћењем Rvns, ниjе могуће достићи
наjбоље резултате добиjене са потпуним Vns-ом. Ово показуjе ефикасност ових двеjу
компоненти у комбинациjи.
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Табела 4.9: Анализа утицаjа поjединачних компоненти алгоритма Vns на скупу Random
(агрегирано по n)

n Vns Vns-trivial-init Rvns

10 6.85 6.85 7.01
15 10.15 10.15 10.44
20 13.17 13.18 13.79
30 19.92 20.21 21.05
45 31.23 32.16 33.11
50 34.67 36.13 36.79

100 75.74 80.91 77.05

Табела 4.10: Анализа утицаjа поjединачних компоненти алгоритма Vns на скупу Wire-
less (агрегирано по k)

k Vns Vns-trivial-init Rvns

2 8.42 8.42 9.76
3 11.28 11.53 12.03
4 14.12 31.51 14.27
5 16.33 46.10 16.56

4.4.7 Анализа конвергенциjе алгоритма

Коначно, анализирана jе конвергенциjа Vns алгоритма. На сликама 4.8–4.9 приказан
jе просечан профил перформанси алгоритма, где x-оса представља време (у секундама),
а y-оса приказуjе квалитет решења коjи алгоритам постиже у сваком тренутку. Резултати
су упросечени на основу 10 извршавања алгоритма по инстанци.

Треба напоменути да графици са леве стране представљаjу инстанце за коjе су
достигнута позната оптимална решења. За графиконе са десне стране, Vns jе завршен
након достизања временског ограничења. Може се уочити да Vns доследно побољшава
решења током времена, при чему су побољшања примећена и у касниjоj фази претраге,
након 1000 секунди. Ово додатно потврђуjе делотворност предложеног приступа.
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Слика 4.8: Перформансе на одабраним инстанцама из скупа Random
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Слика 4.9: Перформансе на одабраним инстанцама из скупа Wireless

4.5 Примена у одбрани од више истовремених пожара

Да би се додатно истакла практична применљивост предложене методе, решења
Vns-а су визуелизована и анализирана на неколико реалних инстанци из скупа Real,
представљеног у секциjи 4.4. Као студиjа случаjа разматран jе локациjски проблем коjим
се моделуjе постављање ватрогасних станица са возилима унутар града, при одређеним
ограничењима.

Полазна основа за анализу заснива се на следећим статистичким подацима, углавном
преузетим са Википедиjе. На пример, броj ватрогасних станица у Даблину jе 14, у Берлину
35, у Чикагу 98, док у Њуjорку постоjи 254 станице. Броj ватрогасних возила у Чикагу
износи 61, а у Њуjорку 143. У Берлину jе 2019. године Ватрогасна служба примила 478281
хитни позив, што jе наjвећи броj међу свим ватрогасним службама у Немачкоj. Приближно
83% интервенциjа односи се на хитну медицинску помоћ, 5% на техничку асистенциjу и
око 2% на гашење пожара.∗ Уз претпоставку да jе у просеку потребно око 4 сата за jедну
комплетну интервенциjу (од изласка возила из станице до његовог повратка и поновне
спремности), може се очекивати да jе броj реалних пожара коjи могу истовремено настати
у овом граду око k = 5.

Формулисан jе проблем постављања ватрогасних станица под следећим
(поjедностављеним) ограничењима:

• У свакоj општини може бити изграђена наjвише jедна ватрогасна станица.

• На свакоj изабраноj локациjи може се стационирати jедно или више возила.

• Jедно возило може гасити пожар у своjоj или суседноj општини. Ово одражава
реалистичну потребу за брзом реакциjом у хитним случаjевима, где би, на пример,
слање возила са jедног краjа града на супротан краj трошило драгоцено време.

• Наjмање jедно возило увек мора остати у своjоj општини, док се остала могу слати
у суседне дистрикте.

Дато k представља процену броjа општина у коjима могу истовремено постоjати
пожари. Додатна поjедностављуjућа претпоставка jе да jе jедно возило довољно за гашење

∗Информациjа jе преузета са https://en.wikipedia.org/wiki/Berlin_Fire_Brigade.
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било ког пожара. Циљ jе пронаћи оптималне локациjе за изградњу станица и броj возила
у њима тако да сваки сценарио са k истовремених пожара може бити успешно покривен.

Визуелно jе приказана примена овог проблема на неколико градова чиjе су графичке
репрезентациjе добиjене из GeoJSON фаjлова (видети секциjу 4.4). Изабрани су градови
Шчећин и Синсинати као представници средње великих инстанци, и Питсбург као
представник великих инстанци. Вредност k jе узета из скупа {5, 6, 8}. Град Шчећин
садржи 36 општина коjе формираjу повезан граф. Град Синсинати обухвата 45 општина,
такође у jедном повезаном графу. Сa друге стране, Питсбург садржи 90 општина
подељених у четири повезане компоненте. Важно jе истаћи да ниjедан од егзактних
приступа ниjе успео да реши ове инстанце, док решења коjа даjе Vns доследно надмашуjу
она добиjена Greedy алгоритмом. Решења добиjена применом Vns-a за сва три града (и
све вредности k) приказана су на сликама 4.10а–4.12в. Следе закључци за град Шчећин:

• За k = 5 добиjено решење износи 24. Изабрано jе осам општина као чворишта
за изградњу ватрогасних станица са наjмање jедним возилом. Две централизоване
станице имаjу по пет возила, док jедна има четири. Пет станица имаjу по два возила.
Два наjвећа чворишта налазе се у географски наjвећоj општини и у малоj, али
централноj високо повезаноj општини.

• За k = 6 решење износи 28. Планира се изградња девет станица. Jедна станица има
пет, jедна шест, а jедна седам возила. Остале имаjу по два или мање возила.

• За k = 8 добиjено решење износи 33. Изграђено jе осам станица. Три од њих
доминираjу броjем возила: две са по девет и jедна са шест возила. Остале станице
имаjу по два или мање возила.

• Занимљиво jе да се три локациjе за станице са великим броjем возила поjављуjу
у сва три случаjа k ∈ {5, 6, 8}. Ово се може обjаснити њиховим високим степеном
централности, што указуjе на добру доступност великог броjа суседних општина.
Три заjедничка чвора за сваки броj k имаjу степен централности 0.25, 0.31 и 0.2, што
су вредностима међу наjвишимa у целом графу.
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(а) k = 5 (б) k = 6

(в) k = 8

Слика 4.10: Резултати за град Шчећин

Следећи закључци су изведени за граф града Синсинатиjа:

• За k = 5, добиjено решење износи 35. Предложено jе отварање 18 ватрогасних
станица. Ниjедна станица нема више од четири возила. Постоjе две станице са по
четири возила и две са по три. Станице са већим броjем возила делуjу географски
равномерно распоређене.

• За k = 6, добиjено решење износи 40. Предложено jе отварање 18 ватрогасних
станица. Постоjе три станице са по четири возила и две са по три, док преостале
станице имаjу по два или мање возила.

• За k = 8, добиjено решење износи 44. Предложено jе отварање 17 ватрогасних
станица. Jедна станица има седам возила, три по пет, а две по четири возила, док
jе осам станица добило само по jедно возило (углавном изолованиjи чворови коjи се
налазе на границама градског подручjа). Седам станица са наjвећим броjем возила
делуjу географски равномерно распоређене по градском подручjу.

• Чвор коjем jе додељен наjвећи броj возила (7) има степен централности 0.16, што jе
друга наjвећа вредност у графу.
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(а) k = 5 (б) k = 6

(в) k = 8

Слика 4.11: Резултати за град Синсинати

На краjу, приказано jе и анализирано решење добиjено методом Vns за град Питсбург.
Примећено jе следеће:

• За k = 5, добиjено решење износи 67. Предложено jе 27 локациjа за изградњу
ватрогасних станица. Две станице имаjу по пет возила, четири по четири возила,
а шест по три возила. Преостале станице имаjу два или мање возила.

• За k = 6, добиjено решење износи 72. Одабрано jе 30 локациjа за изградњу
ватрогасних станица. Три станице имаjу по пет возила, три по четири, а шест по
три возила.

• За k = 8, добиjено решење износи 81. Предложено jе 27 локациjа за изградњу
ватрогасних станица. Четири станице имаjу по шест возила, две по пет, а четири
по три возила.

• За свако k, локациjе станица са наjвећим броjем возила у великоj мери се поклапаjу.
Такође, две локациjе са већим броjем возила имаjу међу наjвишим степенима
централности у графу, jедна 0.09, а друга 0.06.
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(а) k = 5 (б) k = 6

(в) k = 8

Слика 4.12: Резултати за град Питсбург

4.6 Завршна разматрања

У овом поглављу развиjена jе похлепна хеуристика и метода променљивих околина за
решавање k-jаке римске доминациjе, проблема код кога jе и сама провера допустивости
изазовна. Увођење концепта квазидопустивости омогућава ефикасно кретање простором
претраге уз избегавање скупе експоненциjалне егзактне провере. Експерименти показуjу
да VNS значаjно побољшава инициjална похлепна решења, постиже оптималнe или
висококвалитетне резултате на инстанцама где су егзактне методе применљиве,
и надмашуjе конкурентске приступе на великим графовима. Студиjа случаjа са
позиционирањем ватрограсних станица и возила у регионима, тако да читав граф буде
безбедан у случаjу k истовремених пожара, илуструjе директну применљивост предложене
методе. Демонстрирано jе да се и веома сложени доминациjски проблеми могу успешно
решавати пажљиво дизаjнираним метахеуристикама, као и примењивати на релевантне
практичне проблеме.
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Поглавље 5

Проблем минималне доминациjе на
великим графовима

Проблем минималне доминациjе (енг. Minimum Dominating Set, MDS) представља
основну, а самим тим и наjвише проучавану вариjанту доминациjских проблема на
графовима, како са теориjске, тако и са практичне стране. Као што jе већ поменуто у
уводном поглављу 1, важност овог проблема произлази из броjних примена у различитим
областима, међу коjима су и телекомуникациjе, друштвене мреже и биоинформатика. С
обзиром на то да jе проблем MDS НП-тежак, посебан изазов представља решавање овог
проблема на великим графовима.

Иако се егзактне методе попут целоброjног линеарног програмирања изузетно добро
показуjу на мањим графовима, са порастом величине инстанце, долази до комбинаторне
експлозиjе, што онемогућава њихову директну примену. Управо због тога, већина радова
у литератури се бави развоjем ефикасних хеуристичких и метахеуристичких приступа
за оваj проблем. У овом поглављу биће представљен нови хибридни алгоритам IRIS
(енг. Iterative Refinement via ILP Subproblems), чиjа jе основна идеjа да комбинуjе
снагу егзактних и ефикасност метахеуристичких метода. Заснован jе на итеративном
побољшању тренутног решења, кроз решавање пажљиво одабраних ILP потпроблема, коjи
су довољно мали да их савремени решавачи могу обрадити, али и довољно информативни
да обезбеде значаjан напредак. Иако jе у овом поглављу IRIS примењен на проблем MDS,
предложени приступ има општу природу и може се прилагодити и за друге НП-тешке
проблеме.

5.1 Дефинициjа проблема

Проблем MDS се дефинише на неусмереном нетежинском графу G = (V,E), где jе V
скуп чворова, а E скуп грана. Скуп S ⊆ V назива се доминираjући ако за сваки чвор v ∈
V \ S постоjи бар jедан чвор u ∈ S такав да jе {u, v} ∈ E. Сам проналазак доминираjућег
скупа ниjе тежак проблем, jер скуп S = V увек представља доминираjући скуп. Међутим,
циљ проблема MDS jе да се пронађе доминираjући скуп минималне кардиналности, што
jе, како jе показано у одељку 1.1, НП-тежак проблем.

5.1.1 Пример инстанце

Пример инстанце проблема MDS приказан jе на слици 5.1. Чворови су означени
словима од a до f, док су гране приказане линиjама. Постоjи више оптималних решења за
ову инстанцу, а jедно од њих jе приказано на слици 5.2. Чворови коjи припадаjу решењу су
обоjени плавом боjом, док су гране коjима доминираjу над преосталим чворовима обоjене
црвеном боjом.
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a b

c

de

f

Слика 5.1: Пример инстанце проблема MDS

a b

c

de

f

Слика 5.2: Пример оптималног решења проблема MDS

5.2 Преглед литературе

Преглед литературе у овом поглављу обухвата радове посвећене развоjу ефикасних
алгоритама за решавање проблема MDS на великим графовима, као и радове коjи
разматраjу хибридне приступе за решавање НП-тешких проблема, са посебним освртом
на хибридизациjу егзактних и метахеуристичких метода.

5.2.1 Проблем MDS на великим графовима

Доминациjа на графовима jе формално дефинисана средином 20. века, али сам концепт
доминациjе постоjао jе и бар jедан век раниjе. Године 1862. у књизи [64] разматран jе
проблем проналаска минималног броjа краљица коjе могу да покриjу шаховску таблу,
тако да jе свако поље или нападнуто или се на њему налази краљица. Оваj проблем
може се формулисати као проблем MDS на графу у коме су чворови поља шаховске
табле, а гране повезуjу поља коjа краљица може да нападне. У књизи [14] из 1958.
године, први пут jе формално дефинисан поjам доминациjе на графовима, мада не
под тим називом. Са данашњим именом, проблем MDS се први пут поjављуjе у књизи
[97] из 1962. године. Веће интересовање за доминациjске проблеме jавља се од 1970-их
година, поготово након прегледног рада [31], у коме су систематизовани резултати о
доминациjским проблемима до тада. Од тог тренутка, доминациjски проблеми постаjу
jедни од наjинтензивниjе проучаваних комбинаторних проблема на графовима, како са
теориjске, тако и са практичне стране. Преглед познатих резултата може се наћи у књизи
[59]. У овом одељку биће представљени само радови коjи се баве развоjем ефикасних
алгоритама за решавање проблема MDS на великим графовима.

Наjбољи резултати на великим графовима до сада, постигнути су коришћењем
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метахеуристичких приступа. Издваjаjу се радови [117] из 2024. и [99] из 2025. године.
Оба рада су заснована на сличноj идеjи - користе врсту итеративне локалне претраге, у
оквиру коjе постоjе два различита оператора.

У раду [117], користе се оператори (2, 1)-замене и (3, 2)-замене, односно уклањаjу се 2,
тj. 3 чвора из тренутног решења, а затим се додаjе 1, тj. 2 чвора како би се поново добило
допустиво решење. Инициjално решење се конструише уз помоћ похлепне хеуристике, а у
току рада алгоритма користе се статистички подаци о фреквенциjи поjављивања чворова
у решењима како би се усмеравала претрага.

У раду [99], оба оператора су (2, 1)-замене. Jедан jе стандардан, а други врши процену
вредности функциjе циља на основу локалне околине разматраног чвора. Дакле, не рачуна
jе егзактно, те на таj начин доприноси експлорациjи читавог алгоритма. Такође користи
податке о броjу итерациjа у коjима jе чвор био део решења како би се усмерила претрага.

5.2.2 Хибридни приступи за решавање НП-тешких проблема

У последњих неколико децениjа, развиjени су броjни хибридни приступи коjи
комбинуjу снагу егзактних метода са ефикасношћу метахеуристичких алгоритама.
Преглед оваквих, али и хибридних приступа коjи комбинуjу метахеуристичке методе са
другим хеуристичким техникама, може се наћи у раду [18].

Jедан од наjпознатиjих хибридних алгоритама jе CMSA (енг. Construct, Merge, Solve &
Adapt) [17]. Оваj алгоритам функционише на принципу конструисања већег броjа решења
на пробабилистички начин, након чега се компоненте тих решења спаjаjу у редуковану
подинстанцу (потпроблем) коjа се решава егзактним ILP решавачем. У стандардноj
верзиjи, величина овог потпроблема се контролише механизмом „старења“ компоненти,
што захтева пажљиво подешавање параметара. Као одговор на проблем осетљивости на
параметре, развиjен jе Adapt-CMSA [5]. Супротно претходним верзиjама, Adapt-CMSA
уклања механизам старења (ресетовањем потпроблема у свакоj итерациjи) и уместо тога
уводи механизам самоприлагођавања (енг. self-adaptation). Оваj механизам динамички
подешава пристрасност при конструкциjи решења на основу перформанси решавача у
претходним итерациjама, чиме се аутоматски одржава оптимална величина потпроблема
без потребе за екстерним подешавањем.

Суштинска разлика између CMSA породице алгоритама и предложеног IRIS приступа
jе у начину дефинисања простора претраге. CMSA алгоритми имплицитно врше
интензификациjу око тренутног наjбољег решења (пристрасном конструкциjом нових
решења коjа су му мање или више слична у зависности од параметара), њихов потпроблем
jе увек резултат агрегациjе компоненти из популациjе пробабилистички генерисаних
решења. Насупрот томе, IRIS не генерише скупове помоћних решења. Уместо тога, врши се
декомпозициjа тренутног решења кроз фиксирање одређених променљивих, док се одабир
слободних променљивих врши на основу статистичке анализе структуре проблема, као и
историjе претраге.

Приступ коjи jе структурно наjближи IRIS алгоритму представљен jе у раду [107].
Као и IRIS, оваj рад предлаже општи оквир где се ILP потпроблеми користе за
интензификациjу претраге. Међутим, постоjе две фундаменталне разлике коjе IRIS чине
флексибилниjим и лакшим за примену.

Прва разлика се односи на стратегиjу дефинисања потпроблема. Алгоритам из
рада [107] у сваком кораку врши партиционисање скупа свих променљивих на k
дисjунктних подскупова, а затим их решава секвенциjално. Оваква „чврста“ подела
има значаjан недостатак: уколико су две променљиве зависне (нпр. мораjу истовремено
променити вредност ради очувања допустивости или побољшања вредности функциjе
циља), а додељене су различитим подскуповима, решавач неће моћи да пронађе
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побољшање ни у jедноj итерациjи jер jе у сваком тренутку jедна од њих фиксирана.
Насупрот томе, IRIS не врши глобалну партициjу, већ у свакоj итерациjи динамички
конструише jединствен скуп слободних променљивих фокусираjући се на оне делове графа
коjи су статистички идентификовани као нестабилни или обећаваjући. Ово омогућава
флексибилниjе претраживање околине без вештачких граница коjе намеће дисjунктна
подела.

Друга кључна разлика jе у примени машинског учења. Рад [107] се ослања на учење
поткрепљивањем, коjе захтева велики скуп инстанци за тренирање и дуготраjну фазу
обучавања модела пре самог решавања (енг. offline learning). С друге стране, иако jе
остављена могућност за коришћење оваквих приступа, IRIS превасходно користи учење
о структури проблема током самог извршавања (енг. online learning). Коришћењем
статистика (попут покривености чворова) коjе се ажурираjу у реалном времену, IRIS
се брзо адаптира на специфичности конкретне инстанце без потребе за претходним
обучавањем или екстерним подацима.

5.3 Алгоритам IRIS

Као што jе раниjе помињано, сви метахеуристички алгоритми се састоjе од две
главне компоненте: интензификациjе и диверзификациjе. Интензификациjа има за циљ
да пронађе боља решења у околини тренутног решења, док диверзификациjа има за циљ
да истражи нове области простора претраге. Уобичаjено jе процедура интензификациjе
далеко скупља, односно захтева више временских ресурса. Често се реализуjе кроз локалну
претрагу, коjа може бити ограничена на релативно малу околину тренутног решења,
како би се обезбедила ефикасност. А чак и тада, у случаjу великих инстанци, може бити
превише временски захтевна.

Савремени ILP решавачи, као што су Gurobi и CPLEX, користе броjне напредне технике
коjе им омогућаваjу да ефикасно решаваjу, не само мале, већ и инстанце средње величине
различитих НП-тешких проблема. Стога се природно намеће питање да ли jе могуће
искористити снагу ових решавача у оквиру метахеуристичког алгоритма. Управо на овоj
идеjи jе заснован нови хибридни алгоритам IRIS (енг. Iterative Refinement via ILP Sub-
problems), коjи уместо локалне претраге, користи ILP потпроблеме за интензификациjу
претраге. У оквиру овог приступа, гради се и решава низ пажљиво одабраних ILP
потпроблема, коjи су довољно мали да их савремени решавачи могу обрадити, али и
довољно информативни да обезбеде значаjан напредак. Потпроблеми се формираjу на
основу тренутног решења, тако што се одређени броj променљивих фиксира на вредности
из тог решења, док се остале остављаjу слободним. Решавањем тако конструисаних ILP
модела, добиjаjу се локална побољшања тренутног решења. Процес се понавља све док се
не испуни неки од критериjума заустављања. Псеудокод алгоритма IRIS дат jе у алгоритму
11, а у наставку ће бити детаљниjе обjашњене његове поjединачне компоненте.
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Алгоритам 11 IRIS
Улаз: инстанца проблема I, ILP модел M , временско ограничење потпроблема tsub,
броj слободних променљивих у потпроблему nfree

Излаз: решење sbest
1: sbest ← initialize(I)
2: while ! terminationCriteriaSatisfied() do
3: F ← selectFixedVars(sbest, I, nfree)
4: Msub ← buildSubmodel(M,F, sbest)
5: s′ ← solveILP(Msub, tsub)
6: if s′ improves sbest according to acceptance criteria then
7: sbest ← s′

8: end if
9: end while

5.3.1 Инициjализациjа

Почетно решење може бити конструисано на различите начине: похлепном
хеуристиком, неком од метахеуристичких метода, случаjним или тривиjалним решењем.
Алгоритам IRIS функционише без обзира на избор стратегиjе инициjализациjе. Ипак, као
и код осталих оптимизационих алгоритама, квалитет почетног решења може значаjно
утицати на брзину конвергенциjе и квалитет краjњег решења. Добра инициjализациjа
често омогућава ефикасниjе усмеравање претраге и експлоатациjу обећаваjућих области
простора претраге у раним фазама рада алгоритма.

5.3.2 Стратегиjа фиксирања променљивих

У свакоj итерациjи алгоритма, бира се скуп променљивих коjе ће бити фиксиране
на вредности из тренутног решења. Остале променљиве остаjу слободне и могу мењати
своjе вредности током решавања ILP потпроблема. Величина скупа фиксираних, односно
слободних променљивих, представља важан параметар алгоритма. Мањи потпроблеми се
брже решаваjу, али могу бити мање информативни, док већи потпроблеми могу обезбедити
значаjниjа побољшања, али њихово решавање може захтевати више времена. Поред тога,
сам састав скупа фиксираних променљивих F има значаjан утицаj на квалитет и време
решавања ILP потпроблема. Политика избора скупа F може бити:

• насумична – на случаjан начин се бираjу променљиве коjе ће бити фиксиране;

• хеуристичка – променљиве се оцењуjу на основу релевантних карактеристика, као
што су степен чвора, степен централности, и слично, а затим се бираjу наjбоље
оцењене променљиве;

• статистичка – током рада алгоритма прикупљаjу се статистички подаци о понашању
променљивих, као што су фреквенциjа поjављивања у решењима, и на основу тих
података се бираjу променљиве коjе ће бити фиксиране;

• вођена машинским учењем – обучава се модел машинског учења, у току рада самог
алгоритма (енг. online learning) или пре тога (енг. offline learning), коjи предвиђа
коjе променљиве треба фиксирати на основу карактеристика инстанце, тренутног
решења и стања претраге.

Наравно, могуће jе и комбиновати више стратегиjа.
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5.3.3 Формирање и решавање потпроблема

ILP потпроблем се формира на основу оригиналног ILP модела M и скупа фиксираних
променљивих F . За сваку променљиву xi ∈ F , додаjе се ограничење xi = sbest[i], где jе
sbest[i] вредност променљиве xi у тренутном решењу sbest. Остале променљиве, односно оне
ван скупа F , остаjу слободне.

Важно jе истаћи разлику у начину дефинисања простора претраге потпроблема
између предложеног IRIS алгоритма и сродног CMSA приступа. Иако се у оба случаjа
потпроблем своди на решавање ILP модела са додатним ограничењима коjа фиксираjу
одређене променљиве, механизам избора слободних променљивих jе другачиjи. Код CM-
SA алгоритма, простор претраге се формира конструктивно, агрегациjом компоненти
из скупа пробабилистички генерисаних решења (тзв. Merge корак). Иако се код
комбинаторних проблема оваj оператор често реализуjе као униjа скупова компоненти,
он jе концептуално шири и зависи од природе проблема. Променљива xi постаjе слободна
у ILP потпроблему само ако скуп споjених компоненти садржи обе њене вредности (xi = 0
и xi = 1). У супротном, она се имплицитно фиксира додавањем jеднакосног ограничења
на jедину присутну вредност. Насупрот томе, IRIS не захтева популациjу решења нити
операциjу агрегациjе. Уместо тога, алгоритам полази од jедног решења и експлицитно
дефинише скуп фиксираних променљивих на основу стратегиjе описане у претходноj
секциjи, док преостале променљиве остаjу слободне. Овакав приступ омогућава прецизниjу
контролу над величином и структуром потпроблема без зависности од стохастичке
разноликости генерисаних решења.

Укупан броj ограничења у потпроблему се може смањити, уколико нека од ограничења
из оригиналног модела постану тривиjално задовољена након фиксирања променљивих.
Тако конструисан ILP потпроблем се затим решава уз помоћ ILP решавача, са временским
ограничењем tsub. Као и обично, решавач враћа наjбоље пронађено решење у датом
временском року. Ниjе неопходан проналазак оптималног решења потпроблема, jер и
делимично побољшање тренутног решења може бити корисно.

5.3.4 Критериjуми прихватања

Након решавања ILP потпроблема, добиjа се ново решење s′. Као критериjум
прихватања новог решења могу се користити различити приступи, устаљени у
метахеуристичким алгоритмима:

• само побољшаваjућа решења – ново решење се прихвата само ако jе боље од
тренутног решења, у смислу вредности функциjе циља, или по неком секундарном
критериjуму квалитета;

• прихватање са вероватноћом – ново решење се прихвата са одређеном вероватноћом,
коjа може зависити од разлике у квалитету између новог и тренутног решења, као
и од тренутне фазе рада алгоритма;

• адаптивно – критериjум прихватања се прилагођава током рада алгоритма, на основу
динамичке анализе напретка претраге.

5.3.5 Критериjуми заустављања

Услов заустављања алгоритма може бити дефинисан на произвољан начин. Неки од
наjчешће коришћених критериjума су:

• максимално дозвољено време извршавања;
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• максималан броj итерациjа;

• максималан броj итерациjа без побољшања решења;

• достигнуто довољно добро решење, у смислу вредности функциjе циља.

5.4 Алгоритам IRIS за проблем MDS

У претходноj секциjи представљен jе општи оквир хибридног алгоритма IRIS коjи
се може применити на широк спектар НП-тешких проблема за коjе постоjе ILP
формулациjе. У овом одељку биће детаљниjе обjашњена примена овог алгоритма на
проблем MDS. Дакле, биће описана специjализациjа поjединачних компоненти алгоритма
за оваj проблем.

5.4.1 Инициjализациjа

Почетно решење jе конструисано похлепним алгоритмом заснованим на максимизациjи
броjа недоминираних суседа. Оваj алгоритам по своjоj природи увек производи допустиво
решење. На таj начин, почетна тачка претраге се налази у допустивом простору, што
омогућава да све касниjе итерациjе задрже ту особину.

Пре покретања алгоритма, могуће jе извршити различите технике претпроцесирања
коjе смањуjу димензионалност проблема.

Претпроцесирање

Извршени су експерименти са две различите врсте претпроцесирања. Прва врста jе
jедноставна и коришћена jе и у раду [117]. Састоjи се од три правила:

• ако постоjи изоловани чвор, он мора бити део доминираjућег скупа, па се може одмах
додати у решење;

• ако постоjи чвор са степеном 1, он мора бити доминиран од стране свог jединог
суседа, па се он може избацити, а таj сусед додати у решење;

• ако постоjи троугао у графу, односно три чвора међусобно повезана, од коjих су два
степена 2, та два чвора се могу избацити из графа, а трећи чвор се може додати у
решење.

Друга врста претпроцесирања jе сложениjа и ниjе познато да ли jе раниjе коришћена
у литератури. Заснива се на следећоj идеjи везаноj за затворене околине чворова.

Теорема 1. Ако jе N [u] ⊂ N [v], онда за сваки доминациjски скуп S где jе u ∈ S, постоjи
доминациjски скуп S ′ такав да u /∈ S ′, v ∈ S ′, |S ′| ≤ |S|.

Доказ. Како jе N [u] ⊂ N [v], сваки чвор коjи u доминира, доминира и v. Стога, замена u са
v у доминациjском скупу S чува доминациjу свих чворова коjе jе u доминирао. Штавише,
v може да доминира и додатне чворове из N [v] \N [u].

Нека jе S ′ скуп добиjен заменом u са v, односно S ′ = (S \ {u}) ∪ {v}. Тада jе |S ′| = |S|
и S ′ jе доминираjући скуп. Након ове замене неки чворови из S ′ могу постати сувишни,
па се могу избацити из скупа. Ако се они уклоне, добиjа се доминациjски скуп S ′, такав
да jе |S ′| ≤ |S|.

Последица 1. Ако jе N [u] ⊂ N [v], онда чвор u не мора бити део минималног
доминациjског скупа.

75



ПОГЛАВЉЕ 5. ПРОБЛЕМ МИНИМАЛНЕ ДОМИНАЦИJЕ НА ВЕЛИКИМ
ГРАФОВИМА

Иако jе ова врста претпроцесирања концептуално софистицираниjа, у
експерименталним резултатима (видети секциjу 5.5) ниjе дала боље резултате. Ово
може бити последица глобалниjег карактера овог правила, коjи не одговара добро
локалноj природи похлепног алгоритма.

Похлепни алгоритам

Након претпроцесирања, инициjално решење се конструише похлепним алгоритмом. У
свакоj итерациjи, бира се чвор коjи покрива наjвећи броj недоминираних суседа. Псеудокод
дат jе у алгоритму 12.

Алгоритам 12 Похлепни алгоритам
Улаз: граф G, скуп забрањених чворова F , скуп обавезних чворова M
Излаз: доминациjски скуп S

1: S ←M
2: U ← V \N [S]
3: while U ̸= ∅ do
4: for v ∈ V \ (S ∪ F ) do
5: score[v]← countUndominatedNeighbors(v, G, U)
6: end for
7: v∗ ← argmaxv(score[v])
8: S ← S ∪ {v∗}
9: U ← U \N [v∗]

10: end while
11: return S

Након сваке итерациjе ажурира се броj недоминираних суседа само за чворове у
околини изабраног чвора. Коришћена jе структура података макс-хип (енг. max-heap)
коjа омогућава ефикасан избор наредног чвора, у времену O(1). Након избора чвора,
ажурираjу се вредности суседа и њихових суседа, што захтева O(d2) времена, где jе d
просечан степен чвора у графу. Пошто свако ажурирање захтева O(log n) времена, укупна
временска сложеност jедне итерациjе jе O(d2 log |V |). Како се у свакоj итерациjи избацуjе
читава затворена околина изабраног чвора, укупан броj итерациjа jе O(|V |/d). Дакле,
укупна временска сложеност похлепног алгоритма jе O(|V |d log |V |), што jе нарочито
ефикасно за ретке графове, где jе d знатно мање од |V |.

Постпроцесирање

Након конструисања почетног решења, могуће jе извршити постпроцесирање како би се
додатно смањила величина доминациjског скупа. С обзиром на то да jе решење вероватно
субоптимално, могуће jе да неки чворови у доминациjском скупу нису неопходни. У оквиру
постпроцесирања избацуjу се сви чворови за коjе важи да сви чворови из њихове затворене
околине имаjу бар два суседа у тренутном решењу. Другим речима, ако се такав чвор
избаци из доминациjског скупа, сви његови суседи, а и он сам, и даље имаjу бар jедног
суседа у доминациjском скупу, односно ниjе нарушен услов доминациjе.

5.4.2 Стратегиjа фиксирања променљивих

Као што jе већ поменуто, у свакоj итерациjи алгоритма бира се скуп променљивих
коjе ће бити фиксиране на вредности из тренутног решења, док се преостале променљиве
остављаjу слободним. У овом случаjу, променљиве одговараjу чворовима графа, а
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вредност променљиве jе 1 ако чвор припада доминациjском скупу, односно 0 у супротном.
Чворови коjи ће бити фиксирани бираjу се на основу мере покривености, коjа изражава
колико пута jе дати чвор доминиран од стране чворова из тренутног решења. Интуитивно,
чворови чиjе затворене околине имаjу већу покривеност, мање су критични за очување
доминациjе, па jе мања вероватноћа да ће остати фиксирани. Коришћена jе стратегиjа
налик рулетскоj селекциjи, где jе вероватноћа избора чвора обрнуто пропорционална
његовоj покривености.

Поред тога, финална вероватноћа jе добиjена комбиновањем са историjским
вероватноћама коjе прате стабилност чворова током итерациjа алгоритма. Након сваког
покушаjа побољшања решења, ове, историjске, вероватноће ажурираjу се у зависности
од исхода. Уколико задржавање неких фиксираних чворова у решењу ниjе довело до
побољшања, њихова вероватноћа задржавања се благо смањуjе. Са друге стране, благо
се повећава вероватноћа фиксирања преосталих чворова коjи нису били одабрани. Оваj
механизам ажурирања вероватноћа концептуално подсећа на механизам испаравања
феромона код оптимизациjе колониjом мрава (енг. Ant Colony Optimization) или на
механизам „старења“ компонената код CMSA приступа. Међутим, кључна разлика jе у
томе што се овде смањивање вероватноће користи за дефинисање чврстих ограничења
(фиксирање променљивих) у математичком моделу, а не директно за конструкциjу
решења. На таj начин се постепено формира стабилна статистика о томе коjи чворови
доприносе квалитету решења, што води ка конзистентниjем избору променљивих у
наредним итерациjама.

Битан параметар алгоритма jе броj слободних променљивих nfree, односно величина
ILP потпроблема. Броj слободних променљивих зависи од величине графа. За мање
графове, из тренутног решења се фиксира jедна трећина променљивих, док преостале
остаjу слободне. За веће графове се поставља граница на максималан броj слободних
променљивих на 30 хиљада. Ова вредност jе одређена емпириjски и представља компромис
између величине простора претраге и ефикасности ILP решавача. Иако већи броj
слободних променљивих теориjски нуди већу шансу за излазак из локалног оптимума,
експерименти су показали да изнад ове границе, за задато временско ограничење tsub,
долази до комбинаторне експлозиjе коjу комерциjални решавачи не могу ефикасно да
савладаjу, што резултира стагнациjом претраге.

Треба напоменути да постоjе приступи, попут Adapt-CMSA [5], коjи користе адаптивни
механизам за динамичко одређивање величине потпроблема на основу перформанси
решавача у претходним итерациjама. Иако би се слична логика могла применити и на
параметар nfree (нпр. повећање броjа слободних променљивих након успешног побољшања
решења), у овоj верзиjи IRIS алгоритма одлучено jе да се користи фиксна горња граница
како би се смањила комплексност алгоритма и броj контролних параметара. Увођење
адаптивног механизма за nfree представља правац за будућа истраживања и даља
побољшања перформанси алгоритма.

5.4.3 Формирање и решавање потпроблема

Потпроблем коjи се решава у свакоj итерациjи формулисан jе као проблем целоброjног
линеарног програмирања. За сваки чвор vi ∈ V дефинише се бинарна променљива xi,
коjа jе 1 ако чвор vi припада доминациjском скупу, односно 0 у супротном. Циљ jе
минимизовати броj изабраних чворова, уз услов да сваки чвор буде доминиран. ILP модел
jе следећи:

min
∑
vi∈V

xi (5.1)

уз услове
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xi +
∑

vj∈N(vi)

xj ≥ 1, ∀vi ∈ V (5.2)

xi ∈ {0, 1}, ∀vi ∈ V (5.3)

Оваj модел се модификуjе у свакоj итерациjи алгоритма IRIS, тако што се за сваки чвор
vi коjи припада скупу фиксираних чворова F , додаjе ограничење xi = sbest[i], где jе sbest[i]
вредност променљиве xi у тренутном решењу sbest.

У складу са општим принципима редукциjе модела наведеним у одељку 5.3.3,
фиксирање променљивих значаjно поjедностављуjе простор претраге. Када jе sbest[i] = 1,
ограничење (5.2) за чвор vi, као и за све његове суседе, постаjе тривиjално задовољено.
Међутим, експлицитно детектовање и уклањање свих таквих ограничења пре позива
решавача захтевало би додатне итерациjе кроз структуру графа, што би успорило
алгоритам. Уместо тога, ослањамо се на presolve фазу CPLEX решавача, коjа jе високо
оптимизована за овакве операциjе и коjа интерно елиминише редундантна ограничења
много ефикасниjе него што би се то постигло екстерним претпроцесирањем.

Поред тога, у модел се додаjе ограничење везано за вредност функциjе циља, коjе
осигурава да се не разматраjу решења лошиjа од тренутно наjбољег:∑

vi∈V

xi ≤ |sbest| (5.4)

Као почетно решење (енг. warm start) ILP решавачу се прослеђуjе тренутно наjбоље
решење sbest, што убрзава конвергенциjу и често води до бољег локалног побољшања.

ILP модел се у свакоj итерациjи решава помоћу CPLEX решавача верзиjе 22.1, уз
временско ограничење од 60 секунди. Ова вредност jе одабрана као стратешки компромис
између квалитета оптимизациjе поjединачног потпроблема и укупног броjа итерациjа коjе
алгоритам може да изврши у оквиру глобалног временског ограничења од 1000 секунди.
Повећање времена за решавање потпроблема би, иако потенциjално корисно за локално
побољшање, директно смањило укупан броj итерациjа, а тиме и могућност алгоритма
да истражи различите делове простора претраге кроз промену скупа фиксираних
променљивих. Такође, треба нагласити да jе величина ILP потпроблема експлицитно
ограничена параметром nfree (на максимално 30 хиљада), независно од укупне величине
графа. Због тога комплексност решавања потпроблема не расте линеарно са величином
инстанце, што чини фиксно временско ограничење оправданим избором коjи не захтева
скалирање у односу на броj чворова у графу.

Наравно, ради максимизациjе перформанси алгоритма IRIS, у будућим
истраживањима биће спроведено ригорозно подешавање параметара tsub и nfree, као
и испитивање адаптивних стратегиjа за њихово динамичко прилагођавање током рада
алгоритма.

5.4.4 Критериjуми прихватања

У овом случаjу, ново решење се прихвата само ако jе боље од тренутног решења,
односно ако jе добиjени скуп мање кардиналности. У ILP модел jе додато ограничење
коjе осигурава да се не разматраjу решења лошиjа од тренутно наjбољег. Дакле, ако
ILP решавач пронађе ново допустиво решење, оно jе или исте величине као и тренутно
наjбоље, или боље. Прихватаjу се само боља решења. С обзиром на то да jе почетно решење
допустиво, те да jе ILP модел формиран тако да задржава све доминациjске услове, свако
ново прихваћено решење jе такође допустиво.
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5.4.5 Критериjуми заустављања

Алгоритам се зауставља када jе испуњен бар jедан од следећа два услова:

• максимално дозвољено време извршавања од 1000 секунди – оваj критериjум jе
стандардно коришћен у литератури [117, 99];

• максималан броj итерациjа од 100 – оваj критериjум jе уведен ради скраћивања
укупног времена извршавања на великом броjу инстанци.

5.5 Експериментални резултати

Експерименти су изведени са циљем процене исправности и ефикасности предложеног
IRIS алгоритма. Резултати су упоређени са два наjбоља метахеуристичка приступа за
проблем MDS на великим графовима, описана у секциjи 5.2. Алгоритам jе имплементиран
у програмском jезику Python. Сви експерименти су извршени у режиму са jедном нити,
на рачунару са Intel Core i9-11900 процесором са радним тактом од 2.5GHz, уз ограничење
од 16GB RAM мемориjе по извршавању, под оперативним системом Ubuntu 24.04.

5.5.1 Инстанце проблема

За разлику од радова [117] и [99], коjи су фокусирани на постизање наjбољих
резултата (енг. state-of-the-art) и тестирани су на стотинама инстанци, овде jе циљ био
показивање опште применљивости алгоритма IRIS и његовог потенциjала за рад на
великим инстанцама. Стога jе одабран подскуп инстанци коришћених у литератури коjи
се састоjи из целокупног SNAP [78] скупа и дела скупа DIMACS10 [8].

• SNAP скуп садржи реалне, велике графове из различитих домена, као што су
друштвене мреже, мреже сарадње и веб графови. Коришћене су све SNAP инстанце
као у радовима [117] и [99].

• DIMACS10 скуп садржи реалне и синтетичке графове коjи су коришћени у 10. DI-
MACS такмичењу за партиционисање и кластеровање графова. Из овог скупа jе
одабран подскуп од 14 инстанци.

Jош jедна разлика у односу на наведене радове jе броj покретања алгоритма по
инстанци. Уместо 10 покретања као у тим радовима, овде jе извршено по jедно покретање
по инстанци како би се смањило укупно време извршавања.

5.5.2 Анализа стабилности алгоритма

Како би се установило да jе методологиjа jедног покретања по инстанци оправдана,
спроведена jе додатна анализа како би се испитала стабилност предложеног IRIS
алгоритма и валидирао овакав приступ. За ову сврху одабран jе репрезентативан подскуп
од 10 инстанци коjе покриваjу различите величине (од 10 хиљада до 3.7 милиона
чворова) и различите топологиjе (друштвене мреже, веб графови, биолошке мреже, путна
инфраструктура и вештачки графови).

На свакоj од ових инстанци алгоритам jе покренут 10 пута независно. У табели 5.1
приказани су сумарни резултати ове анализе, укључуjући просечну вредност (µ), наjбољу
пронађену вредност, стандардну девиjациjу (σ), као и коефициjент вариjациjе (CV ),
дефинисан као однос стандардне девиjациjе и средње вредности (σ

µ
× 100%).
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Табела 5.1: Анализа стабилности алгоритма IRIS

Инстанца Просек (µ) Мин. Стд. дев. (σ) CV (%)
Soc-Slashdot0902 15305.0 15305 0.0 0.000
belgium.osm 485909.5 485843 67.3 0.014
caidaRouterLevel 40522.0 40522 0.0 0.000
cnr-2000 22006.0 22006 0.7 0.003
ecology1 250075.5 250030 59.6 0.024
cit-Patents 634982.0 634952 58.2 0.009
rgg-n-2-20-s0 89414.5 89385 41.0 0.046
web-Google 79698.0 79698 0.0 0.000
Amazon0601 42363.5 42311 16.1 0.038
p2p-Gnutella31 12582.0 12582 0.0 0.000
Просек 0.013

Резултати показуjу изузетну стабилност IRIS алгоритма. На 4 од 10 инстанци,
укључуjући и велику инстанцу web-Google, стандардна девиjациjа резултата jе 0, што
значи да алгоритам у свих 10 покретања проналази решење исте кардиналности.
Максимални забележени коефициjент вариjациjе износи свега 0.046% (на инстанци
rgg-n-2-20-s0), док jе просечни коефициjент вариjациjе на целом узорку 0.013%.

Овако низак ниво вариjациjе потврђуjе да стохастички елементи алгоритма имаjу
занемарљив утицаj на коначан квалитет решења. Сходно томе, jедноструко покретање
алгоритма пружа поуздану процену његових перформанси, чиме jе оправдан приступ
коришћен у главном делу експеримената.

5.5.3 Резултати

У табелама 5.2 и 5.3 су приказани резултати експеримената на скуповима инстанци
описаним у претходноj секциjи. Структура табела jе следећа. Свака табела се састоjи од
шест колона. У прве три колоне се налазе подаци о инстанци: назив, броj чворова |V | и
броj грана |E|. У наредне две колоне су резултати алгоритма DemDS [99] – минимална
и просечна вредност кардиналности доминациjског скупа из 10 покретања. Исто тако, у
следеће две колоне су резултати алгоритма DmDS [117]. У последњоj колони се налазе
резултати предложеног IRIS алгоритма. Наjбољи резултати у сваком реду су подебљани.

Резултати на SNAP скупу

Експериментални резултати на SNAP скупу приказани су у табели 5.2, чиjа jе
структура обjашњена на почетку ове секциjе.

На основу резултата приказаних у табели 5.2, може се закључити да предложени
IRIS алгоритам показуjе конкурентне перформансе у односу на наjбоље постоjеће
метахеуристичке приступе за проблем MDS. У наставку су издвоjени неки од наjважниjих
закључака:

• Од укупно 22 инстанце у SNAP скупу, IRIS постиже наjбоље резултате на 13
инстанци, од чега су на 11 инстанци резултати jеднаки наjбољим постоjећим, а на 2
инстанце су бољи. На преосталих 9 инстанци IRIS постиже резултате коjи су близу
наjбољих. Конкретно, просечна разлика у односу на наjбољи резултат износи 0.17%,
док jе максимална разлика 2.18%.

• DemDS постиже наjбоље резултате на 12 инстанци, од чега jе на 2 инстанце строго
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Табела 5.2: Нумерички резултати на скупу SNAP

инстанца DemDS DmDS IRIS
назив |V| |E| минимум просек минимум просек
Amazon0302 262111 899792 35599 35605.6 35600 35601.9 35691
Amazon0312 400727 2349869 45485 45490.6 45475 45480.7 45601
Amazon0505 410236 2439437 47308 47315.4 47303 47309.1 47405
Amazon0601 403394 2443408 42285 42290.6 42279 42282.1 42356
Cit-HepPh 34546 420877 3078 3078.6 3078 3078.9 3080
Cit-HepTh 27770 352285 2935 2935.9 2936 2936.1 2936
cit-Patents 3774768 16518947 621620 621661.0 621518 621534.7 635079
Email-EuAll 265214 364481 18181 18181.0 18181 18181.0 18181
p2p-Gnutella04 10876 39994 2227 2227.0 2227 2227.0 2227
p2p-Gnutella24 26518 65369 5418 5418.0 5418 5418.0 5418
p2p-Gnutella25 22687 54705 4519 4519.0 4519 4519.0 4519
p2p-Gnutella30 36682 88328 7169 7169.0 7169 7169.0 7169
p2p-Gnutella31 62586 147892 12582 12582.0 12582 12582.0 12582
Soc-Epinions1 75879 405740 15734 15734.0 15734
Soc-Slashdot0811 77360 469180 14312 14312.0 14312
Soc-Slashdot0902 82168 504230 15305 15305.0 15305
web-BerkStan 685230 6649470 28445 28453.2 28438 28438.8 28479
web-Google 875713 4322051 79699 79699.0 79699 79699.0 79698
web-NotreDame 325729 1090108 23734 23734.0 23734 23734.0 23732
web-Stanford 281903 1992636 13197 13198.8 13197 13198.8 13237
Wiki-Talk 2394385 4659565 36960 36960.0 36960 36960.0 36960
Wiki-Vote 7115 100762 1116 1116.0 1116 1116.0 1116

наjбољи. На преосталим инстанцама, изузимаjући 3 за коjе резултати нису доступни,
постиже резултате веома близу наjбољих, са максималним одступањем од 0.02%.

• DmDS постиже наjбоље резултате на 18 инстанци, од чега jе на 5 инстанци строго
наjбољи. На преосталим инстанцама постиже резултате веома близу наjбољих, са
максималним одступањем од 0.03%.

Сумарно, сва три упоређена алгоритма показуjу сличне перформансе на SNAP скупу,
са малим релативним разликама у квалитету добиjених решења. Наjвеће одступање од
наjбољег резултата за алгоритам IRIS се догађа на инстанци cit-Patents, коjа jе и наjвећа
инстанца у овом скупу, са преко 3.7 милиона чворова и 16.5 милиона грана. Ово указуjе
на то да постоjи простор за даља побољшања у раду алгоритма на изузетно великим
графовима.

Резултати на DIMACS10 скупу

Резултати експеримената на DIMACS10 скупу приказани су у табели 5.3, са структуром
обjашњеном на почетку ове секциjе.

Из добиjених нумеричких резултата приказаних у табели 5.3, могу се извући следећи
закључци:

• Алгоритам IRIS постиже наjбоље резултате на 8 од укупно 14 инстанци. Међу њима,
на 6 инстанци резултати су jеднаки наjбољим постоjећим, док су на 2 инстанце бољи.
На преосталим инстанцама, резултати су релативно близу наjбољих, са просечном
разликом од 2.68% и максималном разликом од 24.55%. Наjвеће одступање се jавља
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Табела 5.3: Нумерички резултати на скупу DIMACS10

инстанца DemDS DmDS IRIS
назив |V| |E| минимум просек минимум просек
as-22july06 22963 48436 2026 2026.0 2026 2026.0 2026
belgium.osm 1441295 1549970 468909 468925.8 485748
caida*Level 192244 609066 40523 40523.0 40523 40523.0 40522
citat*eseer 268495 1156647 43412 43412.0 43412 43412.0 43412
cnr-2000 325557 2738969 22010 22010.4 22006
coAut*seer 227320 814134 33197 33197.0 33197 33197.0 33197
coAut*DBLP 299067 977676 43978 43978.0 43978 43978.0 43978
cond-*2005 39577 175691 5664 5664.0 5664 5664.0 5664
ecology1 1000000 1998000 200883 201197.3 201245 201609.2 250194
kron-*logn16 55321 2456071 3885 3885.0 3885 3885.0 3885
luxembourg.osm 114599 119666 37751 37753.9 37751 37752.2 37876
rgg-n-2-17-s0 131070 728753 12310 12314.9 12319 12321.8 12482
rgg-n-2-19-s0 524284 3269766 44347 44361.0 44347 44362.5 45180
rgg-n-2-20-s0 1048575 6891620 84592 84609.3 84544 84567.0 89466

на инстанци ecology1, коjа jе jедна од већих у овом скупу, са милион чворова и скоро
два милиона грана. Сва остала одступања су значаjно мања.

• Алгоритам DemDS постиже наjбоље резултате на 10 инстанци, од чега су на 2
инстанце строго наjбољи. На преосталим инстанцама (не рачунаjући две за коjе
резултати нису доступни), постиже резултате близу наjбољих, са максималним
одступањем од 0.06%.

• Алгоритам DmDS такође постиже наjбоље резултате на 10 инстанци, од чега jе на
2 инстанце строго наjбољи. И оваj приступ постиже резултате близу наjбољих на
преосталим инстанцама, са максималним одступањем од 0.18%.

Укупно, поново се може закључити да три упоређена приступа показуjу сличне
перформансе на DIMACS10 скупу, са малим релативним разликама у квалитету добиjених
решења. Изузетак jе инстанца ecology1, на коjоj IRIS показуjе лошиjе резултате у односу
на наjбоље постоjеће приступе. У овом случаjу, с обзиром на то да на неколико других, чак
и већих инстанци, IRIS постиже резултате коjи су ближи наjбољим, може се претпоставити
да jе специфична структура графа на овоj инстанци изазвала потешкоће за предложени
приступ. Наиме, за разлику од друштвених и веб мрежа коjе су густе и имаjу своjство
„малог света“ (енг. small-world graphs), ecology1 jе инстанца коjа има значаjно другачиjу
топологиjу, а то jе дводимензиони граф решетке (енг. 2D grid graph). Таква структура
негативно утиче, како на похлепни алгоритам коjи се користи за конструкциjу почетног
решења, тако и на стратегиjу избора фиксираних чворова, пошто су оба примарно
заснована на мери покривености чворова.

5.5.4 Статистичка анализа

Извршена jе статистичка анализа добиjених резултата коришћењем Фридмановог теста
[47]. Анализирани су резултати сва три алгоритма: DemDS, DmDS и IRIS. Нулта хипотеза
претпоставља статистички jеднаке перформансе свих алгоритама. На основу резултата
теста, ни на SNAP (p = 0.0755), ни на DIMACS10 (p = 0.3433) скупу, ниjе могуће одбацити
нулту хипотезу са нивоом значаjности 0.05. Стога, може се закључити да нема статистички
значаjне разлике у перформансама триjу анализираних алгоритама.
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Поред тога, извршена jе и статистичка анализа на свим инстанцама заjедно. У том
случаjу, нулта хипотеза jе одбачена (p = 0.0288). Након тога, примењен jе Неменjиjев
пост-хок тест [93] како би се утврдило коjи се парови алгоритама статистички разликуjу.
Добиjени резултати су приказани на слици 5.3 у облику графика критичне разлике (енг.
critical difference, CD). Како jе и раниjе помињано, на овим графицима се алгоритми
позиционираjу дуж хоризонталне осе у складу са своjим просечним рангом, док критична
разлика представља минималну разлику у просечном рангу коjа jе потребна да би се они
сматрали статистички различитим.

Слика 5.3: График критичне разлике за све инстанце из скупова SNAP и DIMACS10

На основу резултата приказаних на слици 5.3, може се приметити да алгоритам
DmDS има наjбољи просечни ранг, а потом следе DemDS и IRIS. Међутим, иако постоjи
разлика у просечном рангу алгоритама, та разлика ниjе довољно велика да би се сматрала
статистички значаjном. Треба нагласити и да су поређене минималне, односно наjбоље
вредности коjе су два конкурентска приступа постигла из 10 покретања, што jе и назначено
на слици. Са друге стране, IRIS алгоритам jе покренут само jедном по инстанци, те jе
коришћен његов jедини резултат. Поред тога, за инстанце за коjе резултати нису доступни
за DemDS алгоритам, недостаjуће вредности су замењене великим вредностима (нпр.
милион) како би се омогућило рангирање у оквиру статистичке анализе.

5.5.5 Анализа утицаjа поjединачних компоненти алгоритма

Спроведена jе анализа утицаjа поjединачних компоненти алгоритма IRIS на квалитет
добиjених решења. Циљ ове анализе jе изолациjа доприноса поjединачних компоненти
алгоритма како би се потврдила оправданост њиховог укључивања у коначни дизаjн.
Испитано jе следеће:

• Утицаj почетног решења добиjеног похлепним алгоритмом у односу на тривиjално
почетно решење (сви чворови укључени у доминациjски скуп).

• Утицаj ILP решавача у односу на случаj када се потпроблеми решаваjу помоћу
рандомизоване верзиjе похлепног алгоритма коjи се користи за конструкциjу
почетног решења.

• Утицаj претпроцесирања и постпроцесирања.
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Експерименти су изведени на истом репрезентативном подскупу од 10 инстанци коjи jе
коришћен у анализи стабилности алгоритма (одељак 5.5.2). Резултати ове анализе су
приказани у табели 5.4. Алгоритам jе извршен по jедном на свакоj инстанци у четири
различите конфигурациjе:

• Init: trivial – почетно решење jе тривиjално (сви чворови укључени у доминациjски
скуп);

• Sub: rand-greedy – потпроблеми се решаваjу помоћу рандомизоване верзиjе
похлепног алгоритма (са вероватноћом 0.5 се бира наjбољи следећи чвор, а у осталим
случаjевима се бира насумично између 10 наjбољих);

• No pre/post – без претпроцесирања и постпроцесирања;

• Full – пуна верзиjа алгоритма IRIS.

Табела 5.4: Анализа утицаjа поjединачних компоненти алгоритма IRIS

Инстанца Init: trivial Sub: rand-greedy No pre/post Full
p2p-Gnutella31 12582 12582 12582 12582
soc-Slashdot0902 15305 15306 15305 15305
belgium.osm 486428 487377 487924 485748
caidaRouterLevel 40522 40852 40523 40522
cnr-2000 22006 22073 22006 22006
ecology1 244177 250334 249087 250194
cit-Patents 653592 640107 661215 635079
rgg-n-2-20-s0 88464 100954 87940 89466
web-Google 79698 79953 79703 79698
amazon0601 42339 44172 42329 42356
Просек 168511.3 169371 169861.4 167295.6

Из резултата приказаних у табели 5.4, могу се извући следећи закључци:

• Пуна верзиjа алгоритма IRIS постиже наjбоље резултате на 7 од 10 инстанци. Поред
тога, постиже наjбољу просечну вредност на целом скупу инстанци. Важно jе истаћи
да само ова конфигурациjа постиже наjбољи резултат на инстанци cit-Patents, коjа
jе наjвећа из оба коришћена скупа (SNAP и DIMACS10).

• Алгоритам са тривиjалним почетним решењем постиже наjбоље резултате на 6
инстанци. На 5 од тих 6, резултати су jеднаки онима из пуне верзиjе алгоритма.
Jедина инстанца на коjоj ова конфигурациjа постиже бољи резултат од пуне верзиjе
jе ecology1, што потврђуjе претходно наведену тврдњу да похлепни алгоритам
за конструкциjу почетног решења вероватно ниjе наjпогодниjи за ову специфичну
топологиjу графа.

• Коришћење рандомизоване верзиjе похлепног алгоритма за решавање потпроблема
доводи до наjбољег резултата само на инстанци p2p-Gnutella31, где су сви резултати
jеднаки. Дакле, коришћење ILP решавача за потпроблеме jе од изузетне важности
за квалитет коначног решења.

• Конфигурациjа без претпроцесирања и постпроцесирања постиже наjбоље резултате
на 5 инстанци. Очекивано, ова верзиjа алгоритма jе спориjа од осталих због већег
броjа чворова коjи се мораjу обрадити.
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5.6 Завршна разматрања

У оквиру овог поглавља развиjен jе хибридни алгоритам IRIS коjи комбинуjе
решавање ILP модела са идеjама метахеуристичке претраге кроз итеративну конструкциjу
и решавање потпроблема. Иако алгоритам не постиже на свим инстанцама наjбоље
резултате из литературе, показано jе да се његове перформансе не разликуjу статистички
значаjно од резултата конкурентских метахеуристика, што потврђуjе његову практичнну
вредност. Предложени алгоритам представља општи оквир коjи се може применити
на широк спектар НП-тешких проблема. IRIS показуjе да комбинациjа егзактних и
апроксимативних метода може бити валидна алтернатива за решавање доминациjских
проблема на великим графовима.
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Поглавље 6

Закључак

У овоj дисертациjи проучавана су четири доминациjска проблема на графовима:
проблем минималне тежинске тоталне доминациjе, проблем минималне тежинске
независне доминациjе, проблем k-jаке римске доминациjе, као и основни проблем
минималне доминациjе, са посебним освртом на велике графове. Предложене су ефикасне
методе за решавање сваког од ових проблема, укључуjући хеуристичке и метахеуристичке
алгоритме, егзактне методе засноване на целоброjном линеарном програмирању, као
и хибридни приступ коjи комбинуjе предности апроксимативних и егзактних метода.
Посебан акценат стављен jе на решавање доминациjских проблема на инстанцама великих
димензиjа, где су традиционалне методе често неефикасне, а коjи се природно jављаjу у
броjним практичним применама, као што су друштвене, телекомуникационе и биолошке
мреже.

За решавање проблема минималне тежинске тоталне доминациjе, развиjена jе метода
променљивих околина чиjе главне компоненте укључуjу размрдавање решења засновано
на избацивању чворова, као и две врсте локалне претраге са првим побољшањем. Бржа
верзиjа локалне претраге користи оператор 1-инверзиjе и извршава се у свакоj итерациjи
алгоритма, док друга верзиjа користи оператор 1-замене и због квадратне временске
сложености извршава се ређе. Функциjа прилагођености jе пажљиво дизаjнирана тако
да омогућава процену квалитета како допустивих, тако и недопустивих решења. На оваj
начин, омогућен jе суптилан пролазак кроз допустиве и недопустиве регионе простора
претраге. Поред тога, имплементирано jе инкрементално израчунавање вредности
функциjе прилагођености, што значаjно убрзава извршавање целокупног алгоритма.
Експериментални резултати показуjу квалитет предложеног алгоритма. На готово свим
малим и средњим инстанцама, достиже оптимална решења, док на великим инстанцама
надмашуjе све конкурентске приступе, што jе потврђено статистичким тестовима.
Додатно, предложена jе и примена на убрзавање ширења информациjа на друштвеним
мрежама. Скуп инициjално информисаних чворова jе постављен на решење проблема
минималне тежинске тоталне доминациjе, а затим jе за симулациjу ширења информациjа
коришћен SIR модел. Експерименталним резултатима показано jе да оваква стратегиjа
доводи до брже конвергенциjе у односу на насумични одабир инициjално информисаних
чворова. Потенциjални правци будућих истраживања укључуjу теориjску анализу
проблема на различитим класама графова, што би омогућило бољу инициjализациjу и
вођење претраге у будућим алгоритмима. Поред тога, комплексне мреже представљаjу
плодан терен за примену овог и сличних проблема – њихова структура може инспирисати
нове сценариjе примене, па и потпуно нове вариjанте проблема.

За решавање проблема минималне тежинске независне доминациjе, предложена су
два модела целоброjног линеарног програмирања (New-1 и New-2), као и похлепна
хеуристика (Greedy-New). Спроведени су обимни експерименти ради процене квалитета
развиjених метода. Представљени ILP модели постижу оптимална решења на свим
инстанцама са 100 чворова, а надмашуjу резултате конкурентских егзактних приступа и
у већини преосталих случаjева. Иако су метахеуристички приступи и даље пожељниjи
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за веће инстанце, предложени ILP модели представљаjу веома добру алтернативу за
одређене класе инстанци, нарочито за случаjне геометриjске графове ориjентисане на
чворове. Значаjно jе истаћи да модел New-2 на графовима мање густине показуjе значаjно
краће време извршавања у односу на метахеуристике. Развиjени похлепни алгоритам
Greedy-New надмашуjе конкурентске похлепне хеуристике на већини инстанци. Поред
тога, показуjе супериорне перформансе и у односу на неке конкурентске ILP моделе,
поготово на случаjним графовима са већим броjем чворова. Будућа истраживања могу
ићи у правцу интеграциjе предложених метода као градивних блокова у хибридним
или метахеуристичким приступима. Додатно, анализа понашања развиjених метода на
реалним графовима може пружити нове увиде и инспирациjу за даља побољшања.

За проблем k-jаке римске доминациjе, чиjа се тежина огледа већ у самоj провери
допустивости решења коjа jе експоненциjална у односу на броj чворова графа, развиjена
су два приступа: похлепна хеуристика заснована на информациjама о покривености
чворова, као и метода променљивих околина коjа користи поменути похлепни алгоритам
за инициjализациjу. VNS алгоритам jе заснован на три кључне компоненте: размрдавање,
квазидопустивост и локална претрага. Размдрдавањем се на случаjан начин мења решење
тако да укупан броj jединица буде за jедан мањи, што може довести до недопустивог
решења. Стога jе задатак локалне претраге да без промене укупног броjа jединица
пронађе ново квазидопустиво решење. Како jе већ поменуто, провера допустивости
решења jе експоненциjална, те jе уведен концепт квазидопустивости, коjи омогућава
ефикасну процену допустивости решења током претраге. Спроведени експерименти
на случаjним графовима, ад-хок бежичним мрежама различитих густина и реалним
графовима добиjеним из просторних (GeoJSON) података показуjу да предложени VNS
значаjно побољшава резултате похлепног алгоритма на готово свим инстанцама. Поред
тога, на скоро свим инстанцама на коjима су егзактне методе применљиве, VNS постиже
оптимална или висококвалитетна решења у знатно краћем времену, а на великим
инстанцама доследно надмашуjе конкурентске егзактне приступе, коjи имаjу проблеме
са ограничењима мемориjе и времена. Практична примена алгоритма илустрована
jе кроз студиjу случаjа оптималног позиционирања ватрогасних станица и возила у
градским општинама, тако да читав град буде безбедан у случаjу k истовремених
пожара. Потенциjални правци будућих истраживања обухватаjу развоj скалабилниjих
метода за графове са хиљадама чворова, што би могло укључивати декомпозициjу
графа коришћењем алгоритама за проналажење заjедница, уз накнадну интеграциjу
поjединачних решења. Додатно, могуће jе размотрити развоj модела машинског учења
за апроксимативно рачунање вредности функциjе прилагођености, што би могло довести
до убрзања у рачунски наjскупљем делу алгоритма.

Разматран jе и основни проблем минималне доминациjе са посебним фокусом на велике
графове. Предложен jе хибридни приступ IRIS коjи итеративно гради и решава пажљиво
одабране потпроблеме коришћењем ILP решавача. У свакоj итерациjи, потпроблем се
формира фиксирањем одређених променљивих на вредности из тренутног решења, док
се преостале остављаjу слободним. На оваj начин се комбинуjе снага егзактних метода
са ефикасношћу метахеуристичких приступа. Алгоритам jе дизаjниран тако да буде
применљив на широк спектар НП-тешких проблема, а у овом раду jе прилагођен за
проблем минималне доминациjе. Експериментални резултати показуjу да иако IRIS
не постиже наjбоље резултате у поређењу са наjбољим метахеуристичким методама
из литературе, не постоjи статистички значаjна разлика измђу њега и конкурентских
приступа. Дакле, предложени алгоритам постиже конкурентне резултате, те представља
валидну алтернативу за решавање проблема минималне доминациjе на великим
графовима, као и, потенциjално, за друге сличне проблеме. Потенциjални правци будућих
истраживања обухватаjу развоj напредниjих стратегиjа за формирање потпроблема,
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ПОГЛАВЉЕ 6. ЗАКЉУЧАК

коjи могу укључивати примену алгоритама машинског учења ради побољшања избора
променљивих коjе треба фиксирати. Поред тога, постоjи потреба за побољшањима код
изузетно великих графова, са милионима чворова, што може захтевати паралелизациjу
неких израчунавања, као и додатно смањивање величине потпроблема. С обзиром на то да
jе IRIS дизаjниран као општи оквир, будућа истраживања могу укључивати примену овог
приступа на друге НП-тешке проблеме код коjих се ILP решавачи показуjу ефикасним.

Сумираjући доприносе и резултате представљене у овоj дисертациjи, може се
закључити да jе комбиновање хеуристичких, метахеуристичких и егзактних техника
перспективан смер за решавање различитих доминациjских проблема на великим
графовима. Указано jе да су доминациjски проблеми богато и активно поље истраживања,
као и да постоjи значаjан простор за даља побољшања и иновациjе. Принципи
представљени у овом раду могу послужити као основа за развоj скалабилних и ефикасних
метода за решавање широког спектра НП-тешких проблема на комплексним мрежама.

88



Литература

[1] H Abdollahzadeh Ahangar и др. „Signed Roman domination in graphs”. У: Journal of
Combinatorial Optimization 27.2 (2014.), стр. 241–255.

[2] Salwani Abdullah, Edmund K Burke и Barry McCollum. „An investigation of varia-
ble neighbourhood search for university course timetabling”. У: The 2nd multidiscipli-
nary international conference on scheduling: theory and applications (MISTA). 2005.,
стр. 413–427.

[3] Faisal N Abu-Khzam и др. „Feature Selection via Weighted Independent Domination”.
У: 2024 Conference on AI, Science, Engineering, and Technology (AIxSET). IEEE.
2024., стр. 179–184.

[4] Hossein Abdollahzadeh Ahangar и др. „Total Roman domination in graphs”. У: Appli-
cable Analysis and Discrete Mathematics 10.2 (2016.), стр. 501–517.
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for the maximum clique”. У: Discrete Applied Mathematics 145.1 (2004.), стр. 117–125.
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peu versés dans l’analyse. Sv. 1. Londres, 1862.

[65] Bassem Jarboui и др. „Variable neighborhood search for location routing”. У: Computers
& Operations Research 40.1 (2013.), стр. 47–57.

[66] Leonid V Kantorovich. „Mathematical methods of organizing and planning production”.
У: Management science 6.4 (1960.), стр. 366–422.

[67] Stefan Kapunac. „Integer Linear Programming Models and Greedy Heuristic for the
Minimum Weighted Independent Dominating Set Problem”. У: Serdica Journal of Com-
puting 17.2 (2023.), стр. 117–136.

[68] Stefan Kapunac, Aleksandar Kartelj и Marko Djukanović. „Variable neighborhood search
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Додатак А

Детаљи имплементациjе
инкременталног рачунања вредности
функциjе прилагођености

Алгоритам 13 Функциjа recalcNodeAdded
1: Улаз: S: решење; G = (V,Ef1, f2): инстанца проблема; v: чвор за додавање; viol:

броj чворова без суседа у S; objV alue: вредност функциjе циља S; external: листа
сортираних (по тежини грана) скупова екстерних грана.

2: violnew ← viol
3: objV aluenew ← objV alue+ f1(v) ▷ додавање тежине чвора
4: if external[v] ̸= ∅ then ▷ v jе имао суседа у S
5: objV aluenew ← objV aluenew − f2(external[v][0])
6: end if
7: for e ∈ external[v] do ▷ додавање тежине интерних грана
8: objV aluenew ← objV aluenew + f2(e)
9: end for

10: for e = (v, v′) ∈ external[v] do
11: weight← f2(e)
12: if external[v′] ̸= ∅ then
13: violnew ← violnew − 1
14: if v′ /∈ S then ▷ интерне гране су већ додате, додаjу се само екстерне
15: objV aluenew ← objV aluenew + weight
16: end if
17: else
18: prevmin_weight ← f2(external[v

′][0])
19: if v′ /∈ S and prevmin_weight < weight then ▷ v jе нови наjближи сусед v′ у

S
20: objV aluenew ← objV aluenew − prevmin_weight + weight
21: end if
22: end if
23: end for
24: Излаз: violnew + objV aluenew

Wtot+1
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ДОДАТАК А. ДЕТАЉИ ИМПЛЕМЕНТАЦИJЕ ИНКРЕМЕНТАЛНОГ РАЧУНАЊА
ВРЕДНОСТИ ФУНКЦИJЕ ПРИЛАГОЂЕНОСТИ

Алгоритам 14 Функциjа recalcNodeRemoved
1: Улаз: S: решење; G = (V,E, f1, f2): инстанца проблема; v: чвор за избацивање; viol:

броj чворова без суседа у S; objV alue: вредност функциjе циља S; external: листа
сортираних (по тежини грана) скупова екстерних грана.

2: violnew ← viol
3: objV aluenew ← objV alue− f1(v) ▷ одузимање тежине чвора
4: if external[v] ̸= ∅ then ▷ ако jе чвор имао суседа у S, додавање тежине његове

екстерне гране
5: objV aluenew ← objV aluenew + f2(external[v][0])
6: end if
7: for e ∈ external[v] do ▷ одузимање тежине интерних грана
8: objV aluenew ← objV aluenew − f2(edge)
9: end for

10: for e = (v, v′) ∈ external[v] do
11: weight← f2(e)
12: if |external[v′]| = 1 then ▷ кардиналност скупа jе 1
13: violnew ← violnew + 1
14: if v′ /∈ s then ▷ интерне гране су већ одузете, сада се одузимаjу само

екстерне
15: objV aluenew ← objV aluenew − weight
16: end if
17: else
18: prevmin_edge = (v′, u)← external[v′][0]
19: if v′ /∈ S and u = v then ▷ v више ниjе наjближи сусед v′ у S
20: objV aluenew ← objV aluenew − f2(prevmin_edge) + f2(external[v

′][1])
21: end if
22: end if
23: end for
24: Излаз: violnew + objV aluenew

Wtot+1
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Додатак Б

Додатни резултати за MWTDS проблем

У табели Б.1 приказани су детаљни резултати поређене четири методе за инстанце из
скупа NEW са 250 чворова. Из ње се могу извући следећи закључци:

• Ilp не успева оптимално да реши ниjедну инстанцу услед достизања временског
ограничења. Поред тога, не проналази ниjедно наjбоље познато решење.

• Vns проналази наjбоље познато решење на 40 од 45 инстанци, док Grasp+Ga
постиже наjбоље решење на 29 инстанци. Ово указуjе на бољу скалабилност Vns-а.

• Као што jе и очекивано, Grasp метода jе наjбржа, али и наjслабиjа у погледу
квалитета добиjених решења.
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ДОДАТАК Б. ДОДАТНИ РЕЗУЛТАТИ ЗА MWTDS ПРОБЛЕМ

Табела Б.1: Детаљно поређење Vns-a у односу на Grasp и Grasp+Ga на скупу NEW-250

Ilp Vns Grasp Grasp+Ga
инстанца best obj ind. t obj pg% ind. t obj pg% ind. t obj pg% ind.
NEW-250-0.2-10-50-1 1662 1933 TL 111.2 1703 2.47 10.5 1871 12.58 122.4 1662 0 best
NEW-250-0.2-10-50-2 1728 2029 TL 108.4 1728 0 best 10.4 1943 12.44 125.4 1768 2.31
NEW-250-0.2-10-50-3 1754 1943 TL 96.6 1769 0.86 10.3 1957 11.57 143.6 1754 0 best
NEW-250-0.2-10-50-4 1635 1799 TL 100.8 1635 0 best 10.2 1796 9.85 121 1655 1.22
NEW-250-0.2-10-50-5 1737 1905 TL 103.6 1737 0 best 10.6 1924 10.77 135.6 1739 0.12
NEW-250-0.2-25-25-1 1144 1244 TL 102.7 1144 0 best 10.4 1300 13.64 141.5 1157 1.14
NEW-250-0.2-25-25-2 1135 1210 TL 101.9 1135 0 best 10 1331 17.27 112.9 1139 0.35
NEW-250-0.2-25-25-3 1132 1197 TL 109.2 1132 0 best 10.6 1314 16.08 120.1 1132 0 best
NEW-250-0.2-25-25-4 1162 1228 TL 107.7 1162 0 best 10.4 1227 5.59 103.5 1162 0 best
NEW-250-0.2-25-25-5 1147 1285 TL 111.3 1147 0 best 10.3 1306 13.86 124.2 1149 0.17
NEW-250-0.2-50-10-1 749 763 TL 108.2 749 0 best 10.8 806 7.61 101.8 749 0 best
NEW-250-0.2-50-10-2 708 715 TL 102.4 708 0 best 10.1 754 6.5 110.4 708 0 best
NEW-250-0.2-50-10-3 719 720 TL 104.3 719 0 best 10.2 756 5.15 103.7 719 0 best
NEW-250-0.2-50-10-4 680 680 TL 117.9 680 0 best 10 723 6.32 107.7 680 0 best
NEW-250-0.2-50-10-5 758 765 TL 105.9 758 0 best 10 788 3.96 127.9 764 0.79
NEW-250-0.5-10-50-1 1431 1696 TL 195.2 1431 0 best 24.1 1536 7.34 175.7 1431 0 best
NEW-250-0.5-10-50-2 1468 1834 TL 223.5 1468 0 best 24.1 1622 10.49 168.5 1471 0.2
NEW-250-0.5-10-50-3 1417 1502 TL 234.8 1417 0 best 24 1579 11.43 205.7 1417 0 best
NEW-250-0.5-10-50-4 1492 1716 TL 208.8 1492 0 best 24.7 1632 9.38 183.2 1518 1.74
NEW-250-0.5-10-50-5 1474 1798 TL 205 1483 0.61 24.3 1549 5.09 175.6 1474 0 best
NEW-250-0.5-25-25-1 900 1018 TL 204.4 900 0 best 24.2 981 9 182 914 1.56
NEW-250-0.5-25-25-2 921 1044 TL 195.4 921 0 best 24.1 1005 9.12 171.9 939 1.95
NEW-250-0.5-25-25-3 896 1100 TL 195 896 0 best 25.6 977 9.04 164.4 896 0 best
NEW-250-0.5-25-25-4 956 1082 TL 237.6 956 0 best 26 1017 6.38 189.5 957 0.1
NEW-250-0.5-25-25-5 914 1060 TL 219.4 915 0.11 25.7 996 8.97 210.2 914 0 best
NEW-250-0.5-50-10-1 533 535 TL 188.1 533 0 best 25.2 561 5.25 161.8 533 0 best
NEW-250-0.5-50-10-2 554 588 TL 203.2 554 0 best 25 595 7.4 189 554 0 best
NEW-250-0.5-50-10-3 556 557 TL 173.7 556 0 best 24.9 571 2.7 166.8 556 0 best
NEW-250-0.5-50-10-4 558 569 TL 181.7 558 0 best 25.2 558 0 best 206.3 558 0 best
NEW-250-0.5-50-10-5 532 532 TL 186.1 532 0 best 24.6 562 5.64 143.6 532 0 best
NEW-250-0.8-10-50-1 1410 1627 TL 304.7 1410 0 best 42.4 1509 7.02 275.6 1435 1.77
NEW-250-0.8-10-50-2 1401 1547 TL 275.3 1401 0 best 44.1 1467 4.71 272.1 1401 0 best
NEW-250-0.8-10-50-3 1444 1748 TL 313.8 1444 0 best 43.5 1518 5.12 313.1 1444 0 best
NEW-250-0.8-10-50-4 1420 1738 TL 308.7 1420 0 best 43.5 1441 1.48 294 1420 0 best
NEW-250-0.8-10-50-5 1430 1668 TL 290 1430 0 best 42.5 1520 6.29 269.1 1430 0 best
NEW-250-0.8-25-25-1 919 1006 TL 295.2 919 0 best 41.6 983 6.96 295.7 928 0.98
NEW-250-0.8-25-25-2 835 931 TL 293.3 835 0 best 42.5 887 6.23 286.4 835 0 best
NEW-250-0.8-25-25-3 914 1072 TL 271.5 919 0.55 41.4 966 5.69 295.3 914 0 best
NEW-250-0.8-25-25-4 846 903 TL 289.6 846 0 best 41.3 893 5.56 268.1 846 0 best
NEW-250-0.8-25-25-5 853 911 TL 285.6 853 0 best 40.9 926 8.56 280.1 853 0 best
NEW-250-0.8-50-10-1 489 490 TL 274.8 489 0 best 41 496 1.43 295.3 489 0 best
NEW-250-0.8-50-10-2 507 522 TL 271.5 507 0 best 41.8 518 2.17 254.1 507 0 best
NEW-250-0.8-50-10-3 498 507 TL 274.8 498 0 best 41.6 513 3.01 323.9 499 0.2
NEW-250-0.8-50-10-4 489 519 TL 289 489 0 best 43.2 496 1.43 287.1 494 1.02
NEW-250-0.8-50-10-5 482 508 TL 253 482 0 best 42.6 518 7.47 339.3 482 0 best

Табела Б.2 приказуjе резултате за инстанце из скупа NEW са 500 чворова. Из ње се може
закључити следеће:

• Ilp jе у свим случаjевима достигла временско ограничење и ниjе пронашла ниjедно
наjбоље решење.

• Vns постиже наjбоље познато решење на 33 инстанце, док Grasp+Ga постиже
наjбоље решење на 24 инстанце.

• Методе Vns и Grasp+Ga су упоредиве на ређим графовима (p = 0.2), али на
гушћим графовима Vns значаjно доминира у погледу квалитета решења. Ово би
се могло приписати размрдавању заснованом на избацивању чворова, коjе боље
одговара гушћим графовима, где се очекуjе да висококвалитетно решење садржи
мање чворова (сублинеарно у односу на укупан броj чворова |V |).
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ДОДАТАК Б. ДОДАТНИ РЕЗУЛТАТИ ЗА MWTDS ПРОБЛЕМ

Табела Б.2: Детаљно поређење Vns-a у односу на Grasp и Grasp+Ga на скупу NEW-500

Ilp Vns Grasp Grasp+Ga
инстанца best obj ind. t obj pg% ind. t obj pg% ind. t obj pg% ind.
NEW-500-0.2-10-50-1 2893 3837 TL 650.8 2968 2.59 89.6 3304 14.21 728 2893 0 best
NEW-500-0.2-10-50-2 2937 3736 TL 767 2947 0.34 88.8 3254 10.79 806.5 2937 0 best
NEW-500-0.2-10-50-3 3082 3839 TL 737.2 3082 0 best 87.9 3425 11.13 940.2 3090 0.26
NEW-500-0.2-10-50-4 2964 3705 TL 584.9 3063 3.34 88.9 3360 13.36 904.5 2964 0 best
NEW-500-0.2-10-50-5 2928 3965 TL 574.7 2928 0 best 88.7 3197 9.19 1069.2 2942 0.48
NEW-500-0.2-25-25-1 1884 2383 TL 835.2 1884 0 best 87.1 2130 13.06 667.7 1918 1.8
NEW-500-0.2-25-25-2 1931 2474 TL 603.1 1941 0.52 86.8 2125 10.05 803.8 1931 0 best
NEW-500-0.2-25-25-3 1898 2225 TL 664.5 1898 0 best 86.1 2064 8.75 913.9 1914 0.84
NEW-500-0.2-25-25-4 1861 2368 TL 603.7 1937 4.08 87.1 2081 11.82 774.7 1861 0 best
NEW-500-0.2-25-25-5 1861 2285 TL 875.1 1861 0 best 86.8 2091 12.36 926.2 1904 2.31
NEW-500-0.2-50-10-1 1128 1256 TL 667.7 1128 0 best 87.6 1209 7.18 853.2 1133 0.44
NEW-500-0.2-50-10-2 1143 1263 TL 719.9 1143 0 best 88.5 1217 6.47 831.2 1159 1.4
NEW-500-0.2-50-10-3 1108 1288 TL 633.6 1108 0 best 89.4 1182 6.68 627.9 1108 0 best
NEW-500-0.2-50-10-4 1145 1246 TL 715.8 1145 0 best 86.4 1222 6.72 708.2 1149 0.35
NEW-500-0.2-50-10-5 1186 1301 TL 747.8 1188 0.17 87.1 1221 2.95 821.3 1186 0 best
NEW-500-0.5-10-50-1 2590 3864 TL 1560.1 2590 0 best 231.1 2788 7.64 1031.5 2614 0.93
NEW-500-0.5-10-50-2 2542 4551 TL 1624.3 2542 0 best 230.2 2825 11.13 1089.1 2631 3.5
NEW-500-0.5-10-50-3 2547 4759 TL 1432.8 2547 0 best 229.8 2769 8.72 1011.5 2552 0.2
NEW-500-0.5-10-50-4 2584 3220 TL 1140.7 2596 0.46 230.4 2805 8.55 1112.4 2584 0 best
NEW-500-0.5-10-50-5 2539 3691 TL 821.4 2539 0 best 229.2 2858 12.56 978.2 2539 0 best
NEW-500-0.5-25-25-1 1543 2164 TL 1059.9 1543 0 best 228.8 1670 8.23 1064.9 1566 1.49
NEW-500-0.5-25-25-2 1574 2137 TL 1069.6 1594 1.27 229.9 1750 11.18 1266.9 1574 0 best
NEW-500-0.5-25-25-3 1547 2121 TL 1093.1 1547 0 best 235.4 1696 9.63 1054.7 1568 1.36
NEW-500-0.5-25-25-4 1564 2210 TL 986.5 1566 0.13 246.5 1667 6.59 1029.5 1564 0 best
NEW-500-0.5-25-25-5 1567 2343 TL 998.6 1570 0.19 239.9 1726 10.15 1083.5 1567 0 best
NEW-500-0.5-50-10-1 919 1036 TL 785.7 919 0 best 238.2 943 2.61 961.3 919 0 best
NEW-500-0.5-50-10-2 911 1067 TL 761 911 0 best 232.4 950 4.28 874.7 933 2.41
NEW-500-0.5-50-10-3 906 1020 TL 808.5 906 0 best 235.7 971 7.17 850.5 906 0 best
NEW-500-0.5-50-10-4 904 1091 TL 852 904 0 best 243.9 949 4.98 995.5 904 0 best
NEW-500-0.5-50-10-5 932 1063 TL 986.2 932 0 best 236.5 956 2.58 945.8 938 0.64
NEW-500-0.8-10-50-1 2500 3385 TL 1466 2500 0 best 403.8 2644 5.76 1479.9 2500 0 best
NEW-500-0.8-10-50-2 2497 3492 TL 1631.9 2499 0.08 408.6 2565 2.72 1524.7 2497 0 best
NEW-500-0.8-10-50-3 2466 3384 TL 1588.3 2466 0 best 401 2612 5.92 1729.6 2513 1.91
NEW-500-0.8-10-50-4 2511 5055 TL 1552.9 2511 0 best 402.1 2667 6.21 1769.7 2544 1.31
NEW-500-0.8-10-50-5 2497 4581 TL 1450.3 2497 0 best 407.5 2578 3.24 1790.4 2538 1.64
NEW-500-0.8-25-25-1 1490 2004 TL 1326.6 1490 0 best 414.4 1616 8.46 1635.6 1490 0 best
NEW-500-0.8-25-25-2 1505 1972 TL 1523.8 1505 0 best 400.9 1605 6.64 1394.3 1509 0.27
NEW-500-0.8-25-25-3 1470 2048 TL 1332.7 1471 0.07 401.6 1575 7.14 1693.8 1470 0 best
NEW-500-0.8-25-25-4 1489 1986 TL 1369.6 1489 0 best 390.8 1551 4.16 1532.8 1489 0 best
NEW-500-0.8-25-25-5 1496 2055 TL 1534 1496 0 best 391.9 1595 6.62 1469.2 1507 0.74
NEW-500-0.8-50-10-1 871 1021 TL 1411.7 871 0 best 398.5 916 5.17 1368.9 871 0 best
NEW-500-0.8-50-10-2 853 968 TL 1406.6 853 0 best 398.2 886 3.87 1611.8 853 0 best
NEW-500-0.8-50-10-3 855 1002 TL 1426.6 855 0 best 389.3 873 2.11 1607 855 0 best
NEW-500-0.8-50-10-4 869 985 TL 1254.7 869 0 best 388.8 894 2.88 1510.7 871 0.23
NEW-500-0.8-50-10-5 872 933 TL 1421.1 872 0 best 390.7 892 2.29 1313.8 872 0 best
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Додатак В

Детаљи имплементациjе
детерминистичке и стохастичке
стратегиjе одбране

Алгоритам 15 Функциjа deterministicDefense
Улаз: решење s, граф G = (V,E), k, allAlternatives, reducedAttack, defendingNodes
Излаз: пар attackDefended, defendingNodes

1: for alternative ∈ allAlternatives do
2: attackDefended← True
3: for v ∈ reducedAttack do
4: u← alternative[v]
5: if canHelp(u, v) then
6: defendingNodes.add(u)
7: else
8: attackDefended← False
9: break

10: end if
11: end for
12: if attackDefended then
13: return attackDefended, defendingNodes
14: end if
15: end for
16: return False, ∅
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ДОДАТАК В. ДЕТАЉИ ИМПЛЕМЕНТАЦИJЕ ДЕТЕРМИНИСТИЧКЕ И
СТОХАСТИЧКЕ СТРАТЕГИJЕ ОДБРАНЕ

Алгоритам 16 Функциjа rouletteDefense
Улаз: решење s, граф G = (V,E), k, reducedAttack, defendingNodes, tries > 0
Излаз: пар attackDefended, defendingNodes

1: while tries > 0 do
2: attackDefended← True
3: tries← tries− 1
4: for v ∈ reducedAttack do
5: candidates← []
6: for u ∈ N(v) do
7: diff ← getAvailableFAs(u)
8: candidates.add([u, . . . , u︸ ︷︷ ︸

diff times

])

9: end for
10: if candidates.size() = 0 then
11: attackDefended← False
12: break
13: end if
14: selectedU ← candidates.randomElement()
15: defendingNodes.add(selectedU)
16: end for
17: if attackDefended then
18: return attackDefended, defendingNodes
19: end if
20: end while
21: return False, ∅
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Додатак Г

Додатни резултати за k-SRD проблем

Табела Г.1: Упоредни резултати на скупу Random за n = 10.

инстанца k Greedy Vns Ilp Benders

n index obj obj σ[%] tbest[s] obj t[s] obj dual t[s]

10 1 2 7 6 0.0 0.0 6 0.1 6 6 0.7
2 6 6 0.0 0.0 6 0.1 6 6 0.7
3 6 6 0.0 0.0 6 0.1 6 6 2.5
4 6 5 0.0 0.0 5 0.0 5 5 1.2
5 6 6 0.0 0.0 6 0.1 6 6 1.8

10 1 3 8 7 0.0 0.0 7 0.5 7 7 2.4
2 7 6 0.0 0.0 6 0.4 6 6 3.8
3 7 7 0.0 0.0 7 0.4 7 7 3.0
4 8 6 0.0 0.1 6 0.3 6 6 2.9
5 7 7 0.0 0.0 7 0.4 7 7 2.9

10 1 4 9 7 0.0 0.2 7 1.6 7 7 3.4
2 8 7 0.0 0.1 7 1.6 7 7 3.4
3 8 7 0.0 0.7 7 1.4 7 7 4.1
4 9 7 0.0 0.1 7 1.3 7 7 4.2
5 8 7 0.0 0.1 7 1.4 7 7 4.4

10 1 5 10 8 0.0 0.1 8 4.1 8 8 6.3
2 9 8 0.0 0.0 8 2.8 8 8 4.4
3 9 8 0.0 0.0 8 3.2 8 8 11.5
4 10 8 0.0 0.1 8 2.7 8 8 7.1
5 9 8 0.0 0.0 8 2.0 8 8 9.7
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Табела Г.2: Упоредни резултати на скупу Random за n = 15.

инстанца k Greedy Vns Ilp Benders

n index obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
15 1 2 10 9 0.0 0.0 9 0.9 9 9 5.3

2 8 8 0.0 0.0 8 0.2 8 8 2.2
3 9 8 0.0 0.0 8 0.2 8 8 2.8
4 10 9 0.0 0.0 9 1.2 9 9 5.0
5 10 9 0.0 0.0 9 0.3 9 9 3.8

15 1 3 12 10 0.0 0.1 10 12.2 10 10 20.2
2 10 10 0.0 0.0 10 3.6 10 10 12.9
3 10 9 0.0 0.1 9 1.5 9 9 7.7
4 12 10 0.0 0.1 10 12.1 10 10 21.3
5 12 10 0.0 0.6 10 7.1 10 10 22.0

15 1 4 13 11 0.0 0.4 11 51.7 11 11 55.4
2 12 11 0.0 1.1 11 37.7 11 11 35.4
3 11 10 0.0 2.4 10 19.0 10 10 36.6
4 13 11 0.0 0.7 11 104.8 11 11 77.7
5 14 11 0.0 1.3 11 80.2 11 11 107.0

15 1 5 14 11 0.0 4.4 9.3 TL 11 11 129.1
2 13 11 0.0 5.9 11 239.4 11 11 60.0
3 12 11 0.0 1.8 11 162.9 11 11 72.2
4 14 12 0.0 1.1 12 TL 0 11 TL
5 15 12 0.0 0.9 12 TL 12 12 210.0

Табела Г.3: Упоредни резултати на скупу Random за n = 20.

инстанца k Greedy Vns Ilp Benders

n index obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
20 1 2 12 11 0.0 0.0 11 1.5 11 11 5.5

2 13 12 0.0 0.1 12 0.5 12 12 14.0
3 12 11 0.0 0.0 11 0.9 11 11 6.3
4 11 11 0.0 0.0 11 0.4 11 11 5.8
5 12 12 0.0 0.0 12 1.4 12 12 9.3

20 1 3 14 12 0.0 1.3 12 7.7 12 12 24.9
2 16 13 0.0 0.9 13 17.0 13 13 109.8
3 14 13 0.0 0.2 13 46.2 13 13 66.2
4 14 13 0.0 0.7 13 14.7 13 13 38.0
5 15 13 0.0 0.6 13 41.1 13 13 62.4

20 1 4 16 14 0.0 4.1 14 TL 14 14 224.2
2 18 14 0.0 17.5 18 TL 0 14 TL
3 15 13 0.0 34.1 23 TL 13 13 89.5
4 16 14 0.0 3.2 18 TL 14 14 111.2
5 17 14 0.0 46.6 22 TL 0 14 TL

20 1 5 18 15 0.0 35.5 - - 0 14 TL
2 19 15 2.1 51.6 - - 0 14 TL
3 16 14 0.0 39.0 - - 0 14 TL
4 17 14 0.0 35.0 - - 14 14 276.2
5 19 15 0.0 36.9 - - 0 14 TL
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Табела Г.4: Упоредни резултати на скупу Random за n = 45.

инстанца k Greedy Vns Ilp Benders

n index obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
45 1 2 28 26.7 2.0 16.7 26 14.5 26 26 240.3

2 28 26 0.0 19.4 26 19.5 26 26 311.3
3 28 26 0.0 10.5 26 35.4 26 26 326.0
4 28 27 0.0 13.4 27 21.0 0 27 TL
5 27 26 0.0 26.8 26 10.3 26 26 225.9

45 1 3 35 29.8 1.6 178.9 - - 0 27 TL
2 34 29.2 1.6 197.3 - - 0 26 TL
3 35 30.3 2.1 186.7 - - 0 27 TL
4 35 29.7 2.0 206.3 - - 0 27 TL
5 34 29.3 1.8 213.2 - - 0 26 TL

45 1 4 40 32.4 3.0 130.7 - - 0 28 TL
2 39 32.4 1.8 213.7 - - 0 25 TL
3 40 32.9 2.5 293.5 - - 0 26 TL
4 40 32.5 3.0 260.1 - - 0 26 TL
5 38 32.4 2.5 110.5 - - 0 27 TL
1 43 35.9 1.7 241.7 - - 0 28 TL

45 2 5 42 36.3 1.3 234.6 - - 0 26 TL
3 43 37.3 2.1 354.6 - - 0 26 TL
4 43 36.7 2.1 303.8 - - 0 26 TL
5 42 35.8 2.1 323.7 - - 0 26 TL

Табела Г.5: Упоредни резултати на скупу Wireless за k = 2.

инстанца Greedy Vns Ilp Benders

n R obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
20 0.3 13 12.0 0.0 1.1 12 0.25 12 12 6.5

0.4 10 9.0 0.0 0.3 9 1.16 9 9 7.8
0.5 6 5.0 0.0 0.2 5 1.14 5 5 6.6
0.6 3 3.0 0.0 0.0 3 0.21 3 3 2.6

50 0.3 15 13.0 0.0 3.8 - - 13 13 196.2
0.4 11 10.0 0.0 8.3 - - 10 10 177.6
0.5 8 6.0 0.0 4.1 - - 6 6 64.0
0.6 6 5.0 0.0 2.3 - - 5 5 100.1

100 0.3 18 13.0 3.0 237.8 - - 0 13 TL
0.4 13 10.0 0.0 25.8 - - 0 10 TL
0.5 9 9.0 0.0 0.0 - - 0 7 TL
0.6 7 6.0 0.0 21.5 - - - - -
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Табела Г.6: Упоредни резултати на скупу Wireless за k = 5.

инстанца Greedy Vns Ilp Benders

n R obj obj σ[%] tbest[s] obj t[s] obj dual t[s]
20 0.3 19 17.0 0.0 29.9 - - 0 16 TL

0.4 16 14.3 3.4 63.5 - - 0 14 TL
0.5 9 8.0 0.0 7.9 - - 0 8 TL
0.6 6 6.0 0.0 0.0 - - 6 6 187.0

50 0.3 24 24.0 0.0 0.0 - - 0 16 TL
0.4 18 17.8 0.0 47.7 - - 0 12 TL
0.5 14 13.9 3.4 43.5 - - 0 9 TL
0.6 9 7.0 0.0 224.4 - - 0 7 TL

100 0.3 33 33.0 0.0 0.0 - - - - -
0.4 25 24.9 1.8 51.3 - - - - -
0.5 18 18.0 0.0 0.0 - - - - -
0.6 12 11.9 0.0 139.4 - - - - -
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