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Dissertation title: Statistical tests based on Laplace and Hankel transforms, and their
application in change point detection

Abstract: The main goal of this dissertation is twofold. In the first part, two novel two-
sample tests for matrix data are presented. The theoretical properties of these novel tests are
investigated in the context of testing orthogonal invariance in distribution, while the empirical
values are presented in other cases. The tests are not distribution-free under H0. Therefore,
their quality is investigated through a power study by implementing the warp-speed bootstrap
algorithm. The novel tests are applied tomultiple cases of real data, primarily originating in the
field of finance. These tests are the first of their kind for two-sample tests of positive definite
symmetric matrix distributions and are based on Laplace and Hankel transforms.

The second part of this dissertation addresses problems related to data segmentation (or
change point detection). Two novel classes of univariate tests for offline data segmentation
are outlined, and their theoretical properties are studied. The powers are estimated using the
permutation bootstrap algorithm, and the novel tests are shown to have higher test powers than
the well-known tests based on the characteristic function. The location of the change point
is estimated, and the novel tests are empirically demonstrated to possess greater precision.
These tests are applied to two distinct datasets frommeteorology andmacroeconomics, further
emphasizing their applicability in real-case scenarios.

Moreover, the two-sample test based on theHankel transform ismodified to address change
point problems. The asymptotic properties of this novel test are derived. A power study is
presented, demonstrating the quality of the novel test in small-sample scenarios. The novel
test is applied to financial data, emphasizing the practical applicability of this approach. This
represents the first test for change point inference based on integral transforms for matrix
data.

Keywords: Hankel transform, Laplace transform, matrix distributions, Wishart distribu-
tion, noncentral Wishart distribution, cryptocurrency data, stability of financial markets, two-
sample tests, change point inference.

Scientific Area: Mathematics
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Naslov doktorske disertacije: Statistički testovi zasnovani na Laplasovim i Hankelovim
transformacijama, i njihova primena u otkrivanju promena režima

Sažetak: Glavni cilj ove disertacije je dvojak. U prvom delu su predstavljeni dvouzorački
testovi za matrične raspodele. Teorijska svojstva novih testova su predstavljena u slučaju te-
stiranja ortogonalne invarijatnosti u raspodeli, dok su u ostalim slučajevima date empirijske
vrednosti. Novi testovi nisu slobodni od raspodele pri nultoj hipotezi. Zbog toga su empirijske
moći testova dobijene uz pomoć ubrzanog butstrepa. Novi testovi su primenjeni na stvarne po-
datke, uglavnom iz oblasti finansija. Ovi testovi su prvi takvi dvouzorački testovi za simetrične
pozitivno definitne matrice zasnovani na Laplasovim i Hankelovim transformacijama.

Drugi deo ove disertacije posvećen je problemu otkrivanja tačke promene režima (ili seg-
mentiranja podataka). Nove klase jednodimenzionih testova za otkrivanje aposteriori promene
režima su predstavljene i njihova teorijska svojstva su istražena. Empirijske moći testova su
ocenjene korištenjem permutacijskog butstrepa. Novi testovi imaju većemoći testova u odnosu
na konkurentske testove. Prikazan je i empirijski kvalitet ocene tačke promene i primećeno je
da novi testovi imaju veću preciznost u odnosu na konkurentske testove. Ovi testovi su pri-
menjeni na različite podatke iz meteorologije i makroekonomije, čime je pokazana njihova
praktična primena.

Dodatno, dovuzorački test zasnovan na Hankelovoj transformaciji je modifikovan da bi
otkrivao tačke promene režima. Asimptotska svojstva novog testa su izvedena. Određene su i
empirijske moći testova, čime je pokazan kvalitet novog testa u slučaju uzoraka malog obima.
Novi test je primenjen na finansijske podatke, što je dodatno prikazalo praktičnu primenu
ovoga testa. Ovaj test je prvi takav test promene režima zasnovan na integralnim transforma-
cijama za matrične podatke.
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Symbol Description
R Set of real numbers
N Set of natural numbers
N0 N∪0
C Set of complex numbers
ℜ(z ) Real part of a complex number z
Γ (z ) Gamma function

Ml (A) l -th principal minor of a matrix A
det(A) Determinant of a matrix A
A > 0 Matrix A is positive definite
A > B A−B is a positive definite matrix
A ¾ 0 A is a positive semidefinite matrix
P n×n
+ Cone of symmetric n ×n positive definite matrices
P+ Ditto, dimension known
P̄+ Cone of positive semidefinite matrices

B [0,∞) Space of bounded functions on [0,∞)
Trace(A) Trace of a matrix A

etr(A) exp(Trace(A))
In n ×n identity matrix

O (n ) Orthogonal group of n ×n matrices
Ind(A) Indicator function of an event A
Aν(T ) Bessel polynomial of one matrix argument [54]

Aν(T , X ) Bessel polynomial of two matrix arguments [54]

Table 1: Notation used throughout the text

Commonly used univariate probability distributions:

• Exponential distribution E (λ), with a rate parameter λ> 0 and a density

f (x ,λ) =λexp(−λx ), x > 0.

• Gamma distribution Γ (α,β ), with a shape parameter α> 0 and a rate parameter β > 0 and
a density

f (x ,α,β ) =
x α−1βα exp(−β x )

Γ (α)
, x > 0.

• Uniform distribution U [a , b ], with a density

f (x , a , b ) =
1

b −a
, −∞< a < x < b <+∞.

• Lévy distribution L (λ), with a shape parameter λ> 0 and a density

f (x ,λ) =

√√ λ

2π
x − 3

2 exp
�
− λ

2x

�
, x > 0.

• Inverse Gaussian I G (µ,λ) distribution, with a location parameter µ > 0 and a scale pa-
rameter λ> 0 and a density

f (x ,µ,λ) =

√√ λ

2π
x − 3

2 exp

�
−λ(x −µ)2

2µ2 x

�
, x > 0.



x

• Normal N (µ,σ2) distribution, with a location parameter µ ∈ R and a scale parameter
σ2 > 0 and a density

f (x ,µ,σ) =
1p

2πσ2
exp

�
− (x −µ)2

2σ2

�
, x ∈R.



Preface

Prava svakom veličina teče,
a od nogu pa do vrha glave
u pametnih mjeri se visina.
Nije moje, što stekao nisam,
i što pusta podade mi sreća,
već je moje što sam dohvatio
trateć svoju od njedara krvcu.

Ivan Mažuranić, Javor

Matrix methods have been used for an extensive period of time. The earliest results are
from the first half of the 20th century, where the main focus was on distributional properties.
TheWishart distribution was introduced in 1928 in [138]. The noncentralWishart distribution
was introduced by Anderson in 1946 in [7]. An alternative derivation of the Wishart distribu-
tion was presented in 1948 in [115]. Other derivations followed in 1956 by Olkin and Roy [106]
and James [65]. The matrix beta distribution was developed in 1939 in [61]. The noncentrality
parameter was introduced in 1961 in [74]. In the same year, the same author developed a ma-
trix t-distribution, studying regression-type problems [75]. However, the practical application
of matrix distributions occurred much later. We point the reader to the works from 1982 by
Muirhead [102] and 1984 by Farrell [37] for a textbook overview of matrix theory.

The first part of this dissertationwill develop novel two-sample tests formatrix data, mainly
focusing on the case of small dimensions.

Modern research employs symmetric positive definite matrix distributions in the context
of cluster analysis [43, 130], classification [128], and regression [34].

Positive semidefinite matrices have many applications, including medical imaging [99] and
finance [32]. Positive definite matrix-variate distributions have recently been studied in [133]
and in [107], but works on goodness-of-fit testing in this context are sparse. The work of
Hadjicosta and Richards from 2020 (see [54]) is the only known goodness-of-fit (GOF) test
that uses integral transform methods in this context to date. The work of Alfelt et al. from
2020 (see [4]) considers the Bartlett decomposition to construct a goodness-of-fit test for the
centralized Wishart process. Furthermore, there has been recent interest in covariance matrix
testing in high dimensions, such as in 2012 (see [66]), in 2020 (see [48]), and in 2023 (see [36]).

On the other hand, the need for data segmentation occurred much earlier. It usually does
not require significant computational resources. The classical works dealing with the problem
of change point1 inference are numerous. For example, onemay refer to the textbook approach
by Csörgö and Horváth from 1997 (see [28]). The area is still developing. In recent years, sci-
entific interest has been present due to numerous applications in finance [8, 9, 127], genetics
[22], medicine [27], ecology [1], climatology [81], and other fields. Many of the methods out-
lined in the statistical literature focus on so-called parametric change point analysis, where a

1Change-point is the historically accurate way to write this term; however, change point and changepoint have
also appeared in the literature. We will use change point for the remainder of the text.

1
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certain model is assumed and the existence of the change point corresponds to a change in the
parameters of that model. This problem has been addressed in numerous works. We mention
only a few examples, such as Chakar et al. from 2017 (see [21]), Davis et al. from 2006 (see
[30]), Fryzlewicz from 2014 (see [41]), and Tsukuda and Nishiyama from 2014 (see [132]).

Moreover, there are nonparametric change point methods that do not rely on any under-
lying assumptions regarding the model. In these cases, the primary focus is typically on de-
tecting change points in the distribution of sample elements. Numerous papers address this
issue, for example Brodsky and Darkhovsky from 1993 (see [18]), Dehling et al. from 2013 (see
[31]), and Hawkins and Deng from 2010 (see [57]). One popular approach for nonparametric
change point inference involves the use of two-sample test statistics. Specifically, a test statis-
tic is formed using the following nonparametric analogue of a CUSUM-type statistic, which
consists of the following steps:

1) The sample of size n is divided into two subsamples of lengths k and n −k , respectively;

2) The two-sample statistic is calculated for selected subsamples, and multiplied by a suit-
able constant;

3) The value of the change point test statistic is taken to be the maximum of such values
over k ranging from 1 to n .

This idea, specifically designed to detect change points, was introduced for the first time in
2006 in [62]. Hušková andMeintanis used a two-sample test based on characteristic functions
to implement this approach. This approach will serve as a general motivation for our work in
modifying the existing two-sample tests to address the change point type of problems in this
dissertation, filling the gap for matrix data.



Chapter 1

Introduction

In this chapter, we introduce the preliminary notions that are important building blocks of the
ensuing theoretical outline. We cannot aim to cover every aspect of contemporary theory, as
that task is currently beyond our reach. We present a broad outline of the current state-of-the-
art, aiming to motivate our upcoming presentation and to point the reader to the broader areas
from which the inspiration for our research stems. In Section 1.1, we focus on real random
variables. The univariate case is usually technically simpler and has facilitated research prior
to the development of tools for more complex cases. We focus on the tests constructed using
Laplace and Hankel transforms. Following that part, we present the basic outline of matrix
theory required for a better understanding of the results in the following chapters. In Section
1.2, the basic outline of matrix integration is presented. In Section 1.4, we introduce the
noncentralWishart distribution and derive its properties. It is an importantmatrix distribution
for understanding the subsequent chapters. In Section 1.5, we introduce the Hankel transform
of matrix arguments. We finish the chapter by presenting a short review of integral transform-
type tests in the matrix case in Section 1.6.

1.1 Integral transform-type tests

Due to their favorable properties, integral transforms have been used extensively in contem-
porary statistical literature. They uniquely determine the distribution and have consistent,
simple estimators. Therefore, statistical tests are typically constructed as a weighted integral
of the difference between the empirical transforms in the case of two-sample tests, and the
difference between the theoretical and empirical transforms in the case of GOF tests. We start
with the Laplace transform, which has a simpler form than the corresponding Hankel trans-
form, which we discuss later. Laplace transforms are named after the French mathematician
Pierre-Simon, Marquis de Laplace; however, the exact historical origin is unclear and can be
traced back to Euler [10]. Hankel transforms incorporate special functions, and consequently,
the results are sparser than in the case of Laplace transforms. Let us start with the Laplace
transform and its basic properties.

Let X be a nonnegative random variable with density f . Then the Laplace transform of a
random variable X is defined as:

ψX (s ) = E (exp(−s X )) =

∞∫
0

exp(−s x ) f (x )dx . (1.1)

It has many favorable properties, such as:

• ψX (0) = 1;

3



4 CHAPTER 1. INTRODUCTION

• 0¶ψX (s )¶ 1 for every s ¾ 0;

• ψX uniquely determines the distribution of the random variable X ;

• There exists a so-called Post-Widder inversion formula, and it is usually possible to re-
cover the density function from its Laplace transform, at least numerically [39].

Its empirical counterpart, the so-called empirical Laplace transform, is defined as:

ψ̂X (t ) =

∞∫
0

exp(−t x )dF̂n (x ) =
1

n

n∑
k=1

exp(−t Xk ),

where F̂n is the empirical cumulative distribution function of the sample X1, . . . , Xn , namely

F̂n =
1

n

n∑
k=1

Ind(X i ¶ t ).

It is possible to examine empirical Laplace transforms through the prism of empirical point
processes. However, we do not delve into the theory of empirical point processes, since it is
not the central focus of our study. For more information on this topic, we refer the reader to
the corresponding literature [70].

The empirical Laplace transform is a consistent estimator of the Laplace transform, and
consequently, it has been the basis of many statistical tests. This consistency directly follows
from the Law of Large Numbers (see, e.g., [38]). We examine two distinct types of statistical
tests. The general form of the so-called L 2-type test statistic is

T =C

∫
D

(φ1(t )−φ2(t ))
2w (t )dt , (1.2)

where the difference φ1(t )−φ2(t ) is constructed to be small under the null hypothesis, while
w (t ) is a weight function that ensures the integral converges and C is a constant depending on
the sample. D is an interval on which the functions in question are well-defined. The weight
function needs to be integrable, i.e., ∫

D

w (t )dt <∞.

Usually, one takes the difference between the consistent estimator of the transform, and the
transform itself in the GOF setting. The difference between two consistent estimators of the
transform is commonly used in two-sample tests of equivalence. Another common technique
is to use the characterizations of distributions to build GOF tests.

On the other hand, the general form of the so-called L∞ (or supremum-type) tests is

L =C sup
0¶t¶∞

|(φ1(t )−φ2(t ))w (t )|, (1.3)

where C is a constant that depends on the sample size and plays a role in ensuring the conver-
gence in distribution of the novel test.

There were many tests based on the V -empirical Laplace transforms for the exponential
distribution. We mention just a few.

Given the sample X1, X2, . . . , Xn , the authors want to test the null hypothesis whether the
sample comes from the exponential E (λ) distribution, against the alternative that the data do
not come from the exponential E (λ) distribution.
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Henze andMeintanis considered the test statistic of the form (1.2) in [59]. They considered
φ1(t ) to be the ψn (t ), for the scaled sample, Y1 =

X1

X̄n
, Y2 =

X2

X̄n
, . . . , Yn =

Xn

X̄n
, φ2(t ) was taken to be

the Laplace transform of the exponential distribution, i.e., φ2(t ) =
1

1+t . The constant was set
to the sample size C = n , and they considered several weight functions, w1(t ) = exp(−a t ) and
w2(t ) = (1+ t )2 exp(−a t ).

Note that equidistribution-type tests have gained in popularity in recent years [104]. The
test statistics are usually of the form (1.2), and the functions φ1(t ) and φ2(t ) are chosen so that
the difference φ1(t )−φ2(t ) is small under the null hypothesis. For example, in [98], Milošević
and Obradović considered the test of exponentiality, where

φ1(t ) =
1

n 2

n∑
l ,m=1

Ind(max(X l , Xm )< t )

and

φ2(t ) =
1

n 3

n∑
k ,l ,m=1

Ind
�
Xk +min(X l , Xm )< t

�
,

where φ1(t ) and φ2(t ) are V -empirical processes. One might consider the U -empirical version
of the test, i.e.,

φ1(t ) =
2!�
n
2

� ∑
l 6=m¶n

Ind(max(X l , Xm )< t )

and

φ2(t ) =
3!�
n
3

� ∑
k 6=l 6=m¶n

Ind
�
Xk +min(X l , Xm )< t

�
,

There are many papers that explore the same idea as outlined in [98]. See, for example,
[14, 56, 135].

Cuparić et al. considered the test statistics of type (1.2) and (1.3) in [29] for testing expo-
nentiality for the scaled sample, Y1 =

X1

X̄n
, Y2 =

X2

X̄n
, . . . , Yn =

Xn

X̄n
, where

φ1(t ) =
1

n

n∑
i=1

exp(−t Yi ),

φ2(t ) =− 1

n 2

n∑
i , j=1

exp(−t ·2min(Yi , Yj ))

and the weight function has the form w (t ) = exp(−a t ).
Henze and Klar constructed a GOF test of the inverse Gaussian distribution in [58]. Given

the sample X1, X2, . . . , Xn , they defined

θ̂ =
1

1
n

n∑
i=1

�
1

X i
− 1

X̄n

� ,

and

φ1(t ) =
Æ

X̄nψn (t ),

φ2(t ) =− 1Æ
X̄n

�
1+2X̄ 2

n

t

θ̂

� 1
2

ψ′n (t ).

The weight function they implemented is sample-dependent and has the form w (t ) =
exp(−a X̄n t ), while the constant equals C = n .
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We point the reader to the work [93, Equation 1.1], in which Meintanis and Iliopoulos
considered a similar GOF test for the Rayleigh distribution.

The unfavorable properties of the distributions, such as the infinite expectation, make the
construction of the GOF test more challenging. In the following part, we present the GOF
test for the Lévy distribution. The Lévy distribution is one of only three stable distributions
possessing a density in closed form. Lukić and Milošević constructed GOF tests for the Lévy
distribution in [83] and the test statistics are of the form

Jn ,a = sup
t>0

���� 1

n 2

n∑
i1,i2=1

exp
�− t (Yi1

+ Yi2
)

4

�− 1

n

n∑
i=1

exp(−t Yi )
�

exp(−a t )t
3
2

���,
Rn ,a =

∞∫
0

� 1

n 2

n∑
i1,i2=1

exp
�− t (Yi1

+ Yi2
)

4

�− 1

n

n∑
i=1

exp(−t Yi )
�

exp(−a t )t
3
2 dt ,

where Yk =

Xk

n∑
j=1

1
X j

n
is a scaled sample. The weight function was modified slightly to ensure

convergence. The test statistic Rn ,a is an integral-type test statistic, which is simpler to con-
struct than an L 2-type test. Integral-type tests are usually easier to construct, but often do not
possess some properties of L 2 tests, such as consistency against fixed alternatives. The tests
are distribution-free. Establishing the asymptotic results was more challenging than in the
case of the distributions having every moment. More recently, some other works concerning
the GOF tests for the Lévy distribution have emerged [77, 108].

Let us now introduce the Hankel transform and present some of its basic properties.
There are many classical works that explore the concept of Hankel transform. We follow

the definition from [124], and introduce the Hankel transform J0 :R→R, as

J0(x ) =
∞∑

k=0

(−1)k

k !2

� x

2

�2k
=

1

π

π∫
0

cos(x sin(θ ))dθ =
1

π

π∫
0

cos(x cos(θ ))dθ .

Baringhaus and Taherizadeh defined the modified Hankel transform of the arbitrary function
f :R→R+ as a functionalH : B [0,∞)→R in [12], as

H ( f ) =
∞∫
0

J0(2
p

x t ) f (x )dx , t ¾ 0.

Since |J0(x )| ¶ 1 holds for each x ¾ 0, the modified Hankel transform is defined for each non-
negative real random variable X , having a density function f , and is equal to E (J0(2

p
t X )).

They proved the following theorem, which establishes that the Hankel transform uniquely de-
termines the distribution. This result is very useful in the construction of statistical tests.

Theorem 1.1. [12, Theorem 2.1] Let A and B be two nonnegative independent random variables
with corresponding Hankel transforms HA and HB , respectively. Then HA =HB if and only if A
and B are equally distributed.

Baringhaus and Taherizadeh presented a series of examples. The first example provides
the value of the modified Hankel transform for the Erlang distribution. Let the Laguerre poly-
nomial Ln of order n be defined as

Ln (t ) =
e t

t !

dn

dt
(e −t t n ).
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Example 1.1. [12, Example 2.1] Let Y have an Erlang distribution, i.e., a Gamma distribution
Γ (n +1,λ), where 0<λ=n+1

E Y and n is a nonnegative integer. Then the Hankel transform of Y is
equal to

HY (t ) = Ln

� t

λ

�
exp

�− t

λ

�
, t ¾ 0,

where Ln denotes the Laguerre polynomial of order n . Taking n = 0, one obtains the Hankel
transform of the exponential distribution as

HY (t ) =λ

∞∫
0

J0(2
p

t x )exp(−λx )dx = exp
�− t

λ

�
, t ¾ 0.

Laplace and Hankel transforms are related, as is shown by the following example:

Example 1.2. [12, Example 2.2] Let A be an exponentially distributed random variable with
parameter 1, and B be another nonnegative random variable independent of A. The Hankel
transform of AB is given by

HAB (t ) = E (J0(2
p

t AB )) = E (exp(−t B )) =ψB (t ), t ¾ 0,

where ψB (t ) denotes the Laplace transform of the random variable B .

Baringhaus and Taherizadeh proved the following characterization of the exponential dis-
tribution. It was a basis of their GOF test of exponentiality, since the cornerstone of their test
was the difference between the empirical Hankel transform and the Hankel transform.

Theorem1.2. [12, Theorem 2.2] Let A be a nonnegative random variable whose Hankel transform
is of the formHA(t ) = exp(−t ), 0¶ t ¶ ϵ, for some ϵ > 0. Then A ∈ E (1).

They then wanted to construct statistical tests which test the null hypothesis H0 :
X1, X2, . . . , Xn ∈ E (λ) against the alternative H1 : X1, X2, . . . , Xn /∈ E (λ). The first test [12] is of
the form (1.2), where C = n , and

φ1(t ) =Hn (t ) =
1

n

n∑
j=1

J0(2
Æ

t Yj )

is the empirical Hankel transform of the empirically standardized variables, i.e., Yj = 0 if X j = 0

and Y1 =
X1

X̄n
, Y2 =

X2

X̄n
, . . . , Yn =

Xn

X̄n
and X̄n =

1
n

n∑
j=1

X j . Let φ2(t ) = exp(−t ) be the theoretical Hankel

transform of the exponential E (1) distribution. The weight function is w (t ) = exp(−t ). Since
1

X̄n
is a consistent estimator of the parameter λ, they established that the test statistics are free

of the parameter λ. Baringhaus and Taherizadeh developed a test of type (1.3), taking φ1(t )
and φ2(t ) as above and C =

p
n and w (t ) = 1 in [13].

At this point, there are no other GOF tests for other families of distributions. It is possible
to construct the GOF tests using the φ1(t ) given above and varying the form of φ2(t ) to fit the
theoretical Hankel transform of the distribution in question. If the computation of the integral
in (1.2) seems challenging, it may be possible to consider the test statistic of the form (1.3).

Another possibility is to construct the two-sample test of the type (1.2). Let X =
X1, X2, . . . , Xn1

and Y = Y1, Y2, . . . , Yn2
be two independent random samples with empirical Hankel

transformsHn1,X andHn2,Y , respectively. Baringhaus and Taherizadeh wanted to test H0 : X
and Y are equally distributed, against the alternative H1 : X and Y are not equally distributed
[11]. They set C = n1n2

n1+n2
,φ1(t ) =Hn1,X ,φ2(t ) =Hn2,Y and w (t ) = exp(−t ).

Based on previous research, Hadjicosta and Richards worked with more general Hankel
transforms in [53] . They used the following objects:
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• the Bessel function of the first kind of order ν, where −ν /∈N and ν ∈R:

Jν(z ) =
∞∑

k=0

(−1)k

k !Γ (ν+1+k )

�z

2

�2k+ν
, z ∈C;

• the modified Bessel function of the first kind of order ν,ν ∈R and −ν /∈N and x ∈R:

Iν(z ) =
∞∑

k=0

1

k !Γ (ν+1+k )

� x

2

�2k+ν
;

• Let s , t ∈R, where −t /∈N0. Then the confluent hypergeometric function is defined as

1F1(s ; t ; x ) =
∞∑

k=0

(s )k
(t )k

x k

k !
,

where (x )k = x (x +1) . . . (x +k −1) is a so-called rising factorial.

• For ν¾− 1
2 and t ¾ 0, the Hankel transform of order ν of a nonnegative random variable

X with a density f (x ) is defined as

HX ,ν(t ) = Γ (ν+1)

∞∫
0

(t x )− ν2 Jν(2
p

t x ) f (x )dx .

• Having the random sample X1, . . . , Xn , the empirical Hankel transform of order ν of the
scaled sample Y1 =

X1

X̄n
, Y2 =

X2

X̄n
, . . . , Yn =

Xn

X̄n
is given as

Hn ,ν(t ) =
Γ (ν+1)

n

n∑
k=1

(t Yk )
−ν/2 Jν(2

p
t Yk ), t ¾ 0.

Let us have the sample X = X1, X2, . . . , Xn . Hadjicosta and Richards wanted to test the null
hypothesis H0 : X ∈ Γ (α,λ), where α is known, against the alternative H1 : X /∈ Γ (α,λ). They
defined the test statistic in [53] of the type (1.2) taking C = n , φ1(t ) =Hn ,ν(t ), φ2(t ) = 1F1(α;ν+
1;− t

α ) and w (t ) = exp(−αt ), whereφ1(t ) is the empirical Hankel transform of the scaled sample.
To the best of our knowledge, this is the only test utilizing the empirical Hankel transform

of the form given above. Of course, there are many possible generalizations, given that the
expression in the integral (1.2) is tractable. Other distributions can be exploited as well, hence
filling the existing gap in the literature.

In the subsequent section, we focus on the fundamental theory of matrix integration. This
step is necessary to generalize some univariate concepts to the matrix case, which is one of the
main goals of this dissertation.

1.2 Matrix integration

In this section, the notion of the integral
∫

A
f (X )dX of a function f :Mn×n → R over a set

A ⊆Mn×n is studied. Usually, A is a subset of the cone of positive semidefinite matrices, or the
orthogonal group. This concept is central in the construction of novel statistical tests, since
these tests usually utilize objects such as the integral difference of suitably chosen functions
with respect to a suitably chosen weight function.
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The theory presented below can be found in many classical works, such as the book by
Muirhead [102] or Farrell [37]. We follow the approach in [102], since it is the simplest one
and it does not delve deep into the algebraic theory. The following results are taken from [102],
and that fact will not be explicitly mentioned below.

We use differential forms as a means of computing integrals. Differential forms have been
studied extensively in the scientific literature [19, 35].

Definition 1.1. An exterior differential form of degree k in Rn is a function∑
j1< j2<...< jk

f j1, j2,..., jk
(x1, x2, . . . , xn )dx j1

∧ dx2 ∧ · · · ∧ dx jk
,

where f j1, j2,..., jr
are analytical functions of x1, x2, . . . , xn and ∧ denotes the wedge product.

For example, exterior differential forms of degree zero are simply analytical functions,
forms of degree one are differentials, and so on. Moreover, since we will not be interested
in determining the specific sign of the differential form, as is common practice in probability
theory, we may observe that in Rn there exists only one exterior differential form of degree
n , namely f (x1, x2, . . . , xn )dx1 ∧ dx2 ∧ · · · ∧ dxn . Consequently, since dxi ∧ dxi =−dxi ∧ dxi = 0,
there exist no exterior differential forms of degree greater than n in Rn .

Let X be an n ×m matrix, and let us denote by (dX ) =
m∧

j=1

n∧
l=1

dxi j the wedge product of the

distinct matrix elements. This is not to be confused with the matrix differential, denoted by
dX = (dxi j )

m ,n
i , j=1. If thematrix X is a symmetric n×n matrix, then (dX ) =

∧
1¶i¶ j¶n

dxi j . Similarly,

if X is an m ×n upper triangular matrix, one can establish that (dX ) =
∧
i¶ j

dxi j .

Denote by X ′ the matrix transpose of a matrix X . For a positive definite n ×n matrix X ,
a unique decomposition X = T ′T exists, where T is an n ×n upper triangular matrix, having
positive diagonal elements. This helps us to establish the following theorem, which will prove
useful in computing matrix integrals.

Theorem 1.3. If X is an n ×n positive definite matrix and X = T ′T , where T is upper triangular
with positive definite elements, then

(dX ) = 2n
n∏

i=1

t n+1−i
i i (dT ). (1.4)

Proof. Since
x11 x12 . . . x1n

x21 x22 . . . x2n
...

xn1 xn2 . . . xnn

=


t11 0 . . . 0
t21 t22 . . . 0

...
tn1 tn2 . . . tnn




t11 t12 . . . t1n

0 t22 . . . t2n
...

0 0 . . . tnn

 ,

we need to express every element on or above the main diagonal of X in terms of elements of
T and then take differentials. Now, we get

x11 = t 2
11, hence dx11 = 2t11 dt11

x12 = t11t12, dx12 = t11 dt12+ . . .
...

x1n = t11t1n , dx1n = t11 dt1n + . . .
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x22 = t 2
11+ t 2

22, dx22 = 2t22 dt22+ . . .
...

x2n = t12t1n + t22t2n , dx2n = t22 dt2n + . . .
...

xnn = t 2
11+ · · ·+ t 2

nn , dxnn = 2tnn dtnn + . . .

We did not write the terms that will cancel out. Now, taking the exterior products finishes the
proof, since

(dX ) =
n∧

i¶ j

dxi j = 2n t n
11t n−1

22 . . . tnn

n∧
i¶ j

dti j = 2n
n∏

i=1

t n+1−i
i i (dT ).

The result stated above can be used to evaluate the multivariate gamma function. Let X > 0
denote that an n ×n matrix is positive definite, and denote by etr(X ) = exp(Trace(X )).

Definition 1.2. The multivariate gamma function Γn :C→C is defined as

Γn (a ) =

∫
X>0

etr(−X )(det X )a−(n+1)/2(dX ),

where the integral has been taken over all positive definite n×n matrices. The function is well
defined for ℜ(a )> 1

2 (n −1).

The integral stated above is simply an integral over the open cone of positive definite ma-
trices, i.e., the one which satisfies the following system of inequalities:

X > 0 ⇐⇒ x11 > 0, det

�
x11 x12

x21 x22

�
> 0, . . . , det X > 0

with respect to the Lebesgue measure

(dX ) = dx11 ∧ dx12 ∧ · · · ∧ dxnn = dx11 dx22 . . . dxnn .

Now, we are ready to compute the multivariate gamma function, which is shown to be the
product of univariate gamma functions:

Theorem 1.4. The exact form of the multivariate Gamma function is

Γn (a ) =

∫
X>0

etr(−X )(det X )a−(n+1)/2(dX ) =πn (n−1)/4
n∏

i=1

Γ

�
a − 1

2
(i −1)

�
.

Proof. Let X = B ′B , where B is an upper triangular matrix with positive diagonal elements.
Then we have the basic identities:

Trace(X ) = Trace(B ′B ) =
n∑

i¶ j

b 2
i j ,

det X = det(B ′B ) = (det B )2 =
n∏

i=1

b 2
i i .



1.2. MATRIX INTEGRATION 11

Therefore, using (1.4), we obtain

(dX ) = 2n
n∏

i=1

b n+1−i
i i

n∧
i¶ j

dbi j .

Therefore,

Γn (a ) =

∫
· · ·
∫

exp

 
−

n∑
i¶ j

b 2
i j

!
2n

n∏
i=1

b 2a−i
i i

n∧
i¶ j

dbi j

=
n∏

i< j

 ∞∫
−∞

exp(−b 2
i j )dbi j

 n∏
i=1

 ∞∫
0

exp(−b 2
i i )(b

2
i i )

a−(i+1)/2 db 2
i i

 .

The direct computation yields

∞∫
−∞

exp(−b 2
i j )dbi j =

p
π

and
∞∫
0

exp(−b 2
i i )(b

2
i i )

a−(i+1)/2 db 2
i i = Γ

�
a − 1

2
(i −1)

�
and the result of the theorem follows.

The computation of the following matrix integral gives the density of the Wishart distribu-
tion, which will play a significant role in constructing the statistical test.

Theorem 1.5. Let ℜ(a )> 1
2 (n −1) and let Σ be an n ×n matrix and Σ> 0. Then∫

X>0

etr
�
−1

2
Σ−1X

�
(det X )a−(n+1)/2(dX ) = Γn (a )(detΣ)a 2na .

Proof. We make the change of variables in the integral, namely Y = 2Σ
1
2 XΣ

1
2 , where Σ

1
2 de-

notes the positive definite square root of Σ. It follows that (dY ) = 2n (n+1)/2(detΣ)(n+1)/2(dX ) and
the integral becomes∫

Y >0

etr(−Y )(det Y )a−(n+1)/2(dY )2na (detΣ)a = Γn (a )2
na (detΣ)a .

Putting a = m
2 , where m > n −1 is a real number, and if Σ> 0, the function

f (X ) =
1

2mn/2Γn (
m
2 )(detΣ)m/2

etr
�
−1

2
Σ−1X

�
(det X )(m−n−1)/2, X > 0 (1.5)

is a density function, since it is nonnegative and integrates to 1. It determines the Wishart
distribution. If m is an integer, then it is the density function of (m −1)S , where S is a sample
covariancematrix of the random sample of size m taken from themultivariate normalNn (µ,Σ)
distribution.

In the next section, we outline a measure which plays an important role in matrix statistics
due to its orthogonal invariance.
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1.3 Haar measure

The following results are taken from [102], and that fact will not be explicitly mentioned below.
Let H be an n ×m matrix, where n ¾m , and H ′H = Im , i.e., its columns are orthonormal.

The space of such matrices H , usually denoted by Vm ,n , is called a Stiefel manifold. The equa-
tion H ′H = Im provides 1

2 m (m +1) independent conditions on the matrix elements; therefore,
the Stiefel manifold can be regarded as an mn − 1

2 m (m + 1) surface in Rmn . Moreover, if the

matrix elements satisfy the condition
n∑

i=1

m∑
j=1

h 2
i j =m , then this is a surface which is a subset of

the sphere of radius
p

m in Rmn .
When m = n , the Stiefel manifold is equal to the orthogonal group, because

Vm ,m = {H : H ∈Mm×m ∧H ′H = Im}=O (m ).

When m = 1, the Stiefel manifold is a sphere, namely

V1,n = {h : h ∈Rn ∧h ′h = 1}= Sn ,

which is an n −1-dimensional surface in Rn .
Let us focus on the case m = n , since it is significant in the further part of the text. Let

H ∈O (m ). The differential form

(H ′dH ) =
m∧

i< j

h ′j dHi

is the wedge product of the subdiagonal elements of H ′dH . However, it is significant that this
differential form is invariant under orthogonal transforms. It is invariant under left orthogonal
transforms, because if H → G H for some G ∈ O (m ), then H ′dH → H ′G ′G dH = H ′Im dH =
H ′dH . Therefore,(H ′dH ) → (H ′dH ). It is invariant under right orthogonal transforms as
well, since if H → H G for some G ∈ O (m ), then H ′dH → G H ′dH G ′ and then (H ′dH ) →
(detG )m−1(H ′dH ) = (H ′dH ) [102, Theorem2.1.7], becausewe ignore the sign of the differential
form.

This differential form defines an invariant measure µ on O (m ), as follows:

µ(A) =

∫
A

(H ′dH ), A ⊆O (m ).

The invariance of the measure directly follows from the invariance of the differential form
(H ′dH ); namely

µ(Q A) =µ(AQ ) =µ(A)

for every Q ∈ O (m ). This measure is named after Alfréd Haar, the Hungarian mathematician
who established the existence of the unique invariant measure on any locally compact topo-
logical group [51, 103].

This measure is finite. The following theorem establishes that fact.

Theorem 1.6. The volume of the orthogonal group is given by

µ(O (m )) =

∫
O (m )

(H ′dH ) =
2mπm 2/2

Γm (m/2)
.

Proof. Let A be a random matrix which contains m 2 independent normal N (0, 1) random
variables. Then the density function of such a matrix is equal to

f (A) = (2π)−m 2/2etr(−A′A/2),
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and now, it follows that ∞∫
−∞
· · ·
∞∫
−∞

etr(−A′A/2)(dA) = (2π)m
2/2. (1.6)

There exists a unique decomposition A = H T , where H ∈ O (m ) and T is an upper triangular
m ×m matrix. Therefore,

Trace(A′A) = Trace(T ′T ) =
m∑

i¶ j

t 2
i j

and from [102, Theorem 2.1.13], it follows that

(dA) =
m∏

i=1

t m−1
i i (dT )(H dH ).

Now (1.6) becomes

∞∫
−∞
· · ·
∞∫
−∞

exp

 
−1

2

m∑
i¶ j

t 2
i j

!
m∏

i=1

t m−1
i i (dT )

∫
O (m )

(H dH ) = (2π)m
2/2.

and the integral containing (dT ) can be computed as

m∏
i< j

∞∫
−∞

exp(−t 2
i j /2)dti j

m∏
i=1

∞∫
0

exp(−t 2
i i/2)t

m−1
i i dti i =

m∏
i< j

p
2π

m∏
i=1

Γ ((m − i +1)/2)

=πm (m−1)/4
m∏

i=1

Γ ((m − i +1)/2)2m 2/2−m = Γm (m/2)2
m 2/2−m .

Finally, we have ∫
O (m )

(H dH ) =
(2π)m 2/2

Γm (m/2)2m 2/2−m
=

2mπm 2/2

Γm (m/2)

and this finishes the proof.

One may define the following differential form on O (m ):

(dH ) =
1

µ(O (m ))
(H ′dH ) =

Γm (m/2)
2mπm 2/2

(H ′dH ),

and then
∫

O (m )
(dH ) = 1. Therefore, the measure given by

ξ(A) =

∫
A

(dH ) =
1

µ(O (m ))

∫
A

(H ′dH ) =
Γm (m/2)
2mπm 2/2

∫
A

(H ′dH ), A ⊆O (m ) (1.7)

is an orthogonally invariant probability distribution (Haar distribution) on O (m ).
For the case of m = 1, it is well known that the only orthogonally invariant distribution on

Sn is the von Mises distribution (uniform spherical distribution), which is a popular topic in
the contemporary statistical literature [69, 117].
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1.4 Noncentral Wishart distribution

This section presents the basic notions concerning the noncentral Wishart distribution, fol-
lowing the outline given in [79]. Let us focus on the standard noncentral Wishart distribution.
Denote by Er the set of all partitions υ of length r . Whenever we do not explicitly state the
dimension of the matrices, we assume that we are working with n×n matrices. The important
question of the existence of such a measure will be addressed later.

Proposition 1.4.1. [79, Proposition 3.1] Let p > n−1
2 and let A ¾ 0. Then

γ(p , A)(dT ) =
e −Trace(T+A)

Γn (p )
(det T )p− n+1

2

� ∞∑
k=0

∑
|υ|=k

Cυ(A
1
2 T A

1
2 )

k !(p )υ

�
Ind(T ∈P+)(dT )

is a probability measure on P+ satisfying the Laplace transform identity for In +S ∈P+:∫
T>0

e −Trace(ST )γ(p , A)(dT ) =
1

(det(In +S ))p
e −Trace((In+S )−1S A).

Proof. We need to establish that γ(p , A)(dT ) is a positive measure. However, one readily sees
that every minor of a positive definite matrix is positive, therefore Cυ is positive, from which
we conclude that γmust be a positive measure.

We need to compute the Laplace transform, since putting S = 0 in that case establishes that
γ(p , A) integrates to one and is a density.

We return to the integral

Iυ(A) =
e −Trace(A)

Γn (p )

∫
T>0

e −Trace((S+In )T )(det T )p− n+1
2

Cυ(A
1
2 T A

1
2 )

k !(p )υ
(dT ).

We make the change of variables X = A
1
2 T A

1
2 . We know that (dX ) = (det A)(k+1)/2(dT ) from the

basic properties of differential forms [102, Theorem 2.1.7]. Now we have that our integral
takes the following form:

e −Trace(A)

Γn (p )

∫
X>0

e −Trace((S+In )A
− 1

2 X A− 1
2 )(det A− 1

2 X A− 1
2 )p− n+1

2
Cυ(X )
k !(p )υ

(det A)(k+1)/2(dX ).

The following property of the zonal polynomials is used to directly compute the integral itself
[79, Eq. (12)]:

(p )υdet(S )−p Cυ(S
−1) =

1

Γn (p )

∫
X>0

e −Trace(S X )Cυ(X )(det X )p− k+1
2 (dX ).

Directly applying this result, we obtain

Iυ(A) = e −Trace(A)det(In +S )−p Cυ(A
1
2 (In +S )−1A

1
2 )

n !
.

This establishes the result for the nonsingular A. However, one needs to treat the case of the
singular A as well. If A is singular, then det(Ak ) = det(A+ 1

k In )> 0 for every k ∈N. The following
identity holds [79, Equation 10]

etr(X ) =
∞∑

n=0

∑
υ∈En

1

n !
Cυ(X )
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and Cυ is a function of eigenvalues, i.e., for every H ∈ O (n ) Cυ(H ′X H ) = Cυ(X ). This is a
well-known result; see for example [116]. Subsequently, we conclude that

(Trace(X ))n =
∑
υ∈En

Cυ(X ).

Now since A1 > Ak , we conclude that the following set of inequalities hold:

0¶Cυ(A
1
2
k X A

1
2
k )¶ (Trace(Ak ))

n ¶ (Trace(A1X ))n .

We are now able to apply Lebesgue’s dominated convergence theorem, since

f (A) = e −Trace((S+In )T )(det T )p− n+1
2

Trace(A1X )n

k !(p )υ

1

Γn (p )

is an integrable dominant. Letting k →∞, one obtains lim
k→∞ Iυ(Ak ) = Iυ(A). This establishes

that the result holds even for the singular A.
Using another very well-known equality for the zonal polynomials, namely [79, Eq. (10)]

etr(X ) =
∞∑

m=1

∑
υ∈Em

Cυ(X )
m !

,

we obtain the result from the theorem.

We now present the 2× 2 case for methodological reasons. In the case of 2× 2 matrices,
the results stated earlier are simpler and allow for easier computation. We present the main
results from Section 4 in [79].

The zonal polynomials can be expressed in terms of Legendre polynomials. Denote by
(Pk )k¾0 the Legendre polynomials. The most common definition is by using their generating
formula.

1p
1−2a b − b 2

=
∞∑

k=0

b k Pk (a ).

Onemay also define the Legendre polynomials using the so-called Rodrigues formula (see, e.g.
[125]) as:

Pk (a ) =
1

k !2k

dk

da k
(a 2−1)k , k = 0, 1, . . .

Let A be an n × n matrix, whose l -th principal minor is denoted by Ml (A). Assume that
υ= (k1, k2, . . . , kn ) is a partition. Then ∆υ(A) will denote the following expression:

∆υ(A) = (M1(A))
k1−k2 × (M2(A))

k2−k3 × · · ·× (Mn (A))
kn .

Denote by SO(n ) the special orthogonal group (rotation group) of order n , i.e., SO(n ) = {A : A ∈
O (n )∧det(A) = 1}. This helps us formulate the following result:

Proposition 1.4.2. [79, Proposition 4.1] Let k be a non-negative integer and let υ= (k1, k2) with
k1+k2 = k and k1, k2 ¾ 0. Then for a symmetric non-singular matrix T of order 2, one has∫

SO(2)

∆υ(A
−1T A)dA = (det T )

k
2 Pk1−k2

� Trace(T )

2(det(T ))
1
2

�
.

In the case of a non-zero singular matrix and a nontrivial partition (i.e., not of a form (k ,0)), one
has

∫
SO(2)

∆υ(A−1T A)dA = 0, while in the case υ= (k ,0), the integral takes the form∫
SO(2)

∆υ(A
−1T A)dA =

(2k )!
22k (k !)2

.
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Proof. Assume α ∈ [0,π] represents an angle. Then, a typical element of SO(2) can be repre-
sented as

r (α) =

�
cosα −sinα
−sinα cosα

�
.

Now, assuming T =

�
λ1 0
0 λ2

�
, one may see that ∆υ(T ) =λ

k1−k2
1 (λ1λ2)k2 , and consequently

∫
SO(2)

∆υ(A
−1T A)dA =

1

2π

2π∫
0

∆υ(r (−α)Trace(−α))dα= (λ1λ2)
k2

1

2π

2π∫
0

(λ1 cos2α+λ2 sin2α)k1−k2 dα.

We compute the generating function:

1

2π

∞∑
l=0

t l

2π∫
0

(λ1 cos2α+λ2 sin2α)l dα=
1

2π

2π∫
0

dα

1− t (λ1 cos2α+λ2 sin2α)

=
2

π

π
2∫

0

dα

1− t (λ1 cos2α+λ2 sin2α)
=

1p
(1− tλ1)(1− tλ2)

.

The last integral is computed using elementary methods (the change of variables u = tanα).
Therefore, in the non-singular case, we have established that

1p
(1− tλ1)(1− tλ2)

=
∞∑
l=0

t l (λ1λ2)
l
2 Pl

� λ1+λ2

2
p
λ1λ2

�
.

This finishes the proof in the non-singular case. In the singular case, the proof is analogous to
the one given above, and we omit it here.

The zonal polynomials in case of 2×2 matrices have tractable expressions. It is well known
that [102, p. 237]:

C(k ,0) =
22k (m !)2

(2m )!
,

C(k1,k2) = 22k k !k1! · 1
2
· 3

2
· · · · · 2k2−1

2
· 2(k1−k2)+1

(2k1+1)!(2k2)!
, for k2 6= 0 and k = k1+k2.

We state the form of the density of a 2× 2 noncentral Wishart distribution. The noncentral
Wishart density in the case p > 1

2 and A non-singular is given by:

γ(p , A)(dT ) = exp(−Trace(T +A))(det T )p− 3
2

×� ∞∑
k=0

det(AT )
k
2

k !

∑
υ∈Ek

C(k1,k2)

Pk1−k2

�
Trace(AT )

2
p

det(AT )

�
Γ (k1+p )Γ (k2+p + 1

2 )

�
Ind(T ∈P2)(dT ).

If the matrix A is a zero matrix, then the density does not exist. If the matrix A is singular and
non-zero, then the density in the case p > 1

2 is given by

γ(p , A)(dT ) =
exp(−Trace(T +A))

Γ (p + 1
2 )

(det(T ))p− 3
2

∞∑
k=0

Trace(AT )k

k !Γ (k +p )
Ind(T ∈P2)(dT ).

In the non-zero singular case, the matrix A is such that Rank(A) = 1 and admits the repre-
sentation A = λk ⊗ k , where k ∈ R 2 − {0} and λ ∈ R − {0}. Now, we see that Trace(AT ) =
λTrace(k ⊗ k T ) = λk T k T . The special case when λ is an integer larger than 2 is useful, since
the following lemma holds.
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Lemma1.1. [79, Proposition 4.2] If X1, X2, . . . , Xλ are standard normalN (0, I2) random vectors and
let k ∈R−{0} be arbitrary. Then, the symmetric random matrix

T =
1

2
[(X1−k )′(X1−k )+ (X2−k )′(X2−k )+ · · ·+ (Xλ−k )′(Xλ−k )]

has the density of

γ
�λ

2
,λk ⊗k

�
(dT ) =

exp(−Trace(T )−λ||k ||2)
Γ
�
λ+1

2

� (det T )
λ−3

2

� ∞∑
l=0

λl (k T k T )l

l !Γ (l + λ
2 )

�
Ind(T ∈P2)(dT ).

It was initially believed that the k × k noncentral Wishart distribution is defined for the
parameter p belonging to the so-called Gindikin set Λ of order k , i.e.,

Λ=
¦1

2
,1, . . . ,

k −1

2

©∪ �k −1

2
,∞�

,

where no other conditions should be imposed on the rank of the scale matrix Σ or the non-
centrality matrixω. The rationale behind this assumption, formalized in [79, Proposition 2.3],
was that the analogous result holds to the central Wishart case. The condition in the central
Wishart case was investigated in papers by Gindikin [47], Shanbhag [120], and Peddada and
Richards [111]. This initial belief was proven to be false by Meierhofer [91], in a paper that
utilized the techniques of affine Markov spaces. The corrected version was established via the
techniques of linear algebra in [80], providing a definite answer to the question of the existence
of the noncentral Wishart distribution. Therefore, we will use the results from [80] whenever
we refer to the problem of the existence of a noncentral Wishart distribution.

1.5 Hankel transforms of matrix argument

In this section, we aim to introduce the Bessel functions of one and two matrix arguments, as
well as the (orthogonally invariant) Hankel transforms.

The following is taken from [54]. Let κ be a vector of p nonnegative integers κ= (k1, . . . , kp ).
We call κ a partition, whose length l (κ) is the number of nonzero entries and its weight, denoted
by |κ|, is the sum k1 + . . .+kp . Let z ∈ C and r > 0. Denote the shifted factorial by (z )r =
z (z + 1)(z + 2) . . . (z + r − 1). If κ = (k1, k2, . . . , kp ) is a partition, the partitional shifted factorial
can be defined as

[z ]κ =
p∏

i=1

�
z − 1

2
(i −1)

�
ki

.

Moreover, denote by S n×n the space of symmetric n ×n matrices. The definition of zonal
polynomials, which are significant for the construction of novel tests, is given below.

Definition 1.3. If κ is an arbitrary partition, we define the zonal polynomial Cκ as:

Cκ(In ) = 22|κ||κ!|�m

2

�
κ

∏l (κ)
r<s (2kr −2ks − r + s )∏l (κ)

r=1(2kr + l (κ)− r )!
.

and if Y ∈ S n×n is an arbitrary symmetric matrix

Cκ(Y ) =Cκ(In )(det Y )km

∫
O (n )

n−1∏
i=1

(Mi (H Y H −1))ki−ki+1 dµ(H ),

where dµ(H ) denotes the normalized Haar measure (1.7) and Mi (X ) denotes the i -th principal
minor of the matrix X .
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From the orthogonal invariance of the measure µ, it follows directly that Cκ is an orthog-
onally invariant function, namely Cκ(H Y H ′) = Cκ(Y ) for all H ∈ O (n ). Moreover, Cκ(Y ) is a
function of eigenvalues of Y . If A ∈ S n×n and B

1
2 denotes the positive definite square root

of a positive definite matrix B ∈ P n×n
+ , then the matrices B

1
2 AB

1
2 , AB and B A have the same

eigenvalues, and consequently Cκ(B
1
2 AB

1
2 ) =Cκ(AB ) =Cκ(B A). This holds for any orthogonally

invariant function.
Let Y > 0 and X ∈ S n×n . The following mean value property is established in [102, p. 243]:∫

O (n )

Cκ(H Y H ′X )dH =
Cκ(Y )Cκ(X )

Cκ(In )
. (1.8)

The properties of zonal polynomials are studied in [52, 54, 67, 102].
We are ready to introduce the Bessel polynomials of one matrix argument. This topic was

first entertained in [60] and there exist several approaches; however, we conform to that out-
lined in [102, Chapter 7] and the subsequent work of Hadjicosta and Richards [54].

Let ν be a complex number such that −ν+ 1
2 (i −n ) /∈N for all i = 1,2, . . . , n . This condition

is necessary to ensure [ν+ 1
2 (n +1)]κ 6= 0 for any partition κ.

Definition 1.4. Let Y ∈ S n×n and ν ∈C be defined as above. The Bessel function of the first
kind of order ν is defined as

Aν(Y ) =
1

Γn (ν+
1
2 (n +1))

∞∑
r=0

(−1)r

r !

∑
|κ|=r

Cκ(Y )

[ν+ 1
2 (n +1)]κ

. (1.9)

Let X ∈Mn×n and let A = {X ′X ∈Mn×n : X ′X < In}, where with X < Y we denoted Y −X ∈
P n×n
+ . Herz [60] established the following generalization of the Poisson integral [60, Equation

(3.6’)]:

Aν(X
′X ) = 1

πn 2/2Γn (ν+
1
2 )

∫
A

etr(2iX ′Q )(det(In −X ′X ))ν− 1
2 n (dX ), ℜ(ν)> 1

2
(n −2).

The integral is with respect to the Lebesgue measure on A [54, Equation 12]. This can be used
to prove the following inequality:

Lemma1.2. [52, Lemma 6.2.1] Forℜ(ν)> 1
2 (n−2) and any n×n matrix X , the following inequality

holds:

|Aν(X ′X )|¶ 1

Γn (ν+
1
2 (n +1))

.

Proof. Since |etr(2iX ′Q )|= 1, we have that

|Aν(X ′X )|¶ 1

πn 2/2Γn (ν+
1
2 )

∫
A

(det(In −X ′X ))ν− 1
2 n (dX ) = Aν(0) =

1

Γn (ν+
1
2 (n +1))

. (1.10)

Let us introduce the Bessel function of two matrix arguments.

Definition 1.5. Let ν be a complex number such that −ν+ 1
2 (i −n ) /∈ N for all i = 1, 2, . . . , n .

Let X , Y ∈ S n×n . The Bessel function of the first kind of order ν of two matrix arguments is
defined as

Aν(X , Y ) =
1

Γn (ν+
1
2 (n +1))

∞∑
r=0

(−1)r

r !

∑
|κ|=r

Cκ(X )Cκ(Y )

[ν+ 1
2 (n +1)]κCκ(In )

. (1.11)
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From (1.9) and (1.8), we can establish that [102, p. 260]:

Aν(X , Y ) =

∫
O (n )

Aν(H X H ′Y )dH , X > 0, Y ∈ S n×n . (1.12)

and using (1.12) and (1.10), we can see that [54, Equation 26]:

|Aν(X , Y )|¶ 1

Γn (ν+
1
2 (n +1))

. (1.13)

Now we are ready to introduce the Hankel transform of the matrix argument.

Definition 1.6. [54, p. 1329] Let X > 0 be a symmetric random matrix with probability den-
sity function f (X ). For ℜ(ν) > 1

2 (m − 2) the Hankel transform of order ν is defined as the
function

HX ,ν(T ) = EX

�
Γm
�
ν+

1

2
(m +1)

�
Aν(T X )

�
,

where T > 0 is a symmetric matrix, Γm denotes the multivariate Gamma function and Aν(T )
denotes the Bessel function of the first kind of order ν.

It is important to note that the Bessel function in the definition above has only one argu-
ment.

The Hankel transform has many attractive properties [52, Lemma 6.3.1]. It is a continuous
function of T , because Aν(T X ) is a continuous function of T for every fixed X > 0. Let g be
an arbitrary Lebesgue integrable function. Function Γn (ν+

1
2 (n + 1))Aν(T X )g (X ) is bounded

by the Lebesgue integrable function g (X ) for all X , T > 0. This follows from (1.10). Therefore,
the continuity of the Hankel transform follows from the Dominated Convergence theorem.

Its norm is bounded from above by 1. This follows from (1.10) and the triangle inequality
[52, Lemma 6.3.1].

There exists an inversion formula as well:

Theorem 1.7. [52, Theorem 6.3.5] Let X > 0 be an n ×n random matrix with Hankel transform
HX ,ν, and probability density function f ∈ L 2

ν. Then,

f (X ) =
1

Γn (ν+
1
2 (n +1))

∫
T>0

Aν(T X )(det(T X ))νHX ,ν(T )dT .

Denote by Xk
D−→ X the weak convergence of Xk to X when k →∞. The Hankel transform

is continuous with respect to X . The following theorem establishes that fact:

Theorem 1.8. [52, Theorem 6.3.6] Let {Xk , k ∈N} be a sequence of n ×n positive definite random
matrices whose Hankel transforms are denoted by {Hk , k ∈ N}. If there exists a positive n × n

semidefinite real random matrix X with Hankel transform HX such that Xk
D−→ X , then for each

T > 0

lim
k→∞Hk (T ) =HX (T ). (1.14)

Conversely, if there exists a function H :P n×n
+ → R such that H (0) = 1, it is continuous at 0 and

(1.14) holds, then H is the Hankel transform of an n ×n positive definite random matrix X , and

Xk
D−→ X .
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Denote by Wd (a ,Σ) a d ×d randommatrix that has the Wishart distribution with the shape
parameter a and the scale matrix Σ. It is a random variable with a density given by (1.5).

The Hankel transform uniquely determines the distribution of the random variable X , i.e.,
the following theorem holds.

Theorem1.9. [54, p. 1330] Let X and Y bem×m positive definite randommatrices with Hankel
transformsHX ,ν andHY ,ν respectively. IfHX ,ν =HY ,ν, then X

D= Y .

Proof. The Hankel transformHZ ,ν of a random variable Z ∈Wm (a ,Σ) is equal to etr(−TΣ−1)
when ν = a − 1

2 (m + 1). Furthermore, if X > 0 is an m ×m random matrix with an arbitrary
distribution that is independent of a random variable Z ∈Wm (a , Im ), then the following relation
holds for every T > 0:

EZ (HX ,ν(T
1
2 Z T

1
2 )) = EX (HZ ,ν(T

1
2 X T

1
2 )). (1.15)

Taking a distribution Z1 ∈ Wm (a , Im ) independent of X , where a = ν+ 1
2 (m + 1), the relation

(1.15) becomes

EZ1
(HX ,ν(T

1
2 Z1T

1
2 )) = EX (HZ1,ν(T

1
2 X T

1
2 )) = EX (etr(−T X )) =LX (T ). (1.16)

The expression on the right side is a Laplace transform of a random variable X . The equality
EX (HZ1,ν(T

1
2 X T

1
2 )) = EX (etr(−T X )) is justified by the use of the Kummer formula [60]. We

extend the uniqueness of the Laplace transform to the uniqueness of the Hankel transform.
AssumeHX ,ν =HY ,ν. Furthermore, assume that Z2 ∈Wm (a , Im ) is independent of X and Y

and assume a = ν+ 1
2 (m +1). Then we have, by applying the relation (1.16) twice:

LX (T ) = EZ2
(HX ,ν(T

1
2 Z2T

1
2 )) = EZ2

(HY ,ν(T
1
2 Z2T

1
2 )) =LY (T ).

By establishing the equality of the Laplace transforms of X and Y for every T > 0, and applying
[37, p. 16], the result of the theorem follows.

However, theHankel transform is not an orthogonally invariant function. The orthogonally
invariant Hankel transform can be defined as

Definition 1.7. [54, p. 1329] Let X > 0 be a random matrix with probability density function
f (X ). For ℜ(ν)> 1

2 (m −2) we define the orthogonally invariant Hankel transform of order ν as
the function

H̃X ,ν(T ) = EX

�
Γm
�
ν+

1

2
(m +1)

�
Aν(T , X )

�
,

where T > 0, Aν(T , X ) denotes the Bessel function of the first kind of order ν with two matrix
arguments.

One may readily see that from (1.12) and Definition 1.7, the following relation holds [52,
Remark 6.4.2]:

H̃X ,ν(T ) =

∫
O (m )

HX ,ν(T ) = (H T H ′)dH , (1.17)

from which we conclude that the properties stated in [52, Lemma 6.3.1] hold for the orthog-
onally invariant Hankel transforms as well. Moreover, the uniqueness theorem can be estab-
lished analogously:

Theorem1.10. [52, Theorem 6.4.4] Let X̃ and Ỹ be m×m positive definite randommatrices with
orthogonally invariant distributions and corresponding orthogonally invariant Hankel transforms
H̃X̃ ,ν and H̃Ỹ ,ν respectively. If H̃X̃ ,ν = H̃Ỹ ,ν, then X̃

D= Ỹ .



1.6. MATRIX-VARIATE STATISTICAL TESTS 21

The empirical orthogonally invariant Hankel transform of X1, X2, . . . , Xn of order ν is given
by

H̃n ,ν(T ) =
Γm
�
ν+ 1

2 (m +1)
�

n1

n∑
j=1

Aν(T , X j ). (1.18)

It is a consistent estimator of the orthogonally invariant Hankel transform. Since the orthog-
onally invariant Hankel transform uniquely determines the distribution, it forms the founda-
tion of statistical tests in the space of symmetric positive definite matrix distributions. The
idea behind the construction of these statistical tests can be traced back to the univariate case.

1.6 Matrix-variate statistical tests

In this section, we present contemporary matrix-variate statistical tests, which motivate sub-
sequent chapters of this dissertation.

In [4], Alfelt et al. considered the GOF tests for the Wishart process. The family of random
matrices (At )Tt=1 with the accompanying filtration of σ-algebras (Ft )Tt=1 is said to be a Wishart
process if At |Ft ∈Wn (a ,Σt ), where the dimension n and the scale parameter a are fixed, while
the covariance matrix Σt varies over the index set. They reduced the problem of testing the
GOF of the Wishart process to performing the GOF tests of normality on the residual matrix.
The second part of the paper tests for autocovariance, but that is out of scope for this disser-
tation.

The Wishart process, as a time-dependent object is of interest in finance, since the Wishart
models are commonly used in portfolio modeling. For some singular autoregressive Wishart
models, refer to [3].

We now present the GOF test for the Wishart distribution, i.e., the case of independent
equally distributed random variables, as discussed in [54], and present the calculations that
will be important in the following part of the text.

Hadjicosta and Richards proposed the following test statistic:

T 2
n = n

∫
T>0

�H̃n ,ν−etr(−T /α)
�2

dP0(T ), (1.19)

where H̃n ,ν is given by (1.18), dP0 corresponds to the Wishart Wm (α, Im ) measure (1.5).
etr(−T /α) is the almost sure limit of H̃n ,ν when the sample comes from the Wishart distri-
bution [52, p. 161 - 162]. It is important to note they assume α is known.

They set ν=α− 1
2 (m +1) and explicitly calculate the value of the test statistic.

The authors also derived the asymptotic properties of the proposed test. The space they
considered is the space L 2(dW ) of all Borel-measurable functions f : P+ → C such that∫
T>0

| f (T )|2 dW (T ), where dW (T ) denotes a standard Wishart measure. This space is a sepa-

rable Hilbert space, when equipped with an inner product

〈 f , g 〉=
∫

T>0

f (T )g (T )dW (T ).

The norm is of the form


 f


=p〈 f , g 〉.

For more results on the test by Hadjicosta and Richards, we refer the reader to [52] and
[54]. This work served as an inspiration in deriving the two-sample test, which we discuss in
the following section.
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Chapter 2

Two-sample tests of equivalence for
matrix distributions

In this chapter, we present two novel two-sample tests of equivalence in the space of positive
semidefinite matrix distributions. In the first part, we introduce the notion of orthogonal
invariance in distribution (see [84]), as it is important for the construction of one of the tests.
Following that, we present two first-of-their-kind tests.

The test outlined in [84] is the first-of-its-kind test of orthogonal invariance in distribu-
tion in the space of symmetric positive definite matrix distributions (see Section 1.6). The
choice to employ orthogonally invariant Hankel transforms in the construction of the test had
dual motivation. The theoretical structure was already established in [54], and the algorithmic
strategies detailed in [72] facilitated the numerical computation of the test statistic. In prac-
tical scenarios, data are typically subjected to orthogonal transformations through PCA or by
eliminating the reliance on the scale parameter. The use of orthogonal transformations is also
prevalent in the field of finance [119, 141].

The test in [86] fills an important gap in the literature, as it is the first two-sample test
of equivalence in distribution within the class of arbitrary (i.e., not necessarily orthogonally
invariant) matrix distributions. The test statistic is presented in Section 2.2.1. The test statistic
itself is not orthogonally invariant, hence the favorable ability of the test to distinguish between
distributions belonging to the same family of distributions.

We proceed with the large-sample behavior of the novel tests. Following that, we present
the empirical test powers of the tests and conclude the section with real data applications in
finance and insurance. All results of this section can be found in [84, 86].

2.1 Notion of orthogonal invariance in distribution

The concept of orthogonal invariance in distribution (OID) is introduced as follows:

Definition2.1. We call twomatrix distributions X and Y orthogonally invariant in distribution
if there exists an orthogonal matrix P such that X

D= P ′Y P .

The following result is fundamental in the construction of the test. It extends the unique-
ness of the orthogonal Hankel transforms to the class of distributions orthogonally invariant
in distribution, compared to Theorem 1.10, which asserts the uniqueness in the case of orthog-
onally invariant distributions.

We use the following notation throughout the chapter, for reasons of brevity:

Jν(T ) = Γ
�
ν+ 1

2 (m +1)
�
Aν(T )

23
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and
Jν(T , X ) = Γ

�
ν+ 1

2 (m +1)
�
Aν(T , X ).

Theorem2.1. [84, Theorem 2] Let X and Y bem×m random symmetric positive definite matrices
and H̃X ,ν and H̃Y ,ν their orthogonally invariant Hankel transforms respectively. Then H̃X ,ν = H̃Y ,ν

if and only if X and Y are orthogonally invariant in distribution.

Proof. From (1.12), we have that for every positive definite matrix X and every symmetric
matrix T , the following equality holds:

Aν(T , X ) =

∫
O (m )

Aν(H T H ′X )dH =

∫
O (m )

Aν(H
′H T H ′X H )dH =

∫
O (m )

Aν(T H ′X H )dH . (2.1)

The middle equality emerges from the fact that matrices X and H ′X H have the same eigen-
values if H is an orthogonal matrix and Aν is a function of eigenvalues.

Assume now that P ′Y P = X . We obtain

Aν(T , X ) =

∫
O (m )

Aν(T H ′X H )dH =

∫
O (m )

Aν(T H ′P ′Y P H )dH =

∫
O (m )

Aν(T (P H )′Y (P H ))dH .

Note that the Haar measure is orthogonally invariant, therefore if we denote by H1 the matrix
P H , we obtain

Aν(T , X ) =

∫
O (m )

Aν(T (P H )′Y (P H ))dH =

∫
O (m )

Aν(T H ′1 Y H1)dH1

=

∫
O (m )

Aν(H T H ′Y )dH = Aν(T , Y ).

Therefore, directly from the definition of the orthogonal Hankel transform and using the fact
that the differential form is orthogonally invariant, we get

H̃X ,ν(T ) = EX

�
Jν(T , X )

�
= EY

�
Jν(T , P ′Y P )

�
= EY

�
Jν(T , Y )

�
= H̃Y ,ν(T ).

Let us assume the equality of orthogonal Hankel transforms. Using (1.17), and the defini-
tion of the orthogonally invariant Hankel transform, we have that

H̃X ,ν(T ) = EX EH

�
Jν(H T H ′X )

�
.

Now we use the fact that Aν(·) depends only on the eigenvalues of its arguments to obtain

H̃X ,ν(T ) = EX EH

�
Jν(T H X H ′)

�
,

but since T H X H ′ and T Z1 for some Z1 orthogonally invariant to X are symmetric matrices,
which have the same eigenvalues, and the differential form is orthogonally invariant, we have:

H̃X ,ν(T ) = EZ1

�
Jν(T Z1)

�
=HZ1,ν(T ).

We obtain a similar result for Y , i.e., H̃Y ,ν(T ) =HZ2,ν(T ), and the equality of distributions Z1

and Z2 follows from Theorem 1.9. Now, since Z1 = P ′1 X P1 and Z2 = P ′2 Y P2, where P1, P2 ∈O (m ),
we get that X is orthogonally invariant to Y .
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2.2 Test statistics

We present the construction of the test statistic from [86], followed by the construction of the
test statistic from [84].

2.2.1 Laplace transform case

In this subsection, we present our two-sample test statistic based on the Laplace transform.
Based on the samples X and Y , we want to test the null hypothesis

H0 : X and Y are equally distributed,

against the alternative

H1 : X and Y are not equally distributed.

Since the Laplace transform uniquely determines the distribution of the randommatrices [37,
Theorem 2.1.9], the null hypothesis can be stated in the terms of equality of the Laplace trans-
forms as:

H0 :LX (T ) =LY (T ), for all T > 0,

where LX (T ) = E exp(−Trace(T X )) denotes the Laplace transform of the random variable X .
Note that the argument of the Laplace transform is a matrix T . A test statistic is constructed
using the difference of the empirical Laplace transforms. Let L̂n1

(T ) represent the empirical
Laplace transform of X, defined as:

L̂n1
(T ) =

1

n1

n1∑
k=1

exp(−Trace(T Xk )).

Similarly, let L̂n2
(T ) represent the empirical Laplace transform of Y, defined as:

L̂n2
(T ) =

1

n2

n2∑
k=1

exp(−Trace(T Yk )).

The test statistic is of the form [86, Equation 2]:

Ln1,n2,ν,Σ,ω =

∫
T>0

(L̂n1
(T )− L̂n2

(T ))2 dN C W (T )

=

∫
T>0

� 1

n1

n1∑
k=1

exp(−t r (T Xk ))− 1

n2

n2∑
k=1

exp(−t r (T Yk ))
�2

dN C W (T ), (2.2)

where dN C W (T ) is a corresponding noncentral Wishart (ν,Σ,ω)measure.
The noncentral Wishart d × d distribution N C W (2ν,Σ,ω), where ν > 0 and is not neces-

sarily an integer, exists if ν ¾ d−1
2 or if ν ∈ {0.5,1, 1.5, . . . , (d − 2)/2} and Rank(ω) ¾ 2ν [80]. For

the explicit form of the density function, we refer the reader to Section 1.4.
The Laplace transform of the N C W (2ν,Σ,ω) distribution is given by [80, Equation (2)]:

LX (s ) = E (exp(−Trace(s X ))) =
exp(−Trace(2s (Id +2Σs )−1ω))

det(Id +2Σs )ν
. (2.3)

The direct computation, taking into account the basic identity Trace(AB ) = Trace(B A),
yields
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Ln1,n2,ν,ω =
1

n 2
1 n 2

2

n1∑
i=1, j=1

n2∑
l=1,k=1

Ψ(X i , X j ; Yk , Yl ),

where Ψ(X i , X j ; Yk , Yl ) is a symmetric kernel of the form:

Ψ(X i , X j ; Yk , Yl ) =
�L (X i +X j ) +L (Yk + Yl )− 1

2
L (X i + Yk )−

1

2
L (X i + Yl )− 1

2
L (X j + Yk )− 1

2
L (X j + Yl )

�
,

where the function L (·) is the Laplace transform of the N C W (ν,Σ,ω) distribution, and is of
the form given in equation (2.3).

2.2.2 Hankel transform case

We now present the computation of the test statistic from [84], which is based on empirical
Hankel transforms, but follows the same idea presented above.

Let X = X1, X2, . . . , Xn1
and Y = Y1, Y2, . . . , Yn2

be two independent random samples identically
distributed as X and Y , where X and Y are symmetric positive definite random matrices,
respectively. We wish to test the null hypothesis

H0 : X and Y are orthogonally invariant in distribution,

against the alternative

H0 : X and Y are not orthogonally invariant in distribution.

Following Theorem 2.1, the null hypothesis can be stated as:

H0 : H̃X ,ν(T ) = H̃Y ,ν(T ), for all T > 0.

Given that the concept of orthogonal invariance in distribution is characterized by the equiv-
alence of corresponding orthogonal Hankel transforms, a logical approach to devising a test
is to base it on the disparity between suitable empirical equivalents, specifically, empirical or-
thogonal Hankel transforms (1.18). The indices n1 and n2 will be associated with the samples
X and Y , respectively.

The test statistic is constructed as follows [84, Equation 4]:

In1,n2,ν =

∫
T>0

�H̃n1,ν(T )−H̃n2,ν(T )
�2

dW (T ), (2.4)

where H̃n1,ν(T ) and H̃n2,ν(T ) are empirical orthogonal Hankel transform of X and Y , respec-
tively, defined in (1.18) and dW (T ) is a standard Wishart measure.

Let us compute the test statistic by following the steps outlined in [52, p. 163]:∫
T>0

(H̃n1,ν(T ))
2 dW (T ) =

1

n 2

∫
T>0

�
n∑

i=1

Γm (α)Aν(T , Yi )

�2

dW (T )

=
Γm (α)

n 2

n∑
i=1

n∑
j=1

∫
T>0

Aν(T , Yi )Aν(T , Yj )(det T )νetr(−T )dT .
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Using Fubini’s theorem and (1.12), we get that∫
T>0

(H̃n1,ν(T ))
2 dW (T )

=
Γm (α)

n 2

n∑
i=1

n∑
j=1

∫
O (m )

∫
O (m )

∫
T>0

Aν(H T H ′Yi )Aν(K T K ′Yj )(det T )νetr(−T )dT

 dH dK .

Having

Aν(H T H ′Yi ) = Aν(H
′Yi H T ) and Aν(K T K ′Yj ) = Aν(K

′Yj K T ),

the inside integral (with respect to dT ) is a special case ofWeber’s second exponential integral.
This was obtained in [60, Equation (5.8)].

For ℜ(ν)>−1, n ×n symmetric matrices X and Y , and Z > 0,∫
T>0

etr(−T Z )Aν(X T )Aν(Y T )(det T )νdT = (det Z )−ν− 1
2 (n+1)etr(−(X + Y )Z −1)Aν(−X Z −1Y Z −1).

Applying Weber’s second exponential integral, we obtain∫
T>0

(H̃n1,ν(T ))
2 dW (T ) =

Γm (α)
n 2

n∑
i=1

n∑
j=1

∫
O (m )

∫
O (m )

etr(−H ′Yi H −K ′Yj K )Aν(−H ′Yi H K Yj K )dH dK .

Using the fact that

etr(−H ′Yi H ) = etr(−Yi H H ′) = etr(−Yi ),

and (1.12) gives us:

∫
O (m )

∫
O (m )

Aν(−H ′Yi H K Yj K )dH dK =

∫
O (m )

∫
O (m )

Aν(−H (K ′Yj K )H ′Yi )dH dK

=

∫
O (m )

Aν(−K ′Yj K ′, Yi )dK = Aν(−Yj , Yi )

∫
O (m )

dK = Aν(−Yj , Yi ).

We have used the fact that Aν(−K ′Yj K , Yi ) = Aν(−Yj , Yi ) in the last row.
Combining the results, we get

∫
T>0

(H̃n1,ν(T ))
2 dW (T ) =

Γm (α)
n 2

n∑
i=1

n∑
j=1

∫
O (m )

∫
O (m )

etr(−H ′Yi H −K ′Yj K )Aν(−H ′Yi H K Yj K )dH dK

= etr(−Yi − Yj )
Γm (α)

n 2

n∑
i=1

n∑
j=1

∫
O (m )

∫
O (m )

Aν(−H ′Yi H K Yj K )dH dK

=
Γm (α)

n 2

n∑
i=1

n∑
j=1

etr(−Yi − Yj )Aν(−Yj , Yi ). (2.5)
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Applying (2.5) twice, we establish∫
T>0

(H̃n1,ν(T ))
2 dW (T ) =

1

n 2
1

n1∑
i=1

n1∑
j=1

etr(−X i −X j )Jν(−X i , X j ), (2.6)

∫
T>0

(H̃n2,ν(T ))
2 dW (T ) =

1

n 2
2

n2∑
i=1

n2∑
j=1

etr(−Yi − Yj )Jν(−Yi , Yj ). (2.7)

Following exactly the same steps as in the derivation of (2.5), we get∫
T>0

H̃n1,ν(T )H̃n2,ν(T )dW (T ) =

Γm (ν+
1
2 (m +1))

n1n2

n1∑
i=1

n2∑
j=1

∫
T>0

Aν(T , X i )Aν(T , Yj )(det T )νetr(−T )dT =

1

n1n2

n1∑
i=1

n2∑
j=1

etr(−X i − Yj )Jν(−X i , Yj ),

and similarly∫
T>0

H̃n2,ν(T )H̃n1,ν(T )dW (T ) =
1

n1n2

n2∑
i=1

n1∑
j=1

etr(−Yi −X j )Jν(−Yi , X j ).

Finally, we obtain that (2.4) has the following form:

In1,n2
=

1

n 2
1 n 2

2

n1∑
i=1, j=1

n2∑
l=1,k=1

Φν(X i , X j ; Yk , Yl ),

where Φν(X i , X j ; Yk , Yl ) is of the form

Φν(X i , X j ; Yk , Yl ) = etr(−X i −X j )Jν(−X i , X j )+ etr(−Yk − Yl )Jν(−Yk , Yl )
−etr(−Yk −X i )Jν(−Yk , X i )−etr(−X i − Yk )Jν(−X i , Yk ).

The computation of the test statistic is demanding due to the intricate nature of the func-
tions that need to be computed. This complexity escalates with an increase in the dimension-
ality of the problem. This is a common challenge in high-dimensional data analysis.

2.3 Large sample properties of the novel tests

In this section, we present the theoretical result that determines the asymptotic behavior of
the test statistic (2.4), as well as a numerical study of the behavior of the test statistic (2.2).

The space L 2 = L 2(W ) of orthogonally invariant Borel measurable functions f :P m×m
+ →C

such that
∫

X>0

| f (X )|2 dW (X )<∞ forms a separable Hilbert space when equipped with the inner

product

〈 f , g 〉=
∫

X>0

f (X )g (X )dW (X ).
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The norm in this space is defined as


 f


=p〈 f , f 〉. These facts are established in [54] and are

instrumental in establishing the asymptotic behavior of the test statistic (2.4). We now state
the main theoretical result of this section.

Theorem 2.2. [84, Theorem 3] Let X1, X2, . . . , Xn1
and Y1, Y2, . . . , Yn2

be two sequences of indepen-
dent orthogonally invariant randommatrices having the same orthogonal Hankel transform H̃ν(T ).
Assume N = n1+n2 and

n1
N →η ∈ (0,1) when n1, n2→∞. Then

n1n2

N
In1,n2

D−→‖Z‖2 ,

where {Z (T ), T > 0} is a centred Gaussian process on L 2 with a covariance kernel

ρ(S , T ) = E [Jν(S , X )Jν(T , X )]−H̃ν(S )H̃ν(T ).
Proof. The proof will follow the one outlined in [2]. Assume T is a symmetric positive definite
m ×m matrix. Let us define the stochastic process

Zn1,n2,ν(T ) =
1

n1

n1∑
j=1

Jν(T , X j )− 1

n2

n2∑
j=1

Jν(T , Yj ).

Note that although the processZn1,n2,ν depends on ν, we drop the index ν for the sake of brevity.
The same applies to the test statistic In1,n2,ν.

From (1.13), we get

|Jν(X , Y )|= Γm
�
ν+

1

2
(m +1)

�|Aν(X , Y )|¶ Γm
�
ν+

1

2
(m +1)

��
Γm
�
ν+

1

2
(m +1)

��−1
= 1. (2.8)

By applying (2.8) and using the triangle inequality, we obtain that

|Zn1,n2
(T )|¶ 1

n1

n1∑
j=1

|Jν(T , X j )|+ 1

n2

n2∑
j=1

|Jν(T , Yj )|¶ 2.

Now, it follows that

Zn1,n2
(T )



2
=

∫
T>0

(Zn1,n2
(T ))2 dW (X )¶

∫
T>0

4 dW (T ) = 4. (2.9)

Therefore, the random field {Zn1,n2
(T ), T > 0} is a random element of L 2. The test statistic In1,n2

can be represented as In1,n2
=


Zn1,n2

(T )


2
.

Let Zn1,X and Zn1,Y denote the following random processes: Zn1,X (T ) =
p

n1(H̃n1,ν(T ) −H̃ν(T )) and Zn2,Y (T ) =
p

n2(H̃n2,ν(T )−H̃ν(T )) respectively.
Note that under H0 we can write

n1n2

N
In1,n2

=





sn2

N
Zn1,X −

s
n1

N
Zn2,Y





2

.

It is worth mentioning that if the constants p and q satisfy p 2 + q 2 = 1, the process Z =
pZ1+qZ2 has the covariance structure ρ. Since

Æ
n1
N

2
+
Æ

n2
N

2
= 1 and n1

N →η ∈ (0, 1), it follows
that {Æn2

N Zn1,X −Æn1
N Zn2,Y } converges in distribution to the Gaussian process Z (T ) with the

covariance kernel ρ. The result of the theorem follows from the continuous mapping theorem.
Noting that for every S > 0, E (Γm (ν+

1
2 (m+1))Aν(S , X )−H̃ν(S )) = 0, direct computation yields

ρ(S , T ) =Cov(H̃n1,ν(S )−H̃ν(S ),H̃n1,ν(T )−H̃ν(T ))
= E [(Jν(S , X )−H̃ν(S ))× (Jν(T , X )−H̃ν(T ))] = E [Jν(S , X )Jν(T , X )]−H̃ν(S )H̃ν(T ).
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It is important to emphasize that the null distribution of the test statistic (2.4) is not free
of the underlying distributions of X and Y . Consequently, the utilization of specific approxi-
mation methods becomes necessary for practical testing.

Currently, it is not possible to establish the asymptotic results for the test statistic (2.2)
by similar methods as given above, since the separability of the Hilbert space L̃ 2 of all (not
necessarily orthogonally invariant) Borel measurable functions f : P m×m

+ → C, such that∫
X>0

| f (X )|2 dW (X ) <∞ is still an open question. In order to illustrate the large sample be-

havior of the test statistic (2.2), we present the 95-th empirical percentiles of the empirical
distributions of the scaled test statistic n1n2

n1+n2
Ln1,n2,ν,Σ,ω. The N = 1000 values of the statis-

tic n1n2
n1+n2

Ln1,n2,ν,Σ,ω have been obtained. The constant cn1,n2
= n1+n2

n1n2
has been used in assessing

asymptotic behavior, as in Theorem 2.2. We aim to tabulate the values if the null hypothe-
sis holds. In the case of dimension 2, we assume that both samples come from the W2(2.5, I2)
Wishart distribution, while in the case of dimension 3, we assume that both samples come from
the W3(3, I3)Wishart distribution. We fix the parameter Σ= Id for simplicity.

Table 2.1: Empirical 95-th percentiles of the distribution of the scaled statistics. The case of
2×2 matrices.

n1 = n2 = 100 n1 = n2 = 200 n1 = n2 = 500 n1 = n2 = 750 n1 = n2 = 1000
ν= 1, ω= I2 0.0495 0.0524 0.0549 0.0497 0.0518
ν= 1, ω= 2I2 0.0196 0.0208 0.0218 0.0196 0.0212
ν= 2, ω= I2 0.0203 0.0216 0.0223 0.0203 0.0219
ν= 2, ω= 2I2 0.0084 0.0090 0.0089 0.0082 0.0086
ν= 5, ω= I2 0.0030 0.0028 0.0029 0.0027 0.0027
ν= 5, ω= 2I2 0.0017 0.0014 0.0014 0.0014 0.0013

Table 2.2: Empirical 95-th percentiles of the distribution of the scaled statistics. The case of
3×3 matrices.

n1 = n2 = 100 n1 = n2 = 200 n1 = n2 = 500 n1 = n2 = 750 n1 = n2 = 1000
ν= 1, ω= I3 0.0109 0.0108 0.0115 0.0107 0.0108
ν= 1, ω= 2I3 0.0021 0.0021 0.0022 0.0020 0.0020
ν= 2, ω= I3 0.0016 0.0016 0.0017 0.0015 0.0016
ν= 2, ω= 2I3 3.410×10−4 3.290×10−4 3.404×10−4 3.122×10−4 3.083×10−4

ν= 5, ω= I3 2.614×10−5 2.315×10−5 2.177×10−5 2.093×10−5 2.183×10−5

ν= 5, ω= 2I3 8.125×10−6 7.132×10−6 6.729×10−6 6.990×10−6 7.327×10−6

The results are presented in Tables 2.1 and 2.2. It can be observed that the values of the
empirical percentiles of the appropriately scaled test statistic tend to stabilize with the increase
of n1 and n2. However, the parameters ν and ω greatly influence the values of the percentiles
of the empirical distribution.

2.4 Empirical test powers of novel tests

In this section, we present the results of the power study for test statistics (2.4) and (2.2).
Empirical powers are obtained using a warp-speed bootstrap algorithm (see [46]) with N =
10000 replications.
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For the statistic (2.4), for dimensions d = 2 and d = 3, the parameter ν is fixed to ν= 1, as is
common practice in problems of this nature [12]. For the statistic (2.2), we fix the parameter Σ
to Id for simplicity. To assess the impact of the parameters on the test power of the test statistic
(2.2), we consider three values of ν: ν = 1, ν = 2, and ν = 5, and two values of ω: ω = Id , and
ω= 2Id .

We provide the meta-level pseudocode for the warp-speed bootstrap algorithms, assuming
the test statistic is denoted by T . This meta-algorithm is applied directly to the test statistic
(2.4) and the test statistic (2.2). The computations are performed using MATLAB [64].

Algorithm 1 Warp-speed bootstrap algorithm
1: Sample x= (x1, . . . , xn1

) from FX and y= (y1, . . . , yn ) from FY ;
2: Compute the value of the test statistic T (x,y);
3: Generate bootstrap samples x∗ = (x ∗1 , . . . , x ∗n1

) and y∗ = (y ∗1 , . . . , y ∗n2
) from Fn1+n2

- sampling
distribution based on the joint sample (x,y);

4: Compute T (x∗,y∗);
5: Repeat steps 1-4 N times and obtain two sequences of statistics {T ( j )} and {T ∗( j )}, j =

1, ..., N ;
6: Reject the null hypothesis for the j–sample ( j = 1, ..., N ), if T ( j ) > cα, where cα denotes

the (1−α)% quantile of the empirical distribution of the bootstrap test statistics (T ∗( j ), j =
1, ..., N ).

The level of significance is set to α = 0.05, and large values of the test statistics are con-
sidered significant. The algorithm developed in [72] was implemented to evaluate the Bessel
functions of twomatrix arguments for the test (2.4). In all cases, we assume that d denotes the
dimension of the respective matrices. When estimating sample covariance matrices, samples
of dimension d have been considered.The following distributions are considered:

1. Wishart distributions with the shape parameter a > 1
2 (d − 1) and the scale matrix Σ > 0,

denoted by Wd (a ,Σ), with a density

fW ,a ,Σ(X ) =
1

Γd (a )
(detΣ)a (det X )a− 1

2 (d+1)etr(−ΣX ), X > 0. (2.10)

2. Inverse Wishart distributions with the shape parameter a > 1
2 (d −1) and the scale matrix

Σ> 0, denoted by I Wd (a ,Σ), with a density

fI W ,a ,Σ(X ) =
(detΣ)

a
2 etr(− 1

2ΣX −1)

2
a d
2 Γd (

a
2 )(det X )

a+d+1
2

, X > 0. (2.11)

3. Sample covariance matrix distributions obtained from the uniform vectors (U1, . . . ,Ud ),
where Ui ∈U [0, 1], denoted by C M Ud , with a density

f(U1,...,Ud )((x1, . . . , xd )) = 1, xi ∈ [0,1], 1¶ i ¶ d . (2.12)

4. Sample covariance matrix distributions obtained from the random vectors having the
multivariate t -distribution with a > 0 degrees of freedom, denoted by C M Td (a ,Σ), and
matrix parameter Σ> 0, with a density

ft ,a (x) =
1

(det(Σ))
1
2

Γ (a+d
2 )

Γ (d2 )(aπ)
d
2

�
1+

x ′Σ−1 x

a

�− a+d
2

, x ∈Rd . (2.13)
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Denote by K2 the following covariance matrix: K2 =

�
cos(0.7) sin(0.7)
sin(0.7) cos(0.7)

�
and denote by K3

the following covariancematrix: K3 =

 1 −1 0.95
−1 5 0.01

0.95 0.01 7

 . The covariancematrices given above

are utilized as distributional parameters in the simulation study.
The results of the power study for the test statistic (2.4) are presented in Tables 2.3 and 2.4.

The results of the power study for the test (2.4) are presented in Tables 2.5 - 2.10. Whenever
a matrix in Tables 2.3 - 2.10 is symmetric, we leave the lower part of the table empty.

The importance of the test (2.4) lies in its ability to distinguish between different distri-
butions that share the same expectation (W2(2.5, I2) versus I W2(4,2.5I2) and W3(3, I3) versus
I W3(5,3I3)) with a reasonable level of precision. Generally, the test (2.4) tends to have a lower
power when testing against distributions from the same family. However, when dealing with
different families of distributions, the test typically demonstrates higher power.

The power of the test (2.4) tends to decrease as the dimension of the matrix increases. De-
spite this, the test seems to be well calibrated, and the bootstrap approximation is not prone to
size distortions. Given that the test statistic (2.4) is a function of eigenvalues, high test powers
are expected when the underlying distributions have significantly different eigenvalues. This
is apparent when one of the samples originates from the C M U distribution. In contrast, when
the distributions have very similar eigenvalues, lower test powers are expected, as seen when
one of the samples comes from C M T (3, I ) and the other from C M T (5, I ).

Although calculating the inverse of the matrix is the most resource-intensive step in eval-
uating the test statistic (2.2), evaluating the test statistic is not as computationally challenging
as the evaluation of the test statistic (2.4), as it does not require the use of special functions.
However, the computational time needed increases with the dimensionality of the problem in
this scenario as well.

It is important to note that the test powers are not evaluated on the same samples, and con-
sequently, some discrepancies may be present. Based on Tables 2.5 - 2.10, it can be inferred
that the empirical test powers are significantly influenced by the selection of parameters. In
most scenarios, when the parameter Σ is set to Id , the empirical test powers are superior com-
pared towhenΣ= 2Id . In addition, smaller values of the parameterν are associatedwith higher
empirical test powers. The empirical test powers for ν = 5 are typically the lowest. Based on
these findings, we suggest using the test for ν = 1 and Σ = Id for optimal results. Addition-
ally, it is noticeable that the empirical test powers diminish as the dimensionality increases.
Furthermore, no substantial size distortions are detected for the new test.

Given that the test in (2.2) is the first of its kind to test for the equality in the distribution
of the symmetric positive definite matrix distributions, it is not feasible to make any further
comparisons of empirical test powers.

In the subsequent discussion, we juxtapose the tests (2.4) and (2.2). It is crucial to high-
light that the test (2.4) tests for orthogonal invariance in distribution, while the test (2.2) tests
for equivalence in distribution. Consequently, these two tests are not directly comparable.
Nevertheless, one can compare the empirical test powers of these tests. It is important to note
that the test powers are not obtained on the same samples. Moreover, it is essential to take
into account the theoretical characteristics and constraints of each test to make meaningful
comparisons.

When juxtaposing the test (2.2) with the test (2.4), it is noticeable that the test (2.2) typi-
cally surpasses the test (2.4), especially when ν = 1 and Σ = Id . This superior performance is
credited to the fact that the test (2.4) focuses on orthogonal invariance in distribution rather
than equivalence in distribution. However, as the parameter ν increases, the disparity in em-
pirical test powers between the test (2.2) and the test (2.4) becomes less pronounced. It is
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important to note that the test (2.2) does not consistently outperform the test (2.4) in all sce-
narios. For instance, when testing the inverse Wishart against the Wishart distribution, the
test (2.4) demonstrates the best performance.

We examine the behavior of the tests in a well-known theoretical scenario. Note that if
x1, x2, . . . , xn ∈ Np (0,Σ), then X = (x1, x2, . . . , xn ) follows a matrix-variate normal distribution.
Furthermore, if n ¾ p , then X ′X > 0 with probability 1 and X ′X ∈Wp (n ,Σ) [49, p. 88]. We de-
termined the test powers of the Wishart 1

499 Wd (500, Id ) distribution against the C M Td (d f , Id ),
where we calculated the sample covariance matrices on N C o v = 500 random vectors. The
parameter d f is selected from the set {1, 21, 41, . . . , 501}. The results for d = 2 and d = 3 are
presented in Figures 2.1 and 2.2. The test powers are expressed in percentage. The test powers
are computed on the same samples. It is interesting to note that the drop in the test pow-
ers is the same for both dimensions and both sample sizes. The behavior of the tests is as
expected since as the degrees of freedom increase, the t -distribution becomes closer to the
normal distribution. Consequently, the distribution of its covariance matrix becomes closer to
the appropriately scaledWishart distribution, leading to a decrease in test powers and reaching
test size for large enough degrees of freedom for both cases.
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Figure 2.1: The case of 2×2 matrices.
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Figure 2.2: The case of 3×3 matrices.
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Table 2.3: The percentage of rejected null hypotheses for different sample sizes for 2× 2 ma-
trices - statistic (2.4).

n1 = 20, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 39 12 100 33 41 45 87 92 67 87
I W2(2.5, I2) 5 10 100 82 7 8 44 60 24 33
C M T2(1, I2) 5 100 36 7 14 62 74 37 49
C M U2 5 100 100 100 100 99 100 100
W2(2.5,2I2) 4 96 89 97 99 91 95
I W2(4, 2.5I2) 5 8 57 73 33 48
W2(2.5, K2) 5 49 61 28 41
C M T2(3, K2) 5 6 10 16
C M T2(5, K2) 5 7 11
C M T2(3, I2) 5 6
C M T2(5, I2) 5

n1 = 30, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 49 19 100 38 46 57 93 97 79 89
I W2(2.5, I2) 44 5 12 100 90 6 9 55 70 29 43
C M T2(1, I2) 9 11 5 100 34 6 17 71 81 45 59
C M U2 100 100 100 5 100 100 100 100 100 100 100
W2(2.5,2I2) 45 91 48 100 4 97 96 99 100 96 98
I W2(4, 2.5I2) 46 10 11 100 96 5 11 70 82 44 62
W2(2.5, K2) 50 8 19 100 94 7 5 59 71 37 50
C M T2(3, K2) 92 48 66 100 99 63 53 6 7 10 6
C M T2(5, K2) 97 66 80 100 100 79 68 6 5 19 11
C M T2(3, I2) 75 22 42 100 95 35 31 12 21 5 7
C M T2(5, I2) 87 36 58 100 98 51 42 8 13 6 5

n1 = 50, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 61 24 100 43 55 68 97 99 90 94
I W2(2.5, I2) 50 5 16 100 95 5 10 66 81 37 53
C M T2(1, I2) 10 11 5 100 37 5 19 80 90 55 68
C M U2 100 100 100 5 100 100 100 100 100 100 100
W2(2.5,2I2) 55 96 62 100 4 99 99 100 100 99 100
I W2(4, 2.5I2) 53 11 20 100 98 5 14 80 90 54 70
W2(2.5, K2) 56 8 26 100 98 7 5 70 82 46 60
C M T2(3, K2) 96 56 75 100 100 68 58 5 7 11 6
C M T2(5, K2) 99 73 87 100 100 85 77 7 5 22 12
C M T2(3, I2) 83 23 47 100 99 37 22 13 23 5 8
C M T2(5, I2) 93 39 64 100 100 55 50 8 14 6 5

n1 = 50, n2 = 30 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 68 25 100 59 68 80 99 100 94 98
I W2(2.5, I2) 64 5 19 100 99 7 12 76 89 41 60
C M T2(1, I2) 15 14 5 100 58 8 28 89 95 62 78
C M U2 100 100 100 5 100 100 100 100 100 100 100
W2(2.5,2I2) 66 99 68 100 5 100 100 100 100 100 100
I W2(4, 2.5I2) 64 10 17 100 100 5 14 87 95 61 77
W2(2.5, K2) 73 10 36 100 100 8 5 78 90 54 69
C M T2(3, K2) 99 69 85 100 100 84 75 5 7 14 7
C M T2(5, K2) 100 86 95 100 100 94 88 7 5 29 16
C M T2(3, I2) 93 33 61 100 100 51 45 17 30 5 8
C M T2(5, I2) 98 55 76 100 100 73 66 8 17 8 5

n1 = 50, n2 = 50 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 79 26 100 77 78 89 100 100 98 100
I W2(2.5, I2) 5 19 100 100 9 15 84 95 48 71
C M T2(1, I2) 6 100 78 16 49 95 99 74 89
C M U2 5 100 100 100 100 100 100 100
W2(2.5,2I2) 4 100 100 100 100 100 100
I W2(4, 2.5I2) 5 15 94 99 69 86
W2(2.5, K2) 5 87 95 64 80
C M T2(3, K2) 5 8 19 37
C M T2(5, K2) 5 9 20
C M T2(3, I2) 5 9
C M T2(5, I2) 5
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Table 2.4: The percentage of rejected null hypotheses for different sample sizes for 3× 3 ma-
trices - statistic (2.4).

n1 = 20, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3,2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 25 6 100 16 51 19 57 71 52 69
I W3(3, I3) 5 20 100 39 5 42 22 35 17 29
C M T3(1, I3) 5 100 10 33 11 51 67 47 61
C M U3 5 100 100 100 100 100 100 100
W3(3, 2I3) 6 80 8 63 80 63 78
I W3(5,3I3) 5 80 23 36 19 29
W3(3, K3) 6 66 80 63 78
C M T3(3, K3) 4 6 5 8
C M T3(5, K3) 5 5 6
C M T3(3, I3) 5 6
C M T3(5, I3) 5

n1 = 30, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3,2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 4 36 7 100 14 65 17 70 85 66 80
I W3(3, I3) 25 4 21 100 41 3 45 29 43 23 38
C M T3(1, I3) 4 27 5 100 8 43 8 64 78 60 75
C M U3 100 100 100 5 100 100 100 100 100 100 100
W3(3, 2I3) 23 54 16 100 6 89 7 78 90 77 88
I W3(5,3I3) 56 7 44 100 84 5 88 33 48 26 43
W3(3, K3) 30 57 17 100 10 90 6 79 92 79 89
C M T3(3, K3) 62 21 56 100 71 20 74 5 7 5 10
C M T3(5, K3) 80 36 73 100 88 38 88 6 5 5 6
C M T3(3, I3) 57 17 53 100 67 18 71 5 5 5 7
C M T3(5, I3) 74 31 70 100 87 31 87 8 6 7 5

n1 = 50, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3,2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 52 10 100 12 75 14 83 93 81 91
I W3(3, I3) 26 4 21 100 46 3 48 36 55 31 48
C M T3(1, I3) 2 37 5 100 4 50 6 78 89 73 88
C M U3 100 100 100 5 100 100 100 100 100 100 100
W3(3, 2I3) 36 72 23 100 5 96 4 90 97 90 96
I W3(5,3I3) 66 9 53 100 93 5 95 44 62 36 56
W3(3, K3) 45 73 25 100 13 97 6 92 97 90 96
C M T3(3, K3) 70 22 60 100 83 20 83 5 8 5 6
C M T3(5, K3) 86 41 82 100 95 40 95 6 5 8 4
C M T3(3, I3) 65 17 61 100 81 15 81 6 12 5 8
C M T3(5, I3) 84 33 78 100 94 32 96 5 7 7 5

n1 = 50, n2 = 30 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3,2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 4 55 8 100 21 84 29 90 97 87 97
I W3(3, I3) 44 5 33 100 70 4 70 43 62 35 54
C M T3(1, I3) 3 41 5 100 10 61 11 85 95 82 93
C M U3 100 100 100 5 100 100 100 100 100 100 100
W3(3, 2I3) 37 77 22 100 5 99 5 96 99 95 99
I W3(5,3I3) 79 7 63 100 99 5 99 47 67 40 60
W3(3, K3) 47 80 24 100 11 99 6 96 99 96 99
C M T3(3, K3) 86 33 80 100 94 32 94 5 8 5 5
C M T3(5, K3) 96 55 93 100 99 60 99 7 5 11 6
C M T3(3, I3) 83 26 76 100 94 25 94 6 12 5 9
C M T3(5, I3) 95 48 91 100 99 51 99 6 7 7 6

n1 = 50, n2 = 50 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3,2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 63 6 100 39 92 50 96 99 95 99
I W3(3, I3) 6 48 100 86 5 88 47 73 39 64
C M T3(1, I3) 4 100 19 76 21 93 98 90 98
C M U3 5 100 100 100 100 100 100 100
W3(3, 2I3) 5 100 9 99 100 99 100
I W3(5,3I3) 5 100 54 78 43 68
W3(3, K3) 6 99 100 99 100
C M T3(3, K3) 5 9 6 15
C M T3(5, K3) 5 5 6
C M T3(3, I3) 5 9
C M T3(5, I3) 6
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Table 2.5: The percentage of rejected H0 for different sample sizes for 2×2 matrices, ν= 1,ω=
Id (ν= 2,ω= Id ) - statistic (2.2).

n1 = 20, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 22 (24) 29 (21) 100 (100) 51 (39) 20 (21) 99 (86) 91 (76) 96 (85) 99 (91) 100 (97)
I W2(2.5, I2) 5 (5) 16 (9) 100 (100) 87 (81) 9 (10) 97 (63) 71 (54) 83 (66) 97 (80) 99 (88)
C M T2(1, I2) 5 (5) 100 (100) 60 (37) 47 (16) 92 (30) 50 (34) 64 (45) 86 (60) 93 (73)
C M U2 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 4 (4) 95 (92) 100 (99) 99 (91) 100 (96) 100 (98) 100 (99)
I W2(4,2.5I2) 5 (5) 89 (89) 94 (68) 89 (82) 99 (88) 100 (95)
W2(2.5, K2) 4 (4) 83 (52) 90 (63) 67 (57) 76 (71)
C M T2(3, K2) 5 (5) 6 (6) 29 (13) 41 (18)
C M T2(5, K2) 5 (5) 24 (9) 31 (14)
C M T2(3, I2) 5 (5) 6 (6)
C M T2(5, I2) 5 (5)

n1 = 30, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 (4) 30 (32) 44 (30) 100 (100) 58 (42) 22 (21) 100 (96) 97 (89) 99 (94) 100 (97) 100 (99)
I W2(2.5, I2) 28 (29) 5 (5) 32 (15) 100 (100) 92 (89) 7 (8) 99 (82) 85 (70) 92 (81) 100 (91) 100 (96)
C M T2(1, I2) 27 (16) 12 (7) 4 (4) 100 (100) 64 (39) 48 (13) 96 (35) 59 (41) 73 (55) 94 (73) 98 (83)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 65 (52) 94 (89) 77 (55) 100 (100) 3 (4) 98 (96) 100 (100) 100 (98) 100 (99) 100 (100) 100 (100)
I W2(4,2.5I2) 30 (29) 13 (14) 82 (32) 100 (100) 98 (97) 5 (5) 100 (97) 96 (83) 99 (92) 100 (96) 100 (99)
W2(2.5, K2) 100 (93) 99 (76) 98 (54) 100 (100) 100 (100) 100 (95) 4 (5) 94 (67) 96 (78) 78 (72) 88 (81)
C M T2(3, K2) 95 (84) 77 (60) 56 (38) 100 (100) 100 (97) 94 (76) 89 (56) 5 (5) 7 (7) 37 (15) 52 (25)
C M T2(5, K2) 98 (92) 87 (73) 72 (50) 100 (100) 100 (99) 98 (88) 93 (68) 7 (6) 4 (6) 32 (12) 40 (18)
C M T2(3, I2) 100 (96) 99 (87) 92 (67) 100 (100) 100 (100) 100 (95) 70 (63) 37 (13) 31 (10) 5 (5) 6 (7)
C M T2(5, I2) 100 (99) 100 (95) 96 (79) 100 (100) 100 (100) 100 (98) 83 (76) 49 (24) 40 (16) 7 (6) 5 (4)

n1 = 50, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 37 (41) 70 (44) 100 (100) 66 (49) 26 (25) 100 (99) 99 (96) 100 (99) 100 (100) 100 (100)
I W2(2.5, I2) 29 (33) 5 (6) 62 (29) 100 (100) 96 (93) 5 (7) 100 (94) 94 (84) 98 (92) 100 (98) 100 (99)
C M T2(1, I2) 22 (14) 10 (5) 5 (5) 100 (100) 70 (42) 37 (10) 99 (37) 71 (52) 83 (67) 99 (84) 100 (92)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 77 (67) 97 (95) 92 (73) 100 (100) 4 (4) 99 (99) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
I W2(4,2.5I2) 42 (37) 20 (20) 100 (57) 100 (100) 100 (99) 5 (5) 100 (100) 100 (95) 100 (98) 100 (100) 100 (100)
W2(2.5, K2) 100 (97) 100 (85) 100 (78) 100 (100) 100 (100) 100 (98) 5 (4) 98 (85) 99 (91) 88 (83) 94 (90)
C M T2(3, K2) 98 (91) 83 (64) 65 (43) 100 (100) 100 (99) 97 (86) 93 (62) 5 (5) 7 (7) 46 (20) 62 (32)
C M T2(5, K2) 100 (96) 93 (82) 78 (59) 100 (100) 100 (100) 100 (95) 97 (79) 6 (6) 5 (5) 41 (15) 54 (22)
C M T2(3, I2) 100 (99) 100 (93) 96 (77) 100 (100) 100 (100) 100 (99) 79 (69) 43 (14) 36 (11) 5 (5) 7 (6)
C M T2(5, I2) 100 (100) 100 (98) 98 (87) 100 (100) 100 (100) 100 (100) 91 (85) 58 (26) 48 (17) 7 (5) 5 (5)

n1 = 50, n2 = 30 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 45 (49) 78 (45) 100 (100) 84 (69) 36 (35) 100 (100) 100 (99) 100 (100) 100 (100) 100 (100)
I W2(2.5, I2) 42 (44) 5 (5) 67 (27) 100 (100) 99 (98) 9 (11) 100 (99) 98 (90) 99 (96) 100 (99) 100 (100)
C M T2(1, I2) 53 (26) 29 (10) 5 (4) 100 (100) 91 (67) 91 (29) 100 (73) 81 (62) 92 (78) 100 (93) 100 (97)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 87 (77) 99 (99) 96 (78) 100 (100) 4 (4) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
I W2(4,2.5I2) 49 (46) 17 (20) 100 (63) 100 (100) 100 (100) 5 (5) 100 (100) 100 (98) 100 (99) 100 (100) 100 (100)
W2(2.5, K2) 100 (100) 100 (98) 100 (91) 100 (100) 100 (100) 100 (100) 4 (4) 100 (91) 100 (95) 93 (89) 98 (96)
C M T2(3, K2) 100 (98) 95 (85) 79 (59) 100 (100) 100 (100) 100 (96) 99 (82) 5 (5) 8 (6) 63 (24) 78 (41)
C M T2(5, K2) 100 (99) 99 (93) 91 (75) 100 (100) 100 (100) 100 (99) 100 (91) 8 (6) 5 (5) 57 (17) 69 (28)
C M T2(3, I2) 100 (100) 100 (99) 99 (89) 100 (100) 100 (100) 100 (100) 91 (86) 62 (21) 53 (14) 4 (4) 7 (7)
C M T2(5, I2) 100 (100) 100 (100) 100 (96) 100 (100) 100 (100) 100 (100) 97 (95) 74 (37) 66 (26) 7 (7) 5 (5)

n1 = 50, n2 = 50 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 54 (61) 86 (50) 100 (100) 94 (88) 56 (55) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
I W2(2.5, I2) 5 (5) 79 (26) 100 (100) 100 (100) 19 (20) 100 (100) 99 (95) 100 (99) 100 (100) 100 (100)
C M T2(1, I2) 6 (4) 100 (100) 100 (85) 100 (68) 100 (98) 100 (73) 100 (87) 100 (97) 100 (100)
C M U2 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 4 (4) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
I W2(4,2.5I2) 5 (4) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, K2) 4 (5) 100 (96) 100 (99) 98 (95) 100 (99)
C M T2(3, K2) 6 (5) 8 (7) 80 (30) 92 (52)
C M T2(5, K2) 4 (4) 74 (21) 85 (37)
C M T2(3, I2) 5 (6) 8 (8)
C M T2(5, I2) 5 (5)
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Table 2.6: The percentage of rejected H0 for different sample sizes for 3×3 matrices, ν= 1,ω=
Id (ν= 2,ω= Id ) - statistic (2.2).

n1 = 20, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (3) 14 (18) 12 (4) 100 (100) 59 (29) 40 (36) 99 (63) 83 (58) 95 (74) 92 (67) 99 (81)
I W3(3, I3) 5 (4) 27 (13) 100 (100) 73 (56) 11 (6) 95 (67) 58 (35) 79 (50) 73 (43) 90 (60)
C M T3(1, I3) 3 (3) 100 (100) 14 (9) 82 (23) 37 (13) 88 (53) 96 (71) 94 (62) 99 (78)
C M U3 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 3 (3) 100 (98) 67 (13) 99 (76) 100 (90) 100 (80) 100 (94)
I W3(5,3I3) 5 (4) 100 (100) 67 (43) 85 (59) 82 (52) 94 (69)
W3(3, K3) 3 (3) 100 (82) 100 (93) 100 (85) 100 (95)
C M T3(3, K3) 4 (4) 6 (5) 9 (6) 16 (9)
C M T3(5, K3) 4 (3) 9 (4) 10 (5)
C M T3(3, I3) 4 (4) 6 (5)
C M T3(5, I3) 4 (5)

n1 = 30, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (3) 21 (27) 27 (7) 100 (100) 68 (29) 44 (43) 100 (68) 94 (77) 99 (89) 98 (82) 100 (94)
I W3(3, I3) 15 (17) 4 (4) 38 (16) 100 (100) 82 (61) 7 (4) 98 (77) 73 (51) 90 (70) 88 (60) 97 (78)
C M T3(1, I3) 13 (3) 33 (16) 3 (3) 100 (100) 10 (6) 87 (24) 32 (10) 95 (72) 99 (87) 98 (82) 100 (93)
C M U3 100 (100) 100 (100) 100 (100) 4 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 78 (52) 85 (73) 30 (19) 100 (100) 3 (3) 100 (99) 77 (9) 100 (92) 100 (98) 100 (95) 100 (99)
I W3(5,3I3) 55 (48) 19 (11) 97 (50) 100 (100) 100 (99) 4 (5) 100 (100) 85 (62) 95 (78) 95 (71) 99 (86)
W3(3, K3) 100 (87) 99 (84) 59 (24) 100 (100) 87 (24) 100 (100) 3 (4) 100 (94) 100 (99) 100 (96) 100 (100)
C M T3(3, K3) 90 (62) 60 (35) 93 (59) 100 (100) 100 (85) 70 (42) 100 (89) 3 (4) 8 (6) 10 (6) 22 (12)
C M T3(5, K3) 98 (83) 82 (55) 98 (79) 100 (100) 100 (88) 90 (53) 100 (94) 6 (5) 4 (5) 11 (4) 15 (6)
C M T3(3, I3) 97 (70) 78 (45) 97 (71) 100 (100) 100 (88) 87 (53) 100 (94) 10 (5) 12 (5) 4 (4) 8 (6)
C M T3(5, I3) 100 (89) 94 (66) 99 (87) 100 (100) 100 (97) 98 (74) 100 (99) 19 (8) 12 (5) 6 (5) 4 (4)

n1 = 50, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 4 (4) 30 (37) 56 (13) 100 (100) 77 (32) 51 (50) 100 (83) 99 (91) 100 (98) 100 (96) 100 (99)
I W3(3, I3) 14 (15) 5 (5) 51 (22) 100 (100) 89 (69) 6 (4) 100 (84) 89 (71) 97 (85) 97 (78) 100 (92)
C M T3(1, I3) 12 (3) 39 (19) 3 (4) 100 (100) 7 (3) 92 (26) 32 (6) 99 (87) 100 (96) 100 (93) 100 (99)
C M U3 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 91 (76) 94 (87) 54 (33) 100 (100) 3 (4) 100 (100) 89 (8) 100 (98) 100 (100) 100 (99) 100 (100)
I W3(5,3I3) 70 (63) 35 (16) 100 (90) 100 (100) 100 (100) 5 (4) 100 (100) 96 (82) 99 (93) 99 (88) 100 (97)
W3(3, K3) 100 (98) 100 (95) 83 (43) 100 (100) 96 (44) 100 (100) 3 (4) 100 (99) 100 (100) 100 (100) 100 (100)
C M T3(3, K3) 94 (68) 68 (33) 97 (70) 100 (100) 100 (92) 73 (41) 100 (96) 4 (4) 9 (8) 15 (8) 31 (17)
C M T3(5, K3) 100 (89) 90 (61) 99 (88) 100 (100) 100 (96) 93 (67) 100 (100) 6 (5) 5 (4) 14 (5) 18 (9)
C M T3(3, I3) 99 (82) 86 (47) 99 (78) 100 (100) 100 (96) 94 (59) 100 (97) 12 (5) 15 (6) 4 (4) 10 (8)
C M T3(5, I3) 100 (95) 97 (75) 100 (93) 100 (100) 100 (100) 99 (84) 100 (100) 26 (9) 16 (6) 7 (4) 5 (5)

n1 = 50, n2 = 30 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (3) 36 (42) 69 (10) 100 (100) 93 (61) 68 (71) 100 (98) 100 (96) 100 (99) 100 (98) 100 (100)
I W3(3, I3) 24 (28) 5 (3) 63 (30) 100 (100) 97 (86) 14 (4) 100 (96) 93 (75) 99 (91) 99 (85) 100 (96)
C M T3(1, I3) 34 (4) 55 (26) 4 (3) 100 (100) 24 (9) 99 (60) 65 (16) 100 (94) 100 (99) 100 (97) 100 (99)
C M U3 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 96 (82) 98 (92) 50 (30) 100 (100) 3 (3) 100 (100) 99 (24) 100 (100) 100 (100) 100 (100) 100 (100)
I W3(5,3I3) 81 (77) 34 (14) 100 (93) 100 (100) 100 (100) 5 (4) 100 (100) 98 (86) 100 (96) 100 (93) 100 (99)
W3(3, K3) 100 (99) 100 (98) 87 (41) 100 (100) 100 (53) 100 (100) 3 (3) 100 (100) 100 (100) 100 (100) 100 (100)
C M T3(3, K3) 99 (90) 86 (57) 99 (88) 100 (100) 100 (99) 93 (72) 100 (100) 4 (4) 9 (8) 18 (9) 40 (20)
C M T3(5, K3) 100 (99) 97 (80) 100 (97) 100 (100) 100 (100) 99 (90) 100 (100) 8 (6) 4 (4) 20 (7) 27 (11)
C M T3(3, I3) 100 (95) 97 (74) 100 (93) 100 (100) 100 (100) 99 (84) 100 (100) 19 (6) 20 (7) 4 (4) 10 (8)
C M T3(5, I3) 100 (99) 100 (92) 100 (99) 100 (100) 100 (100) 100 (97) 100 (100) 35 (14) 24 (8) 8 (6) 4 (4)

n1 = 50, n2 = 50 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (4) 41 (47) 82 (6) 100 (100) 99 (91) 88 (87) 100 (100) 100 (99) 100 (100) 100 (100) 100 (100)
I W3(3, I3) 4 (4) 76 (42) 100 (100) 100 (97) 38 (11) 100 (100) 97 (83) 100 (96) 100 (92) 100 (99)
C M T3(1, I3) 3 (3) 100 (100) 55 (25) 100 (95) 94 (42) 100 (98) 100 (100) 100 (99) 100 (100)
C M U3 6 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 3 (3) 100 (100) 100 (60) 100 (100) 100 (100) 100 (100) 100 (100)
I W3(5,3I3) 5 (5) 100 (100) 100 (93) 100 (99) 100 (98) 100 (100)
W3(3, K3) 3 (3) 100 (100) 100 (100) 100 (100) 100 (100)
C M T3(3, K3) 5 (4) 10 (8) 28 (9) 55 (24)
C M T3(5, K3) 5 (4) 30 (9) 39 (13)
C M T3(3, I3) 5 (4) 11 (9)
C M T3(5, I3) 6 (4)
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Table 2.7: The percentage of rejected H0 for different sample sizes for 2×2 matrices, ν= 1,ω=
2Id (ν= 2,ω= 2Id ) - statistic (2.2).

n1 = 20, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 19 (18) 28 (19) 100 (100) 35 (23) 13 (11) 96 (67) 83 (62) 90 (73) 96 (79) 99 (88)
I W2(2.5, I2) 5 (5) 16 (11) 100 (100) 81 (73) 11 (13) 92 (44) 69 (48) 79 (59) 91 (69) 96 (81)
C M T2(1, I2) 4 (4) 100 (100) 47 (28) 30 (17) 60 (11) 33 (22) 44 (30) 67 (45) 76 (54)
C M U2 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (99) 100 (99) 100 (98)
W2(2.5, 2I2) 4 (4) 92 (86) 100 (95) 95 (73) 99 (84) 100 (89) 100 (93)
I W2(4,2.5I2) 5 (4) 99 (66) 82 (61) 91 (69) 97 (78) 99 (89)
W2(2.5, K2) 4 (5) 64 (40) 76 (49) 62 (55) 72 (63)
C M T2(3, K2) 5 (4) 6 (5) 16 (11) 25 (15)
C M T2(5, K2) 5 (4) 13 (8) 18 (12)
C M T2(3, I2) 5 (5) 6 (5)
C M T2(5, I2) 5 (5)

n1 = 30, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 27 (27) 41 (29) 100 (100) 38 (24) 14 (12) 99 (84) 93 (79) 97 (87) 99 (92) 100 (96)
I W2(2.5, I2) 25 (22) 5 (5) 29 (18) 100 (100) 87 (81) 9 (10) 98 (69) 83 (64) 91 (75) 98 (84) 100 (91)
C M T2(1, I2) 27 (15) 12 (8) 4 (4) 100 (100) 52 (26) 26 (16) 66 (10) 42 (29) 56 (39) 80 (56) 90 (68)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 50 (34) 90 (83) 68 (42) 100 (100) 3 (4) 95 (93) 100 (99) 99 (90) 100 (95) 100 (96) 100 (99)
I W2(4,2.5I2) 23 (20) 19 (18) 51 (30) 100 (100) 97 (94) 5 (5) 100 (90) 93 (77) 97 (85) 100 (91) 100 (95)
W2(2.5, K2) 99 (79) 97 (52) 83 (21) 100 (100) 100 (98) 100 (75) 5 (5) 83 (57) 89 (66) 75 (68) 85 (78)
C M T2(3, K2) 88 (69) 73 (52) 37 (22) 100 (100) 99 (84) 89 (66) 74 (42) 5 (5) 6 (6) 22 (13) 32 (21)
C M T2(5, K2) 95 (77) 84 (63) 48 (34) 100 (100) 100 (91) 95 (76) 82 (55) 5 (5) 5 (5) 17 (9) 25 (15)
C M T2(3, I2) 99 (86) 96 (78) 74 (50) 100 (100) 100 (94) 99 (86) 69 (58) 19 (11) 14 (7) 5 (5) 6 (6)
C M T2(5, I2) 100 (94) 99 (87) 85 (63) 100 (100) 100 (97) 100 (94) 81 (69) 29 (18) 22 (11) 5 (6) 5 (5)

n1 = 50, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 32 (34) 59 (43) 100 (100) 44 (24) 13 (12) 100 (96) 99 (91) 100 (96) 100 (98) 100 (99)
I W2(2.5, I2) 30 (28) 5 (5) 52 (32) 100 (100) 95 (87) 7 (9) 100 (86) 94 (82) 98 (87) 100 (95) 100 (98)
C M T2(1, I2) 22 (12) 9 (6) 5 (4) 100 (100) 55 (26) 25 (12) 78 (8) 52 (37) 68 (49) 91 (70) 97 (82)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 63 (52) 96 (91) 86 (62) 100 (100) 4 (4) 98 (97) 100 (100) 100 (97) 100 (99) 100 (99) 100 (100)
I W2(4,2.5I2) 40 (32) 25 (26) 88 (49) 100 (100) 99 (98) 5 (5) 100 (99) 99 (90) 100 (95) 100 (98) 100 (99)
W2(2.5, K2) 100 (86) 99 (57) 96 (45) 100 (100) 100 (100) 100 (87) 4 (5) 94 (74) 96 (82) 88 (81) 94 (88)
C M T2(3, K2) 95 (79) 79 (56) 43 (27) 100 (100) 100 (92) 94 (74) 79 (46) 5 (5) 6 (5) 28 (17) 42 (26)
C M T2(5, K2) 98 (88) 91 (71) 57 (39) 100 (100) 100 (97) 98 (86) 88 (60) 5 (4) 5 (5) 23 (13) 32 (18)
C M T2(3, I2) 100 (94) 99 (87) 83 (55) 100 (100) 100 (99) 100 (94) 76 (64) 23 (10) 16 (8) 5 (5) 6 (7)
C M T2(5, I2) 100 (98) 100 (94) 92 (71) 100 (100) 100 (100) 100 (98) 85 (77) 32 (17) 27 (12) 5 (6) 5 (5)

n1 = 50, n2 = 30 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 40 (43) 65 (45) 100 (100) 64 (45) 23 (20) 100 (99) 100 (95) 100 (98) 100 (100) 100 (100)
I W2(2.5, I2) 38 (39) 5 (5) 56 (29) 100 (100) 99 (97) 15 (15) 100 (95) 97 (87) 99 (94) 100 (98) 100 (99)
C M T2(1, I2) 43 (23) 23 (14) 5 (4) 100 (100) 83 (47) 55 (26) 95 (19) 63 (43) 76 (59) 97 (80) 99 (90)
C M U2 100 (100) 100 (100) 100 (100) 5 (4) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 74 (58) 98 (97) 91 (64) 100 (100) 4 (4) 100 (99) 100 (100) 100 (99) 100 (100) 100 (100) 100 (100)
I W2(4,2.5I2) 43 (35) 26 (26) 93 (52) 100 (100) 100 (100) 5 (6) 100 (100) 100 (96) 100 (98) 100 (99) 100 (100)
W2(2.5, K2) 100 (98) 100 (89) 99 (45) 100 (100) 100 (100) 100 (99) 4 (4) 97 (79) 99 (89) 93 (88) 97 (94)
C M T2(3, K2) 99 (92) 94 (78) 58 (37) 100 (100) 100 (99) 99 (91) 95 (69) 5 (5) 6 (6) 39 (19) 57 (31)
C M T2(5, K2) 100 (97) 98 (88) 72 (51) 100 (100) 100 (100) 100 (97) 98 (80) 6 (5) 5 (5) 30 (13) 43 (21)
C M T2(3, I2) 100 (99) 100 (97) 95 (75) 100 (100) 100 (100) 100 (99) 89 (83) 33 (16) 28 (11) 5 (5) 7 (6)
C M T2(5, I2) 100 (100) 100 (99) 98 (87) 100 (100) 100 (100) 100 (100) 96 (91) 49 (26) 38 (18) 6 (6) 5 (5)

n1 = 50, n2 = 50 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 55 (54) 72 (46) 100 (100) 86 (70) 46 (40) 100 (100) 100 (99) 100 (100) 100 (100) 100 (100)
I W2(2.5, I2) 5 (4) 56 (29) 100 (100) 100 (99) 27 (26) 100 (99) 99 (94) 100 (98) 100 (100) 100 (100)
C M T2(1, I2) 5 (5) 100 (100) 96 (75) 96 (53) 100 (58) 73 (56) 88 (69) 99 (90) 100 (96)
C M U2 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 4 (4) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
I W2(4,2.5I2) 5 (5) 100 (100) 100 (99) 100 (100) 100 (100) 100 (100)
W2(2.5, K2) 5 (5) 99 (89) 100 (94) 98 (94) 99 (98)
C M T2(3, K2) 5 (5) 7 (6) 50 (23) 67 (41)
C M T2(5, K2) 5 (5) 43 (16) 58 (27)
C M T2(3, I2) 5 (4) 7 (6)
C M T2(5, I2) 4 (5)
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Table 2.8: The percentage of rejected H0 for different sample sizes for 3×3 matrices, ν= 1,ω=
2Id (ν= 2,ω= 2Id ) - statistic (2.2).

n1 = 20, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (3) 14 (14) 4 (5) 100 (100) 38 (13) 30 (16) 74 (25) 62 (34) 78 (44) 74 (39) 88 (50)
I W3(3, I3) 4 (4) 9 (5) 100 (100) 60 (39) 7 (7) 84 (46) 41 (22) 57 (31) 54 (28) 73 (39)
C M T3(1, I3) 3 (4) 100 (100) 11 (8) 17 (5) 17 (8) 56 (27) 75 (40) 68 (34) 85 (44)
C M U3 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 3 (3) 98 (89) 31 (6) 84 (41) 94 (54) 89 (46) 98 (61)
I W3(5,3I3) 4 (4) 100 (98) 51 (28) 68 (37) 64 (31) 81 (44)
W3(3, K3) 3 (4) 89 (42) 96 (55) 91 (48) 98 (60)
C M T3(3, K3) 3 (4) 4 (4) 5 (4) 10 (7)
C M T3(5, K3) 3 (4) 6 (4) 6 (4)
C M T3(3, I3) 3 (4) 4 (4)
C M T3(5, I3) 3 (4)

n1 = 30, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (3) 21 (20) 9 (8) 100 (100) 27 (9) 21 (20) 82 (19) 82 (54) 93 (66) 91 (59) 97 (73)
I W3(3, I3) 15 (12) 4 (4) 16 (8) 100 (100) 71 (41) 5 (4) 89 (49) 61 (40) 80 (49) 77 (45) 90 (59)
C M T3(1, I3) 3 (3) 10 (5) 3 (4) 100 (100) 7 (4) 14 (3) 12 (5) 77 (45) 90 (59) 85 (51) 96 (66)
C M U3 100 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3,2I3) 51 (27) 78 (58) 22 (13) 100 (100) 3 (3) 99 (96) 25 (4) 96 (63) 99 (79) 98 (69) 100 (84)
I W3(5, 3I3) 36 (29) 14 (12) 55 (10) 100 (100) 100 (96) 4 (4) 100 (100) 74 (43) 88 (58) 86 (54) 94 (70)
W3(3, K3) 93 (44) 94 (66) 34 (15) 100 (100) 44 (11) 100 (100) 3 (3) 98 (71) 100 (82) 99 (74) 100 (85)
C M T3(3, K3) 67 (29) 42 (20) 63 (25) 100 (100) 89 (42) 54 (26) 94 (47) 3 (4) 6 (5) 6 (6) 14 (8)
C M T3(5, K3) 83 (46) 59 (31) 81 (41) 100 (100) 98 (58) 73 (37) 99 (61) 4 (4) 3 (3) 6 (4) 8 (6)
C M T3(3, I3) 78 (38) 58 (25) 77 (34) 100 (100) 95 (46) 69 (32) 97 (51) 6 (4) 6 (4) 3 (4) 6 (5)
C M T3(5, I3) 92 (52) 79 (39) 91 (45) 100 (100) 99 (65) 87 (50) 100 (68) 9 (6) 7 (4) 4 (4) 3 (4)

n1 = 50, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (4) 26 (30) 17 (14) 100 (100) 28 (5) 24 (23) 91 (14) 95 (76) 99 (89) 98 (83) 100 (92)
I W3(3, I3) 15 (11) 4 (4) 30 (12) 100 (100) 77 (43) 3 (3) 97 (58) 82 (60) 94 (73) 92 (67) 98 (82)
C M T3(1, I3) 2 (3) 11 (4) 4 (4) 100 (100) 3 (3) 13 (3) 7 (3) 91 (64) 98 (80) 97 (75) 99 (86)
C M U3 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 74 (44) 91 (79) 43 (26) 100 (100) 3 (4) 100 (99) 25 (4) 100 (87) 100 (95) 100 (90) 100 (97)
I W3(5,3I3) 66 (49) 27 (20) 96 (27) 100 (100) 100 (99) 4 (4) 100 (100) 93 (70) 98 (82) 97 (78) 99 (90)
W3(3, K3) 99 (75) 99 (85) 61 (30) 100 (100) 68 (21) 100 (100) 3 (4) 100 (88) 100 (97) 100 (91) 100 (97)
C M T3(3, K3) 73 (29) 42 (15) 72 (27) 100 (100) 96 (43) 56 (22) 99 (49) 4 (4) 7 (6) 11 (7) 20 (11)
C M T3(5, K3) 93 (49) 65 (27) 90 (43) 100 (100) 100 (64) 81 (37) 100 (68) 4 (3) 4 (4) 8 (5) 12 (8)
C M T3(3, I3) 87 (39) 64 (21) 85 (34) 100 (100) 99 (53) 76 (31) 100 (56) 6 (4) 9 (5) 4 (4) 7 (7)
C M T3(5, I3) 98 (60) 82 (41) 96 (59) 100 (100) 100 (74) 94 (46) 100 (75) 11 (5) 7 (4) 4 (4) 5 (4)

n1 = 50, n2 = 30 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (3) 34 (34) 17 (11) 100 (100) 62 (20) 43 (39) 100 (48) 98 (81) 100 (93) 99 (89) 100 (96)
I W3(3, I3) 27 (23) 5 (4) 35 (13) 100 (100) 93 (69) 7 (6) 100 (83) 87 (63) 96 (78) 96 (71) 100 (85)
C M T3(1, I3) 3 (3) 21 (8) 3 (4) 100 (100) 10 (4) 50 (4) 25 (7) 96 (70) 99 (88) 99 (81) 100 (92)
C M U3 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 82 (49) 95 (82) 40 (21) 100 (100) 3 (3) 100 (100) 66 (5) 100 (92) 100 (98) 100 (94) 100 (99)
I W3(5,3I3) 73 (55) 25 (17) 96 (25) 100 (100) 100 (100) 5 (5) 100 (100) 95 (74) 99 (88) 99 (84) 100 (93)
W3(3, K3) 100 (84) 100 (91) 60 (25) 100 (100) 86 (20) 100 (100) 3 (4) 100 (93) 100 (98) 100 (96) 100 (100)
C M T3(3, K3) 94 (58) 70 (38) 91 (52) 100 (100) 100 (78) 85 (48) 100 (82) 4 (4) 7 (6) 12 (7) 22 (12)
C M T3(5, K3) 99 (81) 90 (57) 98 (73) 100 (100) 100 (92) 97 (71) 100 (95) 5 (4) 4 (4) 9 (5) 14 (7)
C M T3(3, I3) 98 (70) 87 (46) 97 (62) 100 (100) 100 (84) 95 (60) 100 (86) 9 (4) 10 (5) 4 (4) 8 (6)
C M T3(5, I3) 100 (88) 97 (70) 100 (83) 100 (100) 100 (95) 99 (81) 100 (97) 18 (8) 12 (5) 5 (4) 4 (4)

n1 = 50, n2 = 50 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 3 (3) 42 (37) 11 (6) 100 (100) 91 (52) 76 (67) 100 (89) 100 (90) 100 (97) 100 (94) 100 (99)
I W3(3, I3) 4 (4) 41 (15) 100 (100) 99 (91) 20 (14) 100 (97) 93 (66) 99 (85) 99 (79) 100 (94)
C M T3(1, I3) 3 (4) 100 (100) 34 (15) 98 (18) 63 (19) 99 (81) 100 (94) 100 (89) 100 (98)
C M U3 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 3 (3) 100 (100) 95 (17) 100 (97) 100 (100) 100 (98) 100 (100)
I W3(5,3I3) 5 (5) 100 (100) 98 (80) 100 (93) 100 (89) 100 (97)
W3(3, K3) 3 (3) 100 (98) 100 (100) 100 (99) 100 (100)
C M T3(3, K3) 4 (4) 8 (6) 15 (6) 32 (14)
C M T3(5, K3) 4 (4) 13 (6) 20 (7)
C M T3(3, I3) 4 (3) 8 (6)
C M T3(5, I3) 4 (3)
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Table 2.9: The percentage of rejected H0 for different sample sizes for 2×2 matrices, ν= 5,ω=
Id (ν= 5,ω= 2Id ) - statistic (2.2).

n1 = 20, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 (6) 16 (12) 12 (13) 100 (100) 10 (8) 6 (5) 17 (12) 36 (28) 41 (33) 56 (41) 60 (50)
I W2(2.5, I2) 5 (4) 11 (11) 100 (100) 45 (31) 14 (14) 8 (8) 30 (23) 37 (28) 49 (40) 55 (47)
C M T2(1, I2) 4 (4) 100 (99) 16 (15) 14 (14) 7 (8) 13 (10) 17 (13) 25 (22) 36 (28)
C M U2 5 (5) 100 (100) 100 (100) 100 (100) 96 (90) 94 (86) 87 (74) 82 (66)
W2(2.5, 2I2) 6 (6) 49 (38) 29 (20) 39 (31) 47 (35) 58 (48) 66 (52)
I W2(4,2.5I2) 5 (5) 16 (14) 35 (28) 43 (33) 53 (44) 60 (50)
W2(2.5, K2) 5 (5) 26 (20) 30 (24) 42 (35) 51 (41)
C M T2(3, K2) 5 (4) 5 (5) 8 (8) 12 (11)
C M T2(5, K2) 5 (4) 6 (7) 9 (8)
C M T2(3, I2) 5 (5) 5 (5)
C M T2(5, I2) 5 (4)

n1 = 30, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 (6) 19 (14) 21 (18) 100 (100) 8 (6) 5 (4) 24 (19) 52 (41) 58 (47) 69 (60) 76 (65)
I W2(2.5, I2) 18 (12) 4 (4) 16 (17) 100 (100) 49 (33) 12 (11) 12 (12) 45 (40) 50 (45) 64 (54) 70 (63)
C M T2(1, I2) 10 (9) 7 (8) 4 (4) 100 (100) 14 (11) 11 (9) 5 (6) 19 (15) 23 (18) 37 (30) 45 (37)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 99 (93) 97 (92) 92 (82) 90 (78)
W2(2.5, 2I2) 15 (12) 57 (47) 25 (21) 100 (100) 6 (6) 62 (46) 40 (31) 57 (47) 64 (49) 73 (62) 80 (70)
I W2(4,2.5I2) 10 (7) 20 (21) 23 (20) 100 (100) 60 (45) 4 (5) 26 (23) 52 (41) 59 (47) 70 (60) 77 (67)
W2(2.5, K2) 14 (10) 5 (5) 11 (12) 100 (100) 25 (15) 13 (10) 4 (4) 37 (32) 43 (36) 56 (51) 64 (56)
C M T2(3, K2) 35 (29) 30 (24) 13 (10) 99 (95) 44 (31) 37 (29) 23 (20) 4 (5) 5 (5) 11 (11) 15 (13)
C M T2(5, K2) 45 (34) 35 (27) 17 (13) 98 (94) 53 (37) 44 (33) 30 (24) 5 (4) 5 (5) 9 (8) 12 (12)
C M T2(3, I2) 59 (48) 51 (40) 31 (24) 94 (83) 65 (46) 60 (45) 44 (36) 8 (7) 7 (5) 4 (5) 6 (5)
C M T2(5, I2) 67 (54) 61 (50) 36 (28) 89 (78) 73 (57) 69 (54) 55 (45) 11 (10) 9 (8) 5 (5) 5 (5)

n1 = 50, n2 = 20 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 (5) 26 (17) 32 (29) 100 (100) 5 (4) 4 (3) 37 (27) 69 (60) 77 (65) 85 (77) 89 (81)
I W2(2.5, I2) 19 (13) 4 (5) 25 (26) 100 (100) 52 (37) 8 (9) 17 (18) 61 (54) 69 (62) 80 (73) 86 (78)
C M T2(1, I2) 8 (5) 5 (4) 4 (4) 100 (100) 10 (16) 6 (7) 4 (5) 23 (20) 31 (24) 47 (41) 59 (50)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 99 (96) 97 (89) 95 (84)
W2(2.5, 2I2) 20 (15) 73 (62) 38 (33) 100 (100) 5 (6) 73 (51) 65 (48) 76 (65) 83 (70) 88 (79) 92 (83)
I W2(4,2.5I2) 13 (11) 29 (31) 34 (31) 100 (100) 72 (57) 5 (5) 43 (35) 72 (60) 75 (66) 85 (77) 89 (82)
W2(2.5, K2) 13 (8) 4 (5) 17 (18) 100 (100) 26 (14) 10 (7) 4 (5) 51 (46) 58 (52) 71 (66) 79 (72)
C M T2(3, K2) 37 (28) 29 (22) 12 (8) 100 (99) 46 (30) 39 (27) 23 (18) 5 (4) 5 (6) 14 (14) 19 (18)
C M T2(5, K2) 47 (32) 36 (28) 17 (12) 100 (98) 56 (36) 48 (33) 31 (23) 4 (4) 4 (5) 11 (10) 16 (15)
C M T2(3, I2) 68 (48) 57 (46) 34 (23) 99 (92) 72 (57) 66 (53) 49 (38) 8 (8) 6 (5) 5 (5) 6 (6)
C M T2(5, I2) 79 (60) 70 (57) 43 (32) 97 (87) 84 (64) 79 (62) 59 (47) 11 (11) 9 (7) 5 (4) 5 (5)

n1 = 50, n2 = 30 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 (5) 30 (21) 32 (29) 100 (100) 10 (7) 5 (4) 44 (29) 76 (64) 82 (72) 91 (83) 95 (89)
I W2(2.5, I2) 25 (19) 5 (5) 23 (23) 100 (100) 73 (60) 18 (16) 19 (17) 65 (58) 74 (65) 85 (79) 92 (86)
C M T2(1, I2) 16 (12) 9 (9) 4 (4) 100 (100) 23 (16) 15 (14) 6 (5) 29 (21) 34 (27) 58 (46) 67 (58)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (99) 100 (97) 99 (95)
W2(2.5, 2I2) 20 (14) 82 (71) 39 (32) 100 (100) 6 (6) 85 (69) 73 (49) 81 (71) 86 (74) 93 (85) 97 (90)
I W2(4,2.5I2) 14 (8) 29 (29) 34 (29) 100 (100) 87 (75) 5 (5) 44 (35) 76 (64) 83 (73) 92 (84) 95 (89)
W2(2.5, K2) 28 (17) 8 (7) 14 (16) 100 (100) 49 (28) 22 (17) 4 (4) 54 (49) 63 (57) 77 (71) 85 (79)
C M T2(3, K2) 63 (46) 51 (40) 20 (17) 100 (100) 68 (53) 62 (45) 42 (30) 5 (4) 6 (5) 16 (14) 23 (19)
C M T2(5, K2) 72 (58) 63 (49) 28 (20) 100 (100) 80 (62) 73 (58) 50 (38) 5 (4) 5 (4) 12 (10) 17 (16)
C M T2(3, I2) 86 (74) 80 (68) 46 (37) 100 (98) 90 (77) 86 (75) 70 (60) 10 (10) 9 (8) 5 (5) 6 (5)
C M T2(5, I2) 93 (81) 87 (78) 60 (47) 100 (96) 95 (85) 93 (83) 79 (68) 17 (14) 14 (11) 5 (5) 5 (5)

n1 = 50, n2 = 50 W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5, 2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 5 (5) 41 (29) 30 (25) 100 (100) 19 (12) 11 (7) 48 (28) 85 (74) 91 (79) 97 (91) 99 (95)
I W2(2.5, I2) 4 (5) 21 (20) 100 (10) 91 (82) 30 (32) 16 (14) 74 (65) 84 (74) 93 (89) 96 (93)
C M T2(1, I2) 5 (4) 100 (100) 43 (29) 32 (27) 14 (13) 33 (25) 41 (30) 65 (54) 79 (67)
C M U2 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (99)
W2(2.5, 2I2) 5 (6) 96 (89) 80 (54) 89 (77) 94 (85) 98 (92) 99 (96)
I W2(4,2.5I2) 5 (5) 46 (32) 84 (72) 90 (82) 97 (93) 99 (95)
W2(2.5, K2) 5 (4) 60 (52) 74 (64) 87 (80) 92 (86)
C M T2(3, K2) 5 (5) 5 (5) 17 (15) 24 (22)
C M T2(5, K2) 5 (5) 11 (11) 18 (17)
C M T2(3, I2) 5 (4) 6 (5)
C M T2(5, I2) 5 (4)
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Table 2.10: The percentage of rejected H0 for different sample sizes for 3× 3 matrices, ν =
5,ω= Id (ν= 5,ω= 2Id ).

n1 = 20, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (6) 11 (9) 6 (8) 100 (100) 7 (7) 11 (8) 8 (7) 13 (10) 14 (12) 14 (9) 15 (12)
I W3(3, I3) 4 (5) 6 (6) 100 (100) 15 (12) 7 (8) 14 (12) 10 (9) 11 (10) 12 (9) 13 (11)
C M T3(1, I3) 6 (6) 100 (100) 7 (7) 7 (6) 8 (7) 10 (9) 13 (10) 12 (9) 13 (10)
C M U3 6 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 6 (6) 36 (25) 6 (7) 13 (10) 16 (11) 14 (11) 17 (12)
I W3(5,3I3) 4 (4) 41 (28) 12 (9) 13 (10) 13 (10) 15 (11)
W3(3, K3) 6 (6) 13 (10) 16 (10) 14 (10) 17 (12)
C M T3(3, K3) 5 (5) 5 (5) 4 (5) 5 (5)
C M T3(5, K3) 5 (5) 5 (5) 5 (5)
C M T3(3, I3) 4 (5) 5 (5)
C M T3(5, I3) 4 (5)

n1 = 30, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (6) 16 (13) 9 (8) 100 (100) 5 (4) 10 (5) 5 (5) 20 (16) 24 (18) 22 (16) 24 (18)
I W3(3, I3) 8 (6) 4 (5) 6 (7) 100 (100) 12 (8) 5 (5) 12 (9) 16 (14) 21 (16) 19 (14) 22 (17)
C M T3(1, I3) 5 (5) 5 (4) 6 (6) 100 (100) 5 (5) 4 (4) 5 (5) 17 (13) 20 (14) 17 (14) 21 (16)
C M U3 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 11 (10) 23 (18) 11 (10) 100 (100) 6 (6) 51 (36) 5 (5) 21 (16) 25 (18) 22 (15) 28 (21)
I W3(5,3I3) 13 (9) 12 (13) 9 (9) 100 (100) 37 (24) 5 (5) 44 (26) 20 (15) 22 (17) 20 (16) 25 (17)
W3(3, K3) 12 (11) 24 (18) 11 (10) 100 (100) 8 (8) 59 (46) 6 (6) 21 (16) 26 (17) 23 (17) 25 (18)
C M T3(3, K3) 10 (6) 7 (7) 8 (6) 100 (100) 12 (7) 10 (7) 11 (8) 4 (5) 5 (5) 5 (6) 6 (7)
C M T3(5, K3) 12 (7) 10 (7) 9 (7) 100 (100) 12 (9) 10 (8) 11 (8) 4 (5) 5 (5) 6 (5) 5 (6)
C M T3(3, I3) 9 (6) 8 (6) 9 (7) 100 (100) 10 (7) 10 (7) 11 (8) 5 (5) 4 (4) 5 (5) 5 (6)
C M T3(5, I3) 14 (8) 10 (7) 11 (7) 100 (100) 13 (9) 12 (9) 13 (8) 5 (5) 4 (5) 4 (5) 5 (5)

n1 = 50, n2 = 20 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (5) 25 (19) 13 (12) 100 (100) 4 (4) 12 (5) 4 (4) 32 (25) 40 (30) 35 (27) 42 (31)
I W3(3, I3) 5 (4) 4 (4) 7 (8) 100 (100) 8 (5) 3 (3) 8 (5) 26 (23) 34 (26) 30 (25) 36 (27)
C M T3(1, I3) 3 (3) 4 (3) 5 (5) 100 (100) 3 (3) 3 (3) 3 (3) 26 (18) 32 (22) 29 (22) 36 (25)
C M U3 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 15 (14) 36 (31) 15 (14) 100 (100) 5 (5) 71 (55) 3 (3) 35 (26) 42 (29) 39 (28) 46 (31)
I W3(5,3I3) 13 (9) 20 (20) 13 (13) 100 (100) 40 (26) 5 (4) 43 (28) 32 (25) 40 (28) 33 (27) 42 (31)
W3(3, K3) 18 (18) 38 (31) 16 (13) 100 (100) 10 (11) 78 (66) 5 (5) 35 (26) 43 (28) 38 (27) 43 (31)
C M T3(3, K3) 6 (4) 4 (3) 5 (4) 100 (100) 6 (4) 5 (4) 7 (4) 5 (5) 5 (6) 6 (7) 7 (7)
C M T3(5, K3) 7 (4) 6 (3) 7 (4) 100 (100) 7 (5) 6 (5) 7 (4) 4 (4) 4 (5) 4 (6) 5 (6)
C M T3(3, I3) 6 (4) 5 (4) 6 (4) 100 (100) 7 (4) 6 (5) 7 (5) 4 (4) 4 (4) 4 (4) 5 (5)
C M T3(5, I3) 9 (5) 7 (4) 7 (5) 100 (100) 9 (5) 8 (4) 10 (6) 4 (3) 4 (3) 4 (4) 4 (5)

n1 = 50, n2 = 30 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (5) 24 (18) 11 (10) 100 (100) 5 (4) 15 (6) 5 (5) 32 (21) 39 (26) 34 (23) 41 (29)
I W3(3, I3) 11 (9) 4 (5) 7 (8) 100 (100) 19 (12) 6 (5) 18 (10) 25 (19) 30 (22) 28 (20) 34 (26)
C M T3(1, I3) 4 (4) 4 (4) 5 (6) 100 (100) 4 (5) 4 (5) 5 (5) 24 (17) 32 (20) 28 (20) 35 (25)
C M U3 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 14 (11) 38 (26) 12 (10) 100 (100) 5 (6) 80 (63) 5 (5) 33 (22) 38 (27) 37 (24) 45 (27)
I W3(5,3I3) 19 (10) 18 (16) 10 (10) 100 (100) 67 (44) 4 (4) 72 (53) 30 (22) 37 (26) 31 (22) 40 (27)
W3(3, K3) 16 (11) 36 (29) 13 (11) 100 (100) 9 (8) 85 (74) 6 (6) 32 (22) 41 (25) 35 (24) 44 (26)
C M T3(3, K3) 12 (8) 9 (6) 11 (7) 100 (100) 15 (8) 12 (8) 14 (8) 4 (5) 5 (5) 6 (6) 7 (7)
C M T3(5, K3) 16 (9) 13 (9) 14 (9) 100 (100) 19 (10) 14 (9) 17 (9) 4 (4) 4 (5) 5 (5) 7 (6)
C M T3(3, I3) 15 (8) 10 (8) 12 (8) 100 (100) 15 (8) 15 (9) 15 (9) 4 (4) 4 (4) 4 (5) 6 (5)
C M T3(5, I3) 21 (11) 16 (10) 16 (10) 100 (100) 22 (11) 20 (13) 22 (12) 4 (4) 4 (4) 4 (4) 4 (5)

n1 = 50, n2 = 50 W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (5) 22 (17) 7 (7) 100 (100) 8 (7) 24 (11) 10 (7) 28 (18) 38 (21) 33 (18) 42 (25)
I W3(3, I3) 4 (4) 6 (6) 100 (100) 37 (26) 12 (13) 39 (27) 21 (15) 26 (19) 25 (17) 33 (20)
C M T3(1, I3) 5 (6) 100 (100) 9 (8) 6 (7) 9 (8) 23 (14) 30 (18) 27 (17) 35 (21)
C M U3 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 6 (5) 89 (72) 7 (6) 31 (17) 45 (23) 35 (22) 48 (26)
I W3(5,3I3) 4 (5) 95 (83) 28 (17) 38 (21) 30 (18) 43 (22)
W3(3, K3) 6 (6) 30 (16) 40 (22) 35 (20) 48 (27)
C M T3(3, K3) 5 (4) 5 (4) 5 (5) 7 (6)
C M T3(5, K3) 4 (5) 4 (4) 5 (5)
C M T3(3, I3) 4 (4) 5 (4)
C M T3(5, I3) 4 (4)



2.5. APPLICATION OF NOVEL TESTS TO REAL DATA 43

2.5 Application of novel tests to real data

In this section, we explore the applicability of tests (2.4) and (2.2) to real data, facilitating their
real-world application. The test (2.4) is applied to several financial datasets, while the test (2.2)
is applied to the insurance dataset as well.

2.5.1 Financial application

Recent studies have usedmatrix-valued distributions to model stock market data [54, 55], with
the first application to cryptocurrency data detailed in [84]. The extreme volatility of cryp-
tocurrencymarkets [82] requires that traders be aware of significant changes in asset statistical
properties to mitigate risks.

The characteristics of logarithmic returns are particularly intriguing when analyzing the
cryptocurrency market [16, 26, 113]. The correlation structure of major cryptocurrency prices
was examined in [76].

We analyzed hourly data for Bitcoin (BTC) and Ethereum (ETH), sourced from Gemini
(http://www.gemini.com). Two periods were selected: January 1, 2019, to March 1, 2019
(no significant market changes; see Figures 2.3 and 2.4), and April 1, 2021, to June 1, 2021
(positive bubble followed by a negative bubble [122]). The first period comprises n1 = 1416
data points, while the second has n2 = 1464.

The hourly closing prices X t were partitioned into daily periods of 24 observations. We
calculated hourly logarithmic returns log( X t

X t−1
) and computed a 2×2 unnormalized covariance

matrix for each day.
For the first period, 59 covariance matrices were computed (31 for January, 28 for Febru-

ary). The p-value of the statistic K31,28 was 0.9756, indicating that there was no significant
change in the covariance structure of hourly logarithmic returns from January to March 2019.

For the second period, 61 2× 2 matrices were obtained (31 for April, 30 for May). Using
bootstrap with N = 10000 replications, the p-value of the statistic K31,30 was 0.0003, indicating
a significant change in the covariance structure from April to May 2021.

To explore more practical scenarios, we studied the covariance structure of hourly loga-
rithmic returns 15 days before and after well-documented Bitcoin price drops coinciding with
significant historical events [40]. Each period consists of n = 720 data points, with the results
presented in Table 2.11. Inmost cases, the test failed to detect changes in the covariance struc-
ture, likely due to the high volatility in the cryptocurrency market and the 15-day period being
too large.

We then investigated smaller time scales, analyzing 1-minute BTC [146] and ETH [73] data
over two-day periods. We computed covariance matrices for each hour, resulting in n = 48
matrices (24 per day). The results in Table 2.12 show that the test (2.4) detected significant
differences in the distribution of the covariance matrix on the day and the day after the event,
but not on the day before or on the day of the event.

We also used the test (2.2) with ν= 1 and Σ= I2, as it is the most powerful for these parame-
ters. The results in Table 2.13 show that this test consistently identified significant differences
in the distribution of the covariance matrix the day before and the day of the event in most
cases.

In real financial applications, these tests could be performed on new hourly data, allowing
for portfolio adjustments if significant changes are detected. It is expected for both families of
tests to detect similar events. False detection is expected, but the number of falsely detected
changes is expected to be relatively low. This approach could be particularly valuable for im-
plementing stop losses [68], potentially protecting traders’ capital during significant market
crashes.

http://www.gemini.com
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Table 2.11: p-values of testing the change in covariance structure before and after the Bitcoin
important events - 1 hour data, statistic (2.4)

Period I start date Period II start date Date of event (T0) Period II end date Event description p[T0−30D ,T0] p[T0−15D ,T0+15D ]

9 October 2017 24 October 2017 8 November 2017 23 November 2017 Developers cancel splitting of Bitcoin. 0.31 0.05
28 November 2017 13 December 2017 28 December 2017 12 January 2018 South Korea announces strong measures

to regulate trading of cryptocurrencies.
0.32 0.27

14 December 2017 28 December 2017 13 January 2018 28 January 2018 Announcement that 80% of Bitcoin has
been mined.

0.21 0.22

31 December 2017 15 January 2018 30 January 2018 14 February 2018 Facebook bans advertisements promoting,
cryptocurrencies.

0.17 0.82

5 February 2018 20 February 2018 7 March 2018 22 March 2018 The US Securities and Exchange Commis-
sion says it is necessary for crypto trading
platforms to register.

0.03 0.01

12 February 2018 28 February 2018 14 March 2018 29 March 2018 Google bans advertisements promoting
cryptocurrencies.

0.50 0.34

Table 2.12: p-values of testing the change in covariance structure before and after the Bitcoin
important events - 1 minute data, statistic (2.4)

Date of event (T0) Event description p[T0−2D ,T0−1D ] p[T0−1D ,T0] p[T0,T0+1D ]

8 November 2017 Developers cancel splitting of Bit-
coin.

0.0523 0.0832 0.2049

28 December 2017 South Korea announces strong
measures to regulate the trading of
cryptocurrencies.

0.5889 0.0027 0.0080

13 January 2018 Announcement that 80%of Bitcoin
has been mined.

0.0300 0.0035 0.0493

30 January 2018 Facebook bans advertisements pro-
moting cryptocurrencies.

0.8224 0.0352 0.7774

7 March 2018 The US Securities and Exchange
Commission says it is necessary for
crypto trading platforms to regis-
ter.

0.0029 0.0225 0.6398

14 March 2018 Google bans advertisements pro-
moting cryptocurrencies.

0.403 0.3019 0.0453

Figure 2.3: (a) Period 1 (b) Period 2
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Figure 2.4: (a) Period 1 (b) Period 2

Table 2.13: p -values of testing the change in covariance structure before and after the Bitcoin
important events - 1 minute data, statistic (2.2)

Date of event (T0) Event description p[T0−2D ,T0−1D ] p[T0−1D ,T0] p[T0,T0+1D ]

8 November 2017 Developers cancel splitting of Bit-
coin.

0.04 0.09 0.20

28 December 2017 South Korea announces strong
measures to regulate the trading of
cryptocurrencies.

0.48 0.02 0.09

13 January 2018 Announcement that 80%of Bitcoin
has been mined.

0.04 0.01 0.06

30 January 2018 Facebook bans advertisements pro-
moting cryptocurrencies.

0.73 0.03 0.79

7 March 2018 The US Securities and Exchange
Commission says it is necessary for
crypto trading platforms to regis-
ter.

0 0.02 0.61

14 March 2018 Google bans advertisements pro-
moting cryptocurrencies.

0.43 0.24 0.03
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The second dataset with which we were working comprises the stock data of the three
largest S&P 500 companies at the moment. We calculated the daily log-returns for the closing
prices of Apple Inc. (AAPL), Microsoft (MSFT), and Amazon (AMZN) from January 1, 2021,
to January 1, 2023, covering 503 trading days.

The data were sourced from Yahoo Finance (https://finance.yahoo.com). We were par-
titioning the data into blocks of 7 trading days and computing a covariance matrix for each
block. We then tested whether there is a significant change in the covariance structure be-
tween the first 36 blocks (January 1, 2021, to January 1, 2022) and the remaining 36 blocks
(January 2, 2022, to January 1, 2023) using the test (2.4), obtaining a p-value of 0.001. The
outcome suggests that there is a significant change in the covariance structure of the three
largest companies in the S&P 500 [112].

This example is intended to demonstrate the use of the test (2.4) on less volatile data. How-
ever, selecting the three largest companies at the moment of analysis is not reasonable in the
case of real algorithmic trading, as no algorithmic trading system evaluation on the data of
successful companies in the future can provide useful estimates. The information that these
companies were going to be successful was simply not available at the time of simulated trad-
ing.

2.5.2 Non-life insurance data

The dataset ’Insurance’ from the R package splm [97] was considered for the first time in [96].
The data comprises insurance consumption data across Italian provinces during a 5-year period
from 1998 to 2002. Following the approach in [129], we computed the empirical covariance
matrices per province for the following covariates:

1. Real per-capita non-life premiums in 2000 Euros (PPCD);

2. Density of insurance agencies per 1000 inhabitants (AGEN);

3. Real per-capita GDP (RGDP);

We divided the data into two groups based on geographic location. The first sample con-
sisted of n1 = 67 empirical 3×3 covariance matrices corresponding to the Northern provinces,
while the second sample consisted of n2 = 36 empirical 3× 3 covariance matrices correspond-
ing to the Southern and Island provinces. The results in [129] corroborate the findings of
[96]. The results suggest that there is a clear separation between Central-Northern Italy and
Southern-Insular Italy data exists. Therefore, we tested for the difference in distribution of the
covariance matrices between Northern and Southern-Insular data. The p -values of the tests
are presented in Table 2.14. Since the test (2.2) for every parameter value reports a p -value
lower than α= 0.05, we reject the null hypothesis that the covariance matrices of the selected
covariates for Northern and Southern-Insular data are equally distributed, providing further
evidence that the regional differences explored in [96] and [129] exist.

Table 2.14: p -values of the novel tests for Italy insurance data

Parameters ν= 1,Σ= I5 ν= 1,Σ= 2I5 ν= 2,Σ= I5 ν= 2,Σ= 2I5 ν= 5,Σ= I5 ν= 5,Σ= 2I5

p -value 0 0 0 0 0.0025 0.0020

https://finance.yahoo.com


Chapter 3

One-dimensional change point inference

3.1 Introduction to change point analysis

In this paragraph, we aim to review the state-of-the-art approaches in change point analysis.
The topic has been widely researched in the literature. In the subsequent part, we will outline
the main references related to change point analysis and contemporary detection algorithms.
We focus heavily on modifications of two-sample tests for the purpose of change point detec-
tion, as that is our main goal in this part of the dissertation.

Change point analysis (or data segmentation) algorithms can be naturally divided into two
groups. The first group consists of algorithms for offline (or a posteriori) change point de-
tection. The goal is to sequence the data, i.e., estimate the change point locations, where the
entire data is present at the start of the analysis. The second group consists of algorithms for
online (or sequential) change point detection, where the goal is to sequentially partition the
data as they arrive. We will focus on the offline methods for the remainder of the text.

Let us assume we are presented with the sequence X1, X2, . . . , Xn , where X i ∈N (µi ,σ). We
are interested in testing

H0 : µ1 =µ2 = · · ·=µn

against the alternative

H1 : there exists some k such that µ1 =µ2 = · · ·=µk 6=µk+1 = · · ·=µn .

This setting can be modified to test for the change in variance [15].
If one wishes to detect the change point without knowing whether it has occurred, methods

of direct optimizationmight be useful, such as those present in the seminal works of Yao. These
works deal with AIC minimization [143] and least squares estimation [144]. For a detailed
exposition, one may refer to [105, 131].

For the purpose of testing whether a change point has occurred, one of the classical ways to
construct the test is the cumulative sum (CUSUM) approach. The CUSUMapproach derives its
name from the fact that the function constructed is a cumulative sum of suitably transformed
sample elements.

More specifically, the test statistic is constructed as follows:

max
1¶k¶n
|C Sk |,

where

C Sk =

√√k (n −k )
n

� 1

k

k∑
j=1

X j − 1

n −k

n∑
j=k+1

X j

�
.
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Many modifications of the CUSUM statistic are present in contemporary literature; see,
for example, [100, 101]. Note that the CUSUM statistic can be used for both parametric and
nonparametric inference. The case presented earlier is historically the first to be studied, and,
generally, the CUSUM approach does not require the data to be normally distributed.

There exist other approaches as well. The likelihood ratio (LR) test is one of the first tests
modified for change point inference. The problem of the change in the mean is well-known
[28]. Let X1, X2, . . . , Xn be independent random vectors in Rd , having distribution functions
F (x ,θ1), F (x ,θ2), . . . , F (x ,θn ) respectively, where θi ∈ Θ ⊆Rp . We want to test the null hypoth-
esis

H0 : θ1 = θ2 = · · ·= θn= θ
null (3.1)

against the alternative

H1 : there exists an integer k such that θ1 = θ2 = · · ·= θk= θ
(1) 6= θ (2) = θk+1 = · · ·= θn .

Assume that the location of the change point is not known, as well as every parameter defined
above. If the location of the change point is known, we should reject H0 if the value of the test
statistic

Lk =
sup
λ∈Θ

n∏
i=1

f (X i ,λ)

sup
(λ(1),λ(2))∈Θ×Θ

k∏
i=1

f (X i ,λ(1))
n∏

i=k+1
f (X i ,λ(2))

is small. The rationale behind this construction is that if H0 holds, the data will have a single
mean, and Lk will be equal to 1, since the values in the numerator and denominator should
be equal. Conversely, if H1 holds, the data will have two distinct means, resulting in the de-
nominator being larger than the numerator, and consequently, Lk will be strictly less than 1.
Since the location of the change point is usually unknown, one may wish to use a maximum
likelihood ratio, namely

Λk = max
1¶k<n

(−2log Lk ),

and reject H0 if Λk is large. The LR test for change point inference has been a subject of many
different publications over the years, such as in the context of linear regression [71], online
detection [33, 145] and so on.

However, the approaches outlined above are not suitable for multiple change point detec-
tion. For that purpose, one needs to implement the suitable algorithm. The fastest approach
is to use the so-called binary segmentation algorithm [136]. Whenever a change point is de-
tected, say at a location k , the data X1, X2, . . . , Xn is split into X1, X2, . . . , Xk and Xk+1, . . . , Xn , and
the testing is repeated on each part until no splits occur. The obvious issue with this approach
is that the interval can have any number of change points and, therefore, the performance is
considered suboptimal. However, whenever computational aspects and simplicity are of the
essence, one may prefer to choose the binary segmentation algorithm over more demanding
alternative approaches. The most prominent modification is the so-called wild binary seg-
mentation algorithm [41], which randomly selects intervals, allowing for better detection on
narrower intervals. This process was refined in [42], by introducing the so-called wild binary
segmentation 2 algorithm, which draws novel intervals whenever a detection has occurred.
The pitfall of this approach in real settings, where the speed of detection is of the essence,
is the computational time involved. One may prefer to use the seeded binary segmentation
algorithm, a modification of binary segmentation with deterministically selected points [25].
The algorithms are still being developed. For a recent data-adaptive detection algorithm, refer
to [6]. For a recent adaptation of the wild binary segmentation algorithm to high-dimensional
linear models, see [142].
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3.2 Modification of existing integral-type tests for change
point inference

In this section, we briefly introduce the methods used to modify the existing test statistics of
two-sample tests and adapt them for change point inference. This approach is used to modify
our two-sample tests presented in previous chapters, therefore obtaining the change point
tests.

The integral-type tests have been modified to address the change point problem as well.
Having a sample of independent real random variables X1, X2, . . . , Xn with respective cumulative
distribution functions F1, F2, . . . , Fn , we are interested in testing

H0 : F1 = F2 = · · ·= Fn ,

against the alternative

H1 : there exists k such that F1 = F2 = · · ·= Fk 6= Fk+1 = Fk+2 = · · ·= Fn .

In [62, Equation (3)], Hušková and Meintanis considered the modification of the two-
sample test based on characteristic functions, considering the test statistic of the form

Tn ,γ = max
1¶k¶n

��k (n −k )
n 2

�γk (n −k )
n

∞∫
−∞
|ϕk (t )−ϕ0

k (t )|2w (t )dt
�
, (3.2)

where w (t ) denotes the integrable weight function, i.e., such that

0<

∞∫
−∞

w (t )dt <∞,

and ϕk (t ) is the empirical characteristic function of the first k elements of the sample, namely

ϕk (t ) =
1

k

k∑
i=1

exp(i t X i ),

andϕ0
k (t ) denotes the empirical characteristic function of the last n−k elements of the sample,

namely

ϕ0
k (t ) =

1

n −k

n∑
i=k+1

exp(i t X i ).

Hušková and Meintanis considered several weight functions, w1 = exp(−a |t |) and w2 =
exp(−a t 2), which produce the test statistics

T (1)n ,γ(a ) = 2a max
1¶k¶n

��k (n −k )
n 2

�γk (n −k )
n

� 1

k 2

k∑
l=1

k∑
m=1

1

a 2+ (X l −Xm )2
(3.3)

+
1

(n −k )2

n∑
l=k+1

n∑
m=k+1

1

a 2+ (X l −Xm )2

− 2

k (n −k )

k∑
l=1

n∑
m=k+1

1

a 2+ (X l −Xm )2

��
.
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T (2)n ,γ(a ) =
s
π

2
max
1¶k¶n

��k (n −k )
n 2

�γk (n −k )
n

� 1

k 2

k∑
l=1

k∑
m=1

exp
�− (X l −Xm )2)

4a

�
(3.4)

+
1

(n −k )2

n∑
l=k+1

n∑
m=k+1

exp
�− (X l −Xm )2)

4a

�
− 2

k (n −k )

k∑
l=1

n∑
m=k+1

exp
�− (X l −Xm )2)

4a

���
.

Note that under the null hypothesis, a small value of the test statistic is expected. Therefore,
large values of the test statistic are considered significant. The parameter γ ∈ (0, 1] acts as a
tuning parameter, ensuring the convergence of the test statistic in probability whenever γ 6= 0.
In the literature, γ does not significantly influence the test power (see, e.g., [62]).

The same authors modify the test based on the empirical characteristic function of ranks,
thereby obtaining the distribution-free test under the null hypothesis [63]. They considered
the change point detection in the multivariate setting [94] as well.

3.3 Novel test statistics

In this section, we introduce the test statistics used for univariate change point inference. One
class of test statistics is based on the modified Hankel transform, while the other class of test
statistics is based on the empirical Laplace transform. Whenever referring to the Hankel trans-
form, we use the Hankel transform, as introduced in the work of Baringhaus and Taherizadeh
[12] (see Section 1.1).

Let X1, X2, . . . , Xn be independent random variables, X j having a distribution function Fj ,
for j ∈ {1,2, . . . , n}. We consider testing the null hypothesis of the type (3.1), i.e.,

H0 : F1 = F2 = · · ·= Fn

against the alternative

H1 : F1 = F2 = · · ·= Fk−1 6= Fk = Fk+1 = · · ·= Fn ,

where k , F1 and Fn are unknown. We consider the following class of test statistics of the form
(3.2), motivated by the two-sample test proposed in [11]:

Jn ,γ = max
1¶k¶n

��k (n −k )
n 2

�γk (n −k )
n

∞∫
0

(HX (t )−H 0
X (t ))

2 exp(−t )dt
�
,

where HX (t ) denotes the empirical Hankel transform of X1, X2, . . . , Xk and H 0
X (t ) denotes the

empirical Hankel transform of Xk+1, Xk+2, . . . , Xn . Using results from [11], we obtain the fol-
lowing formula for our test statistic:

Jn ,γ =max
1¶k¶n

��k (n −k )
n

�γk (n −k )
n

� 1

k 2

k∑
l=1

k∑
m=1

I0(2
p

X l Xm )exp(−(X l +Xm ))

+
1

(n −k )2

n∑
l=k+1

n∑
m=k+1

I0(2
p

X l Xm )exp(−(X l +Xm ))

− 2

k (n −k )

k∑
l=1

n∑
m=k+1

I0(2
p

X l Xm )exp(−(X l +Xm ))
��

,

where I0 is a modified Bessel function of the first kind of order 0.
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Analogously to the construction above, we consider the class of change point test statistics
based on the Laplace transform. The test statistics are of the form (3.2):

Ln ,γ,a = max
1¶k¶n

��k (n −k )
n 2

�γk (n −k )
n

∞∫
0

(LX (t )−L 0
X (t ))

2 exp(−a t )dt
�
,

where LX (t ) denotes the empirical Laplace transform of the first k elements of the sample,
while L 0

X (t ) denotes the empirical Laplace transform of the last n −k elements of the sample
(see (1.1)), and a > 0. Direct computation yields the following form of the Laplace-based test
statistic:

Ln ,γ,a =max
1¶k¶n

��k (n −k )
n 2

�γk (n −k )
n

� 1

k 2

k∑
l=1

k∑
m=1

1

X l +Xm +a

+
1

(n −k )2

n∑
l=k+1

n∑
m=k+1

1

X l +Xm +a

− 2

k (n −k )

k∑
l=1

n∑
m=k+1

1

X l +Xm +a

��
.

Remark. It is possible to consider other weight functions, besides w (t ) = exp(−a t ). However,
it is important to note that the weight function does not have a significant influence in the
construction of this type of tests. That is why we have focused only on the simplest one.

3.4 Asymptotic results

In this section, we present the results regarding the null limiting distribution of the proposed
test statistics. The proofs in this context follow the same methodology as outlined in [62] and
[85], and are omitted. However, the proofs are given in the subsequent chapter for a more
complicated matrix case.

To obtain the null limit distribution of the test statistic, we first note that the test statistic
Jn ,γ can be represented as Jn ,γ = max

1¶k¶n
[cn ,k (γ)Jk ,n−k ], where Jk ,n−k is a two-sample test statistic

introduced in [11].
Denote by h 1(x , y ) = I0(2

p
x y )exp(−(x + y )) and define

h̃ 1(x , y ) = h 1(x , y )−E h 1(x , X s )−E h 1(X r , y )+ E h 1(X r , X s ),

for r 6= s . Let (λ1
j )
∞
j=1 be a sequence of eigenvalues of the integral operator

∞∫
−∞
(h̃ 1(x , y ))2 dF̂n (x )dF̂n (y ).

Theorem 3.1. Let X1, X2, . . . Xn be independent random variables, where X1 ∈ F . Let γ ∈ (0, 1] and
let (λ j )∞j=1 be the descending sequence of eigenvalues defined above. Then the asymptotic distribution
of Jn ,γ is the same as that of

sup
t ∈(0,1)

�
(t (1− t ))γ

���(E I0(2X1)exp(−2X1))−E I0(2
p

X1X2)exp(−(X1+X2)))+
∞∑
j=1

λ1
j

� B 2
j (t )

t (1− t )
−1

�����,
where {B j (t ), t ∈ (0,1)}, j = 1,2, . . . are independent Brownian bridges.
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The main idea in proving the theorem is to decompose Jk ,n−k in the following way:

Jk ,n−k =Ck 1+Ck 2+Ck 3+Ck 4,

where

Ck 1 =
n

k (n −k )

� 1

k

k∑
v=1

k∑
s=1
s 6=v

h̃ 1(Xv , X s )+
1

n −k

n∑
v=k+1

n∑
s=k+1

s 6=v

h̃ 1(Xv , X s )− 1

n

n∑
v=1

n∑
s=1
s 6=v

h̃ 1(Xv , X s )
�
,

Ck 2 =
n

k (n −k )
(E I0(2X1)exp(−2X1)−E h 1(X1, X2)),

Ck 3 =− 2

k 2

k∑
r=1

(E h 1((X r , X s )|X r )−E h 1(X1, X2))− 2

(n −k )2

n∑
r=k+1

(E h 1((X r , X s )|X r )−E h 1(X1, X2)),

Ck 4 =
1

k 2

k∑
i=1

(I0(2X r )exp(−2X r )−E I0(2X r )exp(−2X r ))

+
1

(n −k )2

n∑
i=k+1

(I0(2X i )exp(−2X i )−E I0(2X i )exp(−2X i )).

Following exactly the same steps as outlined in [62], the proof can be completed. The only
difference here is the summand Ck4

, which can be shown to be negligible by employing the
approach outlined in [85].

Denote by h (2)(x , y ) = 1
x+y+a and with

h̃ (2)(x , y ) = h (2)(x , y )−E h (2)(x , X s )−E h (2)(X r , y )+ E h (2)(X r , X s ),

for r 6= s . Let (λ(2)j )
∞
j=1 be a sequence of eigenvalues of the integral operator

∞∫
−∞
(h̃ (2)(x , y ))2 dF̂n (x )dF̂n (y ).

By following the same steps and making slight modifications to the decomposition, one can
obtain the asymptotics of the Laplace-based test, as stated in the following theorem.

Theorem 3.2. Let X1, X2, . . . Xn be independent random variables, where X1 ∈ F . Let γ ∈ (0, 1] and
let (λ(2)j )

∞
j=1 be the descending sequence of eigenvalues defined above. Then the asymptotic distribution

of Ln ,γ is the same as that of

sup
t ∈(0,1)

�
(t (1− t ))γ

���(E � 1

X1+X2+a

�−E
� 1

2X1+a

�
+
∞∑
j=1

λ(2)j

� B 2
j (t )

t (1− t )
−1

�����,
where {B j (t ), t ∈ (0,1)}, j = 1,2, . . . are independent Brownian bridges.

Since the limiting null distribution of the novel statistics is not free of the distribution of
X1, for the derivation of p-values, we suggest the usage of the permutation bootstrap algorithm
from [62]. This approach can be theoretically justified in a similar manner for our tests.

3.5 A power study

In this section, we investigate the finite sample properties of the novel tests. As a benchmark,
we consider the test statistics (3.3) and (3.4).
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Note that under H0, none of the presented test statistics, whether novel statistics or com-
petitors, are free of the underlying distribution, therefore, there must exist a procedure to
estimate the critical values of the aforementioned tests. The procedure implemented to esti-
mate the distribution under H0 is the permutation without replacement (PWOR)with N = 2000
replacements and B = 500 replicates. For the meta-algorithm for the arbitrary test statistic M ,
refer to Algorithm 2. For every test presented here, we take large values to be significant.

Algorithm 2 Permutation bootstrap algorithm
1: Sample x= (x1, . . . , xn1

) from FX and y= (y1, . . . , yn2
) from FY and let n = n1+n2 , and create

a pooled sample z= (z1, z2, . . . , zn1+n2
) = (x1, . . . , xn1

, y1, y2, . . . , yn2
).;

2: Compute Mn ,γ,a :=Mn ,γ,a (z);
3: Generate random permutations π : {1,2, . . . , n1+n2}→ {1,2, . . . , n1+n2} and the correspond-

ing bootstrap permutation sample z∗ = (zπ(1), . . . , zπ(n1), zπ(n1+1), . . . , zπ(n1+n2)).
4: Compute M ∗n ,γ,a :=Mn ,γ,a (z∗);
5: Repeat steps 3-4 N times and obtain the sequence of statistics {M ∗( j )n ,γ,a }, j = 1, ..., N ;
6: Reject the null hypothesis, if Mn ,γ,a > cα, where cα denotes the (1− α)% quantile of the

empirical distribution of the bootstrap test statistics (M ∗( j )n ,γ,a , j = 1, ..., N );
7: Repeat steps 1-6 B times.

We consider sample sizes n = 40 and n = 100 and the level of significance α= 0.05. The sam-
ples Y1, Y2, . . . , Ym and Ym+1, Ym+2, . . . , Yn are generated from distributions F1 and F2, where m = n

2

or m = n
4 and Yn = b Y1 + 1 is considered, where b = 1 or b =

p
2. For the distributions F1 and

F2 we consider Uniform U [0, 1] (U), Gamma Γ (1, 1) (G1) and Gamma Γ (2, 1) (G2) distributions.
Whenever * is present in the table, it denotes a test power of 100 percent.

From Tables 3.1 and 3.2, all tests seem to be well calibrated. The tables for the Uniform
distribution have been omitted, as all tests achieve a test power of 100 percent. It is clear that
both novel tests, namely Jn ,γ andLn ,γ,a , have more favorable test powers than the benchmark
tests. It seems that the parameter γ does not significantly influence the test powers in the case
of the test Jn ,γ, while for the testLn ,γ,a , the sensitivity increases with an increase in a . Lower
values of a usually correspond to higher test powers. The testLn ,γ,a usually has slightly larger
test powers than the test Jn ,γ. Moreover, the actual location of the change point significantly
influences the test powers, which peak in the symmetric case.

In order to test the quality of the change point estimators, we have generated N = 2000
replications of the sample and estimated the change point of every statistic on each of the
samples. We present the mean and the standard deviation of the position estimate in Table
3.3. The boxplots are presented in Figure 3.1. The alternative U has been omitted since in
almost every case there is a perfect detection and they are uninformative. From the results
presented, it is clear that the novel tests give more precise estimates when the real position of
a change point is at 1

4 of the sample, while for 1
2 of the sample, the novel tests are comparable

to the benchmark, having smaller standard deviation for G1 and G2. The number of outliers
is usually smaller for the novel tests. It can be seen that the tests detect the true position
of the change point in the uniform case with great precision. Usually, the test based on the
Hankel transform gives more precise estimates than the test based on the Laplace transform.
However, it is important to note that the parameter a has a significant influence on the change
point precision. It is also observable that the higher values of the parameter a usually result
in estimates which are more precise. Therefore, if one wishes to estimate the change point
location, it would be preferable to use the test based on the Hankel transform. If one wishes
to have a test with the highest test power, and disregards the actual precision of the change
point estimate, then it would be advisable to consider the Laplace transform-based test with
the parameter a = 0.5. Alternatively, one may wish to use the battery of the tests whenever the
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precision is of the utmost importance, for example in high-frequency trading. On the other
hand, whenever one is looking intomacroeconomic data, the exact change pointmomentmight
not be of the utmost importance, but the information on whether there is a change point is
more important, therefore, one may opt for the tests which have larger test powers in general,
even if they are not the most precise ones.

Table 3.1: Test powers for different alternatives and n = 40 using the PWOR method and
B=500.

G 1

m = 40 m = 20, b = 1 m = 20, b =
p

2 m = 10, b = 1 m = 10, b =
p

2

L40,0.5,0.5 5 98 99 96 98
L40,1,0.5 5 99 * 96 98
L40,0.5,1 5 98 99 94 97
L40,1,1 5 99 99 92 97
L40,0.5,2 5 97 99 90 95
L40,1,2 5 97 99 88 95
J40,0.5 4 98 99 94 96
J40,1 5 98 * 93 95

T (1)40,0.5(1) 5 96 97 78 78
T (1)40,0.5(1.5) 5 94 96 75 77
T (1)40,0.5(2) 5 92 95 73 76
T (1)40,0.5(3) 5 89 94 69 74
T (1)40,0.5(4) 5 87 93 66 72
T (1)40,1(1) 4 97 98 74 73
T (1)40,1(1.5) 5 96 97 72 73
T (1)40,1(2) 5 94 96 70 72
T (1)40,1(3) 5 91 96 66 71
T (1)40,1(4) 5 89 95 64 70
T (2)40,0.5(2) 5 91 94 72 75
T (2)40,0.5(1.5) 5 90 94 69 74
T (2)40,0.5(2) 5 88 93 68 72
T (2)40,0.5(3) 5 86 93 66 71
T (2)40,0.5(4) 5 85 92 64 70
T (2)40,1(2) 5 93 96 68 71
T (2)40,1(1.5) 5 91 95 66 70
T (2)40,1(2) 5 90 95 65 70
T (2)40,1(3) 5 89 95 63 69
T (2)40,1(4) 5 88 94 62 69



3.5. A POWER STUDY 55

Table 3.1: Test powers for different alternatives and n = 40 using the PWOR method and
B=500.

G 2

m = 40 m = 20, b = 1 m = 20, b =
p

2 m = 10, b = 1 m = 10, b =
p

2

L40,0.5,0.5 4 71 92 64 85
L40,1,0.5 5 78 95 62 83
L40,0.5,1 4 72 92 62 84
L40,1,1 5 76 94 59 82
L40,0.5,2 5 69 92 58 82
L40,1,2 5 74 94 54 79
J40,0.5 5 71 91 57 77
J40,1 5 74 93 52 75

T (1)40,0.5(1) 5 52 74 30 45
T (1)40,0.5(1.5) 5 54 79 32 50
T (1)40,0.5(2) 5 54 80 32 53
T (1)40,0.5(3) 5 54 82 32 55
T (1)40,0.5(4) 5 53 83 31 56
T (1)40,1(1) 5 55 77 26 40
T (1)40,1(1.5) 5 57 80 28 45
T (1)40,1(2) 5 56 83 28 49
T (1)40,1(3) 5 56 85 29 52
T (1)40,1(4) 5 56 85 29 52
T (2)40,0.5(2) 5 53 78 31 50
T (2)40,0.5(1.5) 6 54 80 31 52
T (2)40,0.5(2) 5 53 81 31 54
T (2)40,0.5(3) 5 53 82 31 55
T (2)40,0.5(4) 5 52 82 31 55
T (2)40,1(2) 5 56 80 28 46
T (2)40,1(1.5) 5 56 82 28 49
T (2)40,1(2) 5 56 84 29 50
T (2)40,1(3) 5 55 85 29 51
T (2)40,1(4) 5 55 85 30 53
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Table 3.2: Test powers for different alternatives and n = 100 using the PWOR method and
B=500.

G 1

m = 100 m = 50, b = 1 m = 50, b =
p

2 m = 25, b = 1 m = 25, b =
p

2

L100,0.5,0.5 5 * * * *
L100,1,0.5 5 * * * *
L100,0.5,1 5 * * * *
L100,1,1 5 * * * *
L100,0.5,2 5 * * * *
L100,1,2 5 * * * *
J100,0.5 4 * * * *
J100,1 4 * * * *

T (1)100,0.5(1) 5 * * * 99
T (1)100,0.5(1.5) 4 * * * 99
T (1)100,0.5(2) 4 * * 99 99
T (1)100,0.5(3) 5 * * 99 99
T (1)100,0.5(4) 5 * * 98 99
T (1)100,1(1) 5 * * * 99
T (1)100,1(1.5) 5 * * 99 99
T (1)100,1(2) 5 * * 99 99
T (1)100,1(3) 5 * * 98 99
T (1)100,1(4) 5 * * 97 99
T (2)100,0.5(2) 5 * * 99 99
T (2)100,0.5(1.5) 5 * * 99 99
T (2)100,0.5(2) 5 * * 98 99
T (2)100,0.5(3) 5 * * 98 99
T (2)100,0.5(4) 5 * * 97 99
T (2)100,1(2) 5 * * 99 99
T (2)100,1(1.5) 5 * * 98 99
T (2)100,1(2) 5 * * 98 99
T (2)100,1(3) 5 * * 97 99
T (2)100,1(4) 5 * * 97 99
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Table 3.2: Test powers for different alternatives and n = 100 using the PWOR method and
B=500.

G 2

m = 100 m = 50, b = 1 m = 20, b =
p

2 m = 25, b = 1 m = 25, b =
p

2

L100,0.5,0.5 5 99 * 97 *
L100,1,0.5 4 * * 96 *
L100,0.5,1 5 99 * 96 *
L100,1,1 5 * * 95 *
L100,0.5,2 5 99 * 95 *
L100,1,2 5 99 * 93 *
J100,0.5 6 99 * 94 *
J100,1 6 99 * 93 *

T (1)100,0.5(1) 5 94 99 74 92
T (1)100,0.5(1.5) 5 94 99 76 94
T (1)100,0.5(2) 6 94 99 77 95
T (1)100,0.5(3) 6 93 99 76 96
T (1)100,0.5(4) 6 92 99 75 97
T (1)100,1(1) 5 95 99 69 90
T (1)100,1(1.5) 5 95 99 71 93
T (1)100,1(2) 5 95 99 72 94
T (1)100,1(3) 5 95 99 73 95
T (1)100,1(4) 5 94 * 72 96
T (2)100,0.5(2) 5 93 99 76 94
T (2)100,0.5(1.5) 6 93 99 76 95
T (2)100,0.5(2) 6 93 99 76 96
T (2)100,0.5(3) 6 92 99 75 96
T (2)100,0.5(4) 6 92 * 74 97
T (2)100,1(2) 5 95 99 72 93
T (2)100,1(1.5) 5 95 99 72 94
T (2)100,1(2) 5 94 99 72 95
T (2)100,1(3) 6 94 99 72 96
T (2)100,1(4) 5 93 * 71 96
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Table 3.3: Estimates and standard deviations of change point locations.

n = 40, b = 1, k = 20

G1 G2 U

L40,0.5,0.5 18.59 (2.405) 17.59 (4.344) 19.55 (0.914)
L40,1,0.5 18.85 (1.924) 18.23 (3.495) 19.6 (0.803)
L40,0.5,1 18.77 (2.305) 17.91 (4.374) 19.71 (0.672)
L40,1,1 18.99 (1.871) 18.43 (3.508) 19.74 (0.601)
L40,0.5,2 18.98 (2.355) 18.25 (4.476) 19.83 (0.476)
L40,1,2 19.17 (1.938) 18.64 (3.616) 19.85 (0.434)
J40,0.5 18.87 (2.204) 18.12 (4.442) 19.78 (0.567)
J40,1 19.06 (1.756) 18.57 (3.61) 19.8 (0.501)

T (1)40,0.5(1) 19.27 (2.13) 19.3 (5.083) 20.01 (0.224)
T (1)40,0.5(1.5) 19.36 (2.356) 19.39 (5.187) 20.01 (0.223)
T (1)40,0.5(2) 19.48 (2.524) 19.47 (5.174) 20.01 (0.215)
T (1)40,1(1) 19.38 (1.729) 19.34 (4.037) 20.01 (0.206)
T (1)40,1(1.5) 19.48 (1.867) 19.38 (4.019) 20.01 (0.195)
T (1)40,1(2) 19.52 (2.061) 19.44 (4.141) 20.01 (0.196)
T (2)40,0.5(1) 19.52 (2.65) 19.42 (5.358) 20.01 (0.217)
T (2)40,0.5(1.5) 19.57 (2.841) 19.45 (5.366) 20.01 (0.212)
T (2)40,0.5(2) 19.61 (2.962) 19.5 (5.473) 20.01 (0.211)
T (2)40,1(1) 19.57 (2.134) 19.51 (4.205) 20.01 (0.186)
T (2)40,1(1.5) 19.65 (2.301) 19.55 (4.362) 20.01 (0.186)
T (2)40,1(2) 19.67 (2.485) 19.53 (4.343) 20.01 (0.184)

n = 40, b = 1, k = 10

L40,0.5,0.5 9.4 (1.932) 10.23 (5.123) 9.85 (0.485)
L40,1,0.5 10.04 (1.987) 11.48 (4.882) 10.03 (0.256)
L40,0.5,1 9.68 (2.214) 10.7 (5.471) 9.95 (0.289)
L40,1,1 10.39 (2.35) 11.77 (5.015) 10.09 (0.357)
L40,0.5,2 10.1 (2.648) 11.18 (5.779) 9.99 (0.221)
L40,1,2 10.92 (2.873) 12.28 (5.331) 10.19 (0.529)
J40,0.5 9.75 (2.169) 11.29 (5.925) 9.97 (0.25)
J40,1 10.39 (2.377) 12.29 (5.37) 10.12 (0.43)

T (1)40,0.5(1) 10.97 (4.085) 14.38 (7.485) 10.13 (0.513)
T (1)40,0.5(1.5) 11.2 (4.395) 14.03 (7.345) 10.15 (0.538)
T (1)40,0.5(2) 11.42 (4.583) 13.98 (7.434) 10.16 (0.545)
T (1)40,1(1) 11.85 (4.229) 15.25 (6.404) 10.33 (0.827)
T (1)40,1(1.5) 11.99 (4.259) 14.89 (6.401) 10.38 (0.86)
T (1)40,1(2) 12.23 (4.407) 14.74 (6.428) 10.41 (0.879)
T (2)40,0.5(1) 11.56 (4.688) 14.12 (7.527) 10.17 (0.556)
T (2)40,0.5(1.5) 11.87 (5.031) 14 (7.543) 10.18 (0.577)
T (2)40,0.5(2) 12.07 (5.307) 14.03 (7.623) 10.19 (0.586)
T (2)40,1(1) 12.39 (4.497) 14.82 (6.529) 10.42 (0.893)
T (2)40,1(1.5) 12.57 (4.661) 14.73 (6.491) 10.44 (0.905)
T (2)40,1(2) 12.73 (4.867) 14.69 (6.494) 10.45 (0.906)
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Table 3.3: Estimates and standard deviations of change point locations.

n = 40, b =
p

2, k = 20

G1 G2 U

L40,0.5,0.5 18.7 (2.31) 18.57 (3.141) 19.81 (0.572)
L40,1,0.5 18.94 (1.841) 18.92 (2.458) 19.84 (0.484)
L40,0.5,1 18.93 (2.206) 18.87 (3.037) 19.94 (0.296)
L40,1,1 19.12 (1.748) 19.11 (2.424) 19.95 (0.246)
L40,0.5,2 19.16 (2.128) 19.15 (2.947) 19.99 (0.109)
L40,1,2 19.32 (1.785) 19.36 (2.389) 19.99 (0.08)
J40,0.5 18.97 (2.211) 19.05 (3.172) 19.98 (0.172)
J40,1 19.18 (1.728) 19.29 (2.542) 19.98 (0.149)

T (1)40,0.5(1) 19.39 (2.321) 19.73 (3.746) 20 (0)
T (1)40,0.5(1.5) 19.56 (2.44) 19.81 (3.68) 20 (0.022)
T (1)40,0.5(2) 19.67 (2.529) 19.97 (3.716) 20 (0.022)
T (1)40,1(1) 19.46 (1.875) 19.76 (2.991) 20 (0)
T (1)40,1(1.5) 19.57 (2.054) 19.81 (2.88) 20 (0.022)
T (1)40,1(2) 19.69 (2.144) 19.95 (2.869) 20 (0.022)
T (2)40,0.5(1) 19.72 (2.664) 19.91 (3.731) 20 (0.022)
T (2)40,0.5(1.5) 19.8 (2.838) 20.05 (3.738) 20 (0.022)
T (2)40,0.5(2) 19.9 (2.885) 20.15 (3.68) 20 (0.022)
T (2)40,1(1) 19.71 (2.211) 19.92 (3.019) 20 (0.022)
T (2)40,1(1.5) 19.81 (2.29) 20.02 (2.933) 20 (0.022)
T (2)40,1(2) 19.87 (2.296) 20.04 (2.933) 20 (0.022)

n = 40, b =
p

2, k = 10

L40,0.5,0.5 9.47 (1.619) 10.08 (3.457) 9.98 (0.158)
L40,1,0.5 10.1 (1.765) 11.04 (3.347) 10 (0.05)
L40,0.5,1 9.79 (1.895) 10.34 (3.522) 10 (0.022)
L40,1,1 10.44 (2.096) 11.35 (3.527) 10.02 (0.144)
L40,0.5,2 10.16 (2.25) 10.73 (3.696) 10 (0)
L40,1,2 10.88 (2.581) 11.75 (3.776) 10.05 (0.23)
J40,0.5 9.86 (2.046) 10.9 (4.31) 10 (0)
J40,1 10.46 (2.291) 11.9 (4.145) 10.03 (0.168)

T (1)40,0.5(1) 11.04 (3.793) 13.51 (6.22) 10.02 (0.158)
T (1)40,0.5(1.5) 11.27 (4.065) 13.3 (6.202) 10.04 (0.197)
T (1)40,0.5(2) 11.52 (4.367) 13.28 (6.156) 10.05 (0.256)
T (1)40,1(1) 12.01 (4.072) 14.54 (5.742) 10.12 (0.438)
T (1)40,1(1.5) 12.15 (4.198) 14.25 (5.689) 10.17 (0.529)
T (1)40,1(2) 12.22 (4.154) 13.96 (5.509) 10.22 (0.608)
T (2)40,0.5(1) 11.72 (4.594) 13.29 (6.214) 10.06 (0.278)
T (2)40,0.5(1.5) 11.83 (4.687) 13.28 (6.151) 10.07 (0.297)
T (2)40,0.5(2) 12.02 (4.859) 13.3 (6.164) 10.07 (0.304)
T (2)40,1(1) 12.38 (4.332) 14.18 (5.702) 10.25 (0.639)
T (2)40,1(1.5) 12.54 (4.421) 14.05 (5.635) 10.28 (0.668)
T (2)40,1(2) 12.59 (4.427) 14.03 (5.592) 10.32 (0.714)



60 CHAPTER 3. ONE-DIMENSIONAL CHANGE POINT INFERENCE

Table 3.3: Estimates and standard deviations of change point locations.

n = 100, b = 1, k = 50

G1 G2 U

L100,0.5,0.5 48.42 (2.792) 46.98 (5.494) 49.54 (0.977)
L100,1,0.5 48.6 (2.414) 47.46 (4.476) 49.57 (0.896)
L100,0.5,1 48.62 (2.644) 47.31 (5.561) 49.72 (0.674)
L100,1,1 48.75 (2.336) 47.77 (4.47) 49.73 (0.643)
L100,0.5,2 48.84 (2.584) 47.62 (5.706) 49.83 (0.49)
L100,1,2 48.91 (2.404) 48.17 (4.546) 49.83 (0.474)
J100,0.5 48.7 (2.518) 47.47 (5.671) 49.78 (0.584)
J100,1 48.83 (2.234) 47.98 (4.552) 49.79 (0.543)

T (1)100,0.5(1) 49.07 (2.208) 48.41 (6.485) 50.01 (0.156)
T (1)100,0.5(1.5) 49.16 (2.401) 48.63 (6.707) 50.01 (0.141)
T (1)100,0.5(2) 49.25 (2.631) 48.72 (6.733) 50.01 (0.139)
T (1)100,1(1) 49.14 (2.028) 48.61 (5.066) 50.01 (0.145)
T (1)100,1(1.5) 49.21 (2.214) 48.7 (5.125) 50.01 (0.138)
T (1)100,1(2) 49.3 (2.42) 48.87 (5.218) 50.01 (0.138)
T (2)100,0.5(1) 49.27 (2.843) 48.77 (7.04) 50.01 (0.139)
T (2)100,0.5(1.5) 49.32 (3.039) 48.87 (7.045) 50.01 (0.139)
T (2)100,0.5(2) 49.41 (3.21) 49.01 (7.284) 50.01 (0.139)
T (2)100,1(1) 49.35 (2.525) 48.87 (5.391) 50.01 (0.13)
T (2)100,1(1.5) 49.4 (2.743) 48.95 (5.697) 50.01 (0.128)
T (2)100,1(2) 49.46 (2.837) 49.08 (5.778) 50.01 (0.128)

n = 100, b = 1, k = 25

L100,0.5,0.5 24.17 (1.909) 24.33 (5.44) 24.83 (0.499)
L100,1,0.5 24.83 (1.88) 26.44 (5.736) 25.03 (0.236)
L100,0.5,1 24.41 (2.077) 24.8 (5.728) 24.92 (0.299)
L100,1,1 25.21 (2.247) 27.12 (6.456) 25.09 (0.337)
L100,0.5,2 24.76 (2.464) 25.74 (6.886) 24.99 (0.202)
L100,1,2 25.85 (3.11) 27.9 (7.185) 25.17 (0.47)
J100,0.5 24.46 (1.969) 25.34 (6.668) 24.96 (0.25)
J100,1 25.17 (2.134) 27.72 (7.331) 25.12 (0.388)

T (1)100,0.5(1) 25.02 (3.155) 29.35 (11.845) 25.11 (0.384)
T (1)100,0.5(1.5) 25.32 (3.694) 29.26 (11.634) 25.12 (0.41)
T (1)100,0.5(2) 25.61 (4.057) 29.12 (11.325) 25.13 (0.422)
T (1)100,1(1) 25.88 (3.619) 31.82 (11.452) 25.32 (0.808)
T (1)100,1(1.5) 26.46 (4.365) 31.43 (11.113) 25.36 (0.862)
T (1)100,1(2) 26.88 (4.941) 31.57 (11.11) 25.42 (0.952)
T (2)100,0.5(1) 25.75 (4.266) 29.28 (11.505) 25.14 (0.433)
T (2)100,0.5(1.5) 26.1 (4.871) 29.58 (11.741) 25.15 (0.436)
T (2)100,0.5(2) 26.3 (5.218) 29.73 (11.839) 25.15 (0.445)
T (2)100,1(1) 27.21 (5.338) 31.62 (11.235) 25.45 (0.979)
T (2)100,1(1.5) 27.66 (5.817) 31.74 (11.401) 25.47 (1.008)
T (2)100,1(2) 27.92 (6.128) 31.83 (11.592) 25.48 (1.024)
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Table 3.3: Estimates and standard deviations of change point locations.

n = 100, b =
p

2, k = 50

G1 G2 U

L100,0.5,0.5 48.55 (2.586) 48.25 (3.725) 49.84 (0.496)
L100,1,0.5 48.69 (2.259) 48.48 (3.124) 49.85 (0.435)
L100,0.5,1 48.83 (2.373) 48.56 (3.531) 49.95 (0.257)
L100,1,1 48.97 (2.115) 48.75 (3.034) 49.96 (0.24)
L100,0.5,2 49.1 (2.299) 48.91 (3.414) 50 (0.045)
L100,1,2 49.19 (2.109) 49.03 (2.952) 50 (0.039)
J100,0.5 48.89 (2.322) 48.76 (3.532) 49.99 (0.074)
J100,1 48.97 (2.143) 48.9 (3.21) 49.99 (0.074)

T (1)100,0.5(1) 49.05 (2.427) 49.35 (4.224) 50 (0)
T (1)100,0.5(1.5) 49.24 (2.484) 49.56 (4.103) 50 (0)
T (1)100,0.5(2) 49.37 (2.598) 49.64 (4.17) 50 (0)
T (1)100,1(1) 49.11 (2.266) 49.42 (3.529) 50 (0)
T (1)100,1(1.5) 49.32 (2.244) 49.55 (3.517) 50 (0)
T (1)100,1(2) 49.45 (2.273) 49.67 (3.502) 50 (0)
T (2)100,0.5(1) 49.39 (2.778) 49.65 (4.346) 50 (0)
T (2)100,0.5(1.5) 49.56 (2.774) 49.75 (4.25) 50 (0)
T (2)100,0.5(2) 49.68 (2.729) 49.83 (4.129) 50 (0)
T (2)100,1(1) 49.48 (2.387) 49.64 (3.593) 50 (0)
T (2)100,1(1.5) 49.66 (2.414) 49.77 (3.615) 50 (0)
T (2)100,1(2) 49.73 (2.482) 49.82 (3.716) 50 (0)

n = 100, b =
p

2, k = 50

L100,0.5,0.5 24.27 (1.825) 24.64 (3.197) 24.99 (0.077)
L100,1,0.5 24.92 (1.768) 26.12 (3.815) 25 (0.032)
L100,0.5,1 24.56 (1.853) 24.99 (3.298) 25 (0)
L100,1,1 25.3 (2.193) 26.53 (4.288) 25.01 (0.095)
L100,0.5,2 24.87 (2.136) 25.53 (3.781) 25 (0)
L100,1,2 25.84 (2.858) 27.07 (4.773) 25.05 (0.229)
J100,0.5 24.58 (1.963) 25.42 (3.877) 25 (0)
J100,1 25.24 (2.187) 26.91 (4.799) 25.01 (0.118)

T (1)100,0.5(1) 25.04 (2.855) 27.44 (7.333) 25.01 (0.111)
T (1)100,0.5(1.5) 25.31 (3.261) 27.47 (7.043) 25.02 (0.158)
T (1)100,0.5(2) 25.6 (3.671) 27.61 (7.106) 25.04 (0.2)
T (1)100,1(1) 26.05 (3.784) 29.67 (8.305) 25.12 (0.403)
T (1)100,1(1.5) 26.59 (4.502) 29.52 (7.876) 25.17 (0.492)
T (1)100,1(2) 27.05 (5.048) 29.46 (7.623) 25.2 (0.552)
T (2)100,0.5(1) 25.77 (4.02) 27.7 (7.422) 25.05 (0.227)
T (2)100,0.5(1.5) 25.99 (4.162) 27.86 (7.365) 25.06 (0.263)
T (2)100,0.5(2) 26.23 (4.739) 27.81 (7.194) 25.06 (0.272)
T (2)100,1(1) 27.25 (5.273) 29.7 (8.063) 25.23 (0.611)
T (2)100,1(1.5) 27.48 (5.419) 29.56 (7.684) 25.27 (0.677)
T (2)100,1(2) 27.69 (5.781) 29.69 (7.708) 25.29 (0.696)
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Figure 3.1: Estimated change point location - N = 2000 replications
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3.6 Real data examples

In this section, we apply the novel tests to several types of data, highlighting their applicability
in macroeconomics and meteorology. Both cases are well-documented in the literature, and
our tests provide further insight into the observed phenomena.

3.6.1 US GNP data

In this part, we analyze the GNP (Gross National Product) data. The data consist of the quar-
terly U.S. GNP in billions of chained 2017 dollars from 1947(1) to 2023(3), and they have been
seasonally adjusted [134]. Chained dollars were introduced in 1996 by the U.S. Bureau of Eco-
nomic Analysis as a method to better adjust the dollar currency for inflation over time [110].
The difference in the logarithm of GNP can be naturally interpreted as the growth rate of GNP
[121]. In [123], Shumway and Stoffer considered a shorter time frame, 1947(1) to 2002(3), in
chained 1996 dollars, also seasonally adjusted. They examined the difference in the logarithm
of the GNP and concluded that there might be a structural break (i.e., a change-point) in the
data in the year 1985. Shao and Zhang reached the same conclusion in [121], using the same
dataset as in [123].

Note that our tests are designed for nonnegative data. Therefore, we considered the abso-
lute difference in the logarithm of the GNP. The data can be seen in Figure 3.2. There is an
obvious spike in the data in the year 2020, whichmay be attributed to a combination of factors,
including increased government spending to alleviate the effects of the COVID-19 pandemic,
the rebound effect after the pandemic subsided, and direct monetary measures taken by the
U.S. Federal Reserve Bank, such as lowering interest rates and other monetary expansionmea-
sures. The change-point in the volatility of GNP growth in the mid-1980s can be attributed to
the reduction in the volatility of durable goods production [92]. There might be similar rea-
sons for the change observed in Figure 3.2. We have performed single change point detection
using the permutation bootstrap algorithm (Algorithm 2) with N = 2000 replications to ob-
tain p-values. The results are presented in Table 3.4. The novel tests report a p-value smaller
than 0.05. Our results for both novel tests are consistent with those in [121, 123] and provide
further evidence that the change point occurred in the year 1985. Moreover, it is clear that
the competition tests detect the change point existence, albeit the location is slightly earlier,
which can be explained by their lower precision, as demonstrated in Figure 3.1.
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Table 3.4: p -values of novel tests - US GNP data

Statistic J0.5 J1 L0.5,0.5 L1,0.5 L0.5,1 L1,1 L0.5,2 L1,2

p -values 0.0050 0.0025 0.0025 0.0010 0.0035 0.0020 0.0065 0.0025
Position 1985 (3) 1985 (3) 1985 (3) 1985 (3) 1985 (3) 1985 (3) 1985 (3) 1985 (3)

Statistic T (1)0.5,1 T (1)0.5,1.5 T (1)0.5,2 T (1)0.5,3 T (1)1,1 T (1)1,1.5 T (1)1,2 T (1)1,3

p -values 0.0070 0.0085 0.0060 0.0075 0.0030 0.0020 0.0040 0.0025
Position 1984 (2) 1984 (2) 1984 (2) 1984 (2) 1984 (2) 1984 (2) 1984 (2) 1985 (3)

Statistic T (2)0.5,1 T (2)0.5,1.5 T (2)0.5,2 T (2)0.5,3 T (2)1,1 T (2)1,1.5 T (2)1,2 T (2)1,3

p -values 0.0060 0.0095 0.0080 0.0085 0.0025 0.0025 0.0040 0.0035
Position 1984 (2) 1984 (2) 1984 (2) 1984 (2) 1984 (2) 1984 (2) 1984 (2) 1985 (3)

Figure 3.2: Quarterly U.S. GNP absolute growth rate from 1947(1) to 2023(3)
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3.6.2 Argentinian rainfall data

We applied our test to detect a change in the distribution of Argentinian yearly rainfall data.
The rainfall data contain yearly rainfall in millimeters in Argentina from 1884 to 1996. The
dataset originally came from [139], where Wu et al. proposed a test statistic based on isotonic
regression. Shao and Zhang were interested in detecting the change point in the mean of the
data in [121]. Wu et al. stated that the data provider believes that there is a change in themean,
which corresponds to the construction of a dam during 1952–1962, and the results from [121]
supported this hypothesis.

Since we were unable to locate the tabulated data, we used Figure 5 from [121] to recon-
struct the exact values from the dataset; see Figure 3.3. The results are presented in Table 3.5.
The novel tests reported p-values of less than 0.05, and the position of the change point is the
year 1956 for every novel test. The competitors’ tests do not detect the change point, and the
estimate they provide is imprecise. The results of the novel tests are shown to be consistent
with those given in [121, 139].

Figure 3.3: Argentinian rainfall data: yearly rainfall (milimeters) in Argentina from 1884 to
1996.
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Table 3.5: p -values - Argentinian rainfall data

Statistic J0.5 J1 L0.5,0.5 L1,0.5 L0.5,1 L1,1 L0.5,2 L1,2

p -values 0.0040 0.0080 0 0.0010 0.0035 0.0015 0.0020 0.0010
Position 1956 1956 1956 1956 1956 1956 1956 1956
Statistic T (1)0.5,1 T (1)0.5,1.5 T (1)0.5,2 T (1)0.5,3 T (1)1,1 T (1)1,1.5 T (1)1,2 T (1)1,3

p -values 0.0780 0.0790 0.0890 0.0575 0.2175 0.1185 0.0750 0.0049
Position 1910 1910 1953 1956 1953 1953 1953 1956

Statistic T (2)0.5,1 T (2)0.5,1.5 T (2)0.5,2 T (2)0.5,3 T (2)1,1 T (2)1,1.5 T (2)1,2 T (2)1,3

p -values 0.0670 0.0840 0.0850 0.0900 0.1380 0.1285 0.1100 0.0775
Position 1910 1914 1914 1953 1914 1953 1953 1953
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Chapter 4

Change point analysis for matrix data

4.1 Introduction

In this chapter, we present the modification of the test statistic (2.4) to address change point
problems. The results of this chapter can be found in [85]. The modification is constructed
using a similar idea as in the univariate case, producing a statistic of the form (3.2). This is
the first test of its kind for matrix data. Many applications of covariance matrices have driven
research in this area andmotivated us to modify the two-sample test. Since similar equities are
usually correlated, and changes in the structure of such correlations are important to traders,
one may wish to examine samples of covariance matrices. However, it is important to mention
the caveat of independence. The data need to be independent; therefore, one needs to consider
the source data that are independent.

4.2 The test statistic

In this part, we follow the construction (3.2) adapted for matrix data. We modify the test
statistic (2.4) to address the change point-type problems. Let X1, X2, . . . , Xn be the sample of
independent symmetric positive definite random matrices, where X j has a cumulative distri-
bution function Fj .

We want to test the hypothesis

H0 : X1
O I D= X2

O I D= . . .
O I D= Xn

against the alternative

H1 : X1
O I D= X2

O I D= . . . 6= Xk
O I D= Xk+1

O I D= . . .
O I D= Xn ,

(4.1)

where the corresponding distributions of X1 and Xn are unknown and the index k is also un-
known. For the notion of OID random variables, refer to Definition 2.1. To achieve this, we
use the orthogonally invariant Hankel transform (see Definition 1.6).

Remark. Hadjicosta and Richards demonstrated that the orthogonally invariant Hankel trans-
form uniquely determines the distribution within the class of orthogonally invariant distribu-
tions in [54]. Theorem 2.1 extends this result, establishing that the orthogonally invariant
Hankel transform uniquely determines the distribution within the broader class of OID distri-
butions.

More precisely, when the distributions in question are orthogonally invariant, the result in
Theorem 2.1 aligns with that presented in [54]. As a consequence, change point inference in
the (class of) OID distributions becomes equivalent to change point inference in distribution.
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For the remainder of this section, wewill operate under the assumption that we are working
with OID distributions.

For testing hypotheses (4.1), we propose the following test statistic (see [85]):

III n ,γ,ν =max
1¶k<n

��k (n −k )
n 2

�γk (n −k )
n

∫
T>0

�H̃k ,ν(T )−H̃ 0
n−k ,ν(T )

�2
dW (T )

�
,

where dW (T ) is a standardWishartmeasure, H̃k ,ν denotes the empirical orthogonally invariant
Hankel transform of the first k elements of the sample, while H̃ 0

n−k ,ν denotes the empirical
orthogonally invariant Hankel transform of the last n − k elements of the sample. Using the
same arguments as in Section 2.2.2, the test statistic can be expressed as:

III n ,γ,ν =max
1¶k<n

��k (n −k )
n 2

�γk (n −k )
n

� 1

k 2

k∑
i=1

k∑
j=1

etr(−X i −X j )Jν(−X i , X j )

+
1

(n −k )2

n∑
i=k+1

n∑
j=k+1

etr(−X i −X j )Jν(−X i , X j )

− 2

k (n −k )

k∑
i=1

n∑
j=k+1

etr(−X i −X j )Jν(−X i , X j )
��

.

Note that under the null hypothesis, a small value of the test statistic is expected. Therefore,
large values of the test statistic are considered significant. The parameter γ ∈ (0,1] acts as a
tuning parameter, ensuring the convergence of the test statistic in probability whenever γ 6= 0.
In the literature, γ does not significantly influence the test power (see, e.g., [62]). In the next
section, we present the asymptotic results of the novel test.

4.3 Asymptotic results

In order to obtain the limiting null distribution of the test statistic, we first note that the test
statisticIII can be represented asIII n ,γ,ν = max

1¶k¶n
[cn ,k (γ)Ik ,n−k ,ν], where Ik ,n−k ,ν is a two-sample test

statistic (2.4), and cn ,k =
�

k (n−k )
n 2

�γ k (n−k )
n . For the sake of brevity, we drop the parameter ν in the

subsequent text and simply denote Ik ,n−k ,ν as Ik ,n−k .
Using the notation: q (x , y ) = etr(−x − y )Jν(−x , y ) and

q̃ (x , y ) = q (x , y )−E (q (X , X s )|X = x )−E (q (X r , X )|X = y )+ E q (X r , X s ), r 6= s ,

the following equalities are obtained:

E (q̃ (X r , X s )|X r ) = E (q̃ (X r , X s )|X s ) = E q̃ (X r , X s ) = 0, (4.2)

under H0. It is worth noting that the function q (x , y ) is symmetric in its arguments. Moreover,
we can easily establish that under H0

E q̃ 2(X1, X2) =

∫
X1>0,X2>0

q̃ 2(X1, X2)dF (X1)dF (X2)<∞.

From this, we conclude that there exist orthogonal eigenfunctions fs (t ), s = 1, 2, . . . and corre-
sponding eigenvalues λs , s = 1, 2, . . ., such that the following spectral approximation holds (see
[17, 118]):

lim
K→∞

∫
X1>0,X2>0

�
q̃ 2(X1, X2)−

K∑
s=1

λs fs (X1) fs (X2)

�2

dF (X1)dF (X2) = 0; (4.3)
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X1>0

f 2
s (X1)dF (X1) = 1, s = 1, 2, . . . ;∫

X1>0

fr (X1) fs (X1)dF (X1) = 0, r 6= s = 1,2, . . . ,

from which we obtain

E q̃ 2(X1, X2) =

∫
X1>0,X2>0

q̃ 2(X1, X2)dF (X1)dF (X2) =
∞∑
j=1

λ2
j .

In the proof of the following theorem, we make use of the Hájek-Rényi inequality. Its most
general form is as follows:

Theorem 4.1. [95, Theorem 2.3] Let {Xn , n ¾ 1} be an associated sequence of random variables
defined on a Hilbert space H . Let E Xn = 0 and E ‖Xn‖2 <∞ for every n ¾ 1. Let {bn , n ¾ 1} be a
nondecreasing sequence of positive real numbers. Then, for any ϵ > 0 and any α> 1, we have

P

�
max
1¶k¶n

������ 1

bk

k∑
j=1

X j

������¾ ϵ�¶ 2

ϵ2

α2

1− 1
α2

� n∑
j=1

E ||X j ||2
b 2

j

+2
n∑

j=1

E 〈X j ,
j−1∑
k=1

Xk 〉
b 2

j

�
.

We state the main result of this section:

Theorem 4.2. [85, Theorem 1] Let X1, X2, . . . Xn be independent random matrices orthogonally
invariant in distribution, where X1 ∈ F . Let γ ∈ (0, 1] and let (λ j )∞j=1 be the descending sequence of
eigenvalues defined in (4.3). Then the asymptotic distribution of III n ,γ,ν is the same as that of

sup
t ∈(0,1)

�
(t (1− t ))γ

���(E Jν(−X1, X1)−E etr(−X1−X2)Jν(−X1, X2))+
∞∑
j=1

λ j

� B 2
j (t )

t (1− t )
−1

�����,
where {B j (t ), t ∈ (0,1)}, j = 1,2, . . . are independent Brownian bridges.

Proof. We break the proof into several steps.
In Step (I), we decompose the test statistic into four parts, and show that two of them do not

influence the limiting distribution. We assert this by making repeated use of the Hájek-Rényi
inequality to majorize the terms.

In Step (II), we determine the finite-dimensional distributions of the limiting process, by
establishing the approximation formula, and making use of the Donsker theorem.

In Step (III), using the properties of the Wiener process, we determine the asymptotic dis-
tribution in question and finalize the proof.

In the following, we denote E (q (X , Y ) | Y = X s ), where X is independent of X s and has the
same cumulative distribution function F , as E (q (X , X s ) | X s ). Similarly, we denote E (q (X , Y ) |
X = X r ), where X is independent of X r and has the same cumulative distribution function F ,
as E (q (X r , X ) | X r ).

Step (I): The following decomposition holds:

Ik ,n−k =Ck 1+Ck 2+Ck 3+Ck 4,

where

Ck 1 =
n

k (n −k )

�
1

k

k∑
r=1

k∑
s=1
s 6=r

q̃ (X r , X s ) +
1

n −k

n∑
r=k+1

n∑
s=k+1

s 6=r

q̃ (X r , X s )
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− 1

n

n∑
r=1

n∑
s=1
s 6=r

q̃ (X r , X s )

�
,

Ck 2 =
n

k (n −k )
(E Jν(−X1, X1)−E q (X1, X2)),

Ck 3 =− 2

k 2

k∑
r=1

(E (q (X r , X s )|X r )−E q (X1, X2))− 2

(n −k )2

n∑
r=k+1

(E (q (X r , X s )|X r )

−E q (X1, X2)),

Ck 4 =
1

k 2

k∑
r=1

(Jν(−X r , X r )−E Jν(−X r , X r ))+
1

(n −k )2

n∑
r=k+1

(Jν(−X r , X r )

−E Jν(−X r , X r )).

We prove this decomposition holds.

Ck 1+Ck 2+Ck 3+Ck 4 =
n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

q (X r , X s )− n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

E (q (X , X s )|X s )

− n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

E (q (X r , X )|X r )+
n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

E q (X1, X2)+
n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

q (X r , X s )

− n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

E (q (X , X s )|X s )− n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

E (q (X r , X )|X r )

+
n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

E q (X1, X2)− 1

k (n −k )

n∑
r=1

n∑
s=1
s 6=r

q (X r , X s )+
1

k (n −k )

n∑
r=1

n∑
s=1
s 6=r

E (q (X , X s )|X s )

+
1

k (n −k )

n∑
r=1

n∑
s=1
s 6=r

E (q (X r , X )|X r )− 1

k (n −k )

n∑
r=1

n∑
s=1
s 6=r

E q (X1, X2)+
n

k (n −k )
E Jν(−X1, X1)

− n

k (n −k )
E q (X1, X2)− 2

k 2

k∑
r=1

E (q (X r , X )|X r )+
2

k 2

k∑
r=1

E q (X1, X2)− 2

(n −k )2

n∑
r=k+1

E (q (X r , X )|X r )

+
2

(n −k )2

n∑
r=k+1

E q (X1, X2)+
1

k 2

k∑
r=1

Jν(−X r , X r )− 1

k
E Jν(−X1, X1)+

1

(n −k )2

n∑
r=k+1

Jν(−X r , X r )

− 1

n −k
E Jν(−X1, X1).

Simplifying the blue part, we obtain:

n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

q (X r , X s )+
n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

q (X r , X s )− 1

k (n −k )

n∑
r=1

n∑
s=1
s 6=r

q (X r , X s )

+
1

k 2

k∑
r=1

Jν(−X r , X r )+
1

(n −k )2

n∑
r=k+1

Jν(−X r , X r )

=
n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

q (X r , X s )+
n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

q (X r , X s )− 1

k (n −k )

k∑
r=1

k∑
s=1
s 6=r

q (X r , X s )
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− 1

k (n −k )

n∑
r=k+1

k∑
s=1

q (X r , X s )− 1

k (n −k )

k∑
r=1

n∑
s=k+1

q (X r , X s )− 1

k (n −k )

n∑
r=k+1

n∑
s=k+1

s 6=r

q (X r , X s )

+
1

k 2

k∑
r=1

Jν(−X r , X r )+
1

(n −k )2

n∑
r=k+1

Jν(−X r , X r ) =
1

k 2

k∑
r=1

k∑
s=1

q (X r , X s )− 1

k 2

k∑
r=1

Jν(−X r , X r )

+
1

(n −k )2

n∑
r=k+1

n∑
s=k+1

q (X r , X s )− 1

(n −k )2

n∑
r=k+1

Jν(−X r , X r )− 2

k (n −k )

k∑
r=1

n∑
s=k+1

q (X r , X s )

+
1

k 2

k∑
r=1

Jν(−X r , X r )+
1

(n −k )2

n∑
r=k+1

Jν(−X r , X r ) =
1

k 2

k∑
r=1

k∑
s=1

q (X r , X s )

+
1

(n −k )2

n∑
r=k+1

n∑
s=k+1

q (X r , X s )− 2

k (n −k )

k∑
r=1

n∑
s=k+1

q (X r , X s ),

which is exactly the form of the statistic Ik ,n . We used the symmetry of q (x , y ) and the fact
that finite sums commute.

Let us focus on the red part now. We have:

n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

E q (X1, X2)+
n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

E q (X1, X2)− 1

k (n −k )

n∑
r=1

n∑
s=1
s 6=r

E q (X1, X2)

− n

k (n −k )
E q (X1, X2)+

2

k 2

k∑
r=1

E q (X1, X2)+
2

(n −k )2

n∑
r=k+1

E q (X1, X2)+
n

k (n −k )
E Jν(−X1, X1)

− 1

k
E Jν(−X1, X1)− 1

n −k
E Jν(−X1, X1) =

nk −n

k (n −k )
E q (X1, X2)+

n 2−nk −n

k (n −k )
E q (X1, X2)

+
n −n 2

k (n −k )
E q (X1, X2)− n

k (n −k )
E q (X1, X2)+

2n −2k

k (n −k )
E q (X1, X2)+

2k

k (n −k )
E q (X1, X2)

=
nk −n +n 2−nk −n −n 2+n −n +2n −2k +2k

k (n −k )
E q (X1, X2) = 0.

For the violet part, note that:

− n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

E (q (X , X s )|X s )− n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

E (q (X , X s )|X s )

+
1

k (n −k )

n∑
r=1

n∑
s=1
s 6=r

E (q (X , X s )|X s ) =
−n (k −1)
k 2(n −k )

k∑
s=1

E (q (X , X s )|X s )

+
−n (n −k −1)

k (n −k )2

n∑
s=k+1

E (q (X , X s )|X s )+
n −1

k (n −k )

n∑
s=1

E (q (X , X s )|X s )

=
−nk +n +nk −k

k 2(n −k )

k∑
s=1

E (q (X , X s )|X s )+
−n 2+nk +n 2−nk −n +k

k (n −k )2

n∑
s=k+1

E (q (X , X s )|X s )

=
1

k 2

k∑
s=1

E (q (X , X s )|X s )+
1

(n −k )2

n∑
s=k+1

E (q (X , X s )|X s ).

Since q (x , y ) = q (y , x ), we can conclude the violet part equals

1

k 2

k∑
s=1

E (q (X s , X )|X s ) +
1

(n −k )2

n∑
s=k+1

E (q (X s , X )|X s ).
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For the brown part, we repeat the same steps used above and obtain:

− n

k 2(n −k )

k∑
r=1

k∑
s=1
s 6=r

E (q (X r , X )|X r )− n

k (n −k )2

n∑
r=k+1

n∑
s=k+1

s 6=r

E (q (X r , X )|X r )

+
1

k (n −k )

n∑
r=1

n∑
s=1
s 6=r

E (q (X r , X )|X r )− 2

k 2

k∑
r=1

E (q (X r , X )|X r )− 2

(n −k )2

n∑
r=k+1

E (q (X r , X )|X r )

=
−n (k −1)−2(n −k )

k 2(n −k )

k∑
s=1

E (q (X s , X )|X s ) +
−n (n −k −1)−2k

k (n −k )2

n∑
s=k+1

E (q (X s , X )|X s )

+
n −1

k (n −k )

n∑
s=1

E (q (X s , X )|X s ) =
−nk +n +nk −k −2n −2k

k 2(n −k )

k∑
s=1

E (q (X s , X )|X s )

+
−n 2+nk +n 2−nk −n +k −2k

k (n −k )2

n∑
s=k+1

E (q (X s , X )|X s ) =− 1

k 2

k∑
s=1

E (q (X s , X )|X s )

− 1

(n −k )2

n∑
s=k+1

E (q (X s , X |X s ).

From the calculation above, we conclude that the violet and brown parts cancel out. Moreover,
the proposed decomposition holds.

The main idea is to demonstrate that Ck 3 and Ck 4 have no impact on the limiting distri-
bution, while the non-random term Ck 2 and the random term Ck 1 do. Then, we establish the
limiting distribution of Ck 1, which is not a straightforward task and depends on the ability to
determine the distribution of an arbitrarily close approximation. The final part of Step (I)
consists of demonstrating that the asymptotic distributions of Ck 1 and the approximation are
identical.

We begin by showing that Ck 3 and Ck 4 do not influence the limiting distribution.
We can see that if X is a random variable independent of X r having the same distribution

function F , random variables

L r = E (q (X r , X )|X r )−E q (X1, X2), r = 1, 2, . . . , n

are independent and identically distributedwith zeromean and finite variance. Note that while
X i are random matrices, random variables L r are real-valued. By applying the Hájek-Rényi
inequality, we obtain that for every positive real constant ξ and every γ ∈ [0,1], the following
inequality holds:

PH0

�
max
1¶k<n

�
ck ,n (γ)

2

k 2

��� k∑
r=1

L r

����¾ ξ�¶ 4Var(L1)
ξ2n 2γ

n∑
k=1

1

k 2(1−γ) .

The last term can be upper-bounded by D3n−min(2γ,1)(1+Ind(γ¾ 1
2 ) log(n )), where D3 is a constant

greater than zero. Similarly, we also have

PH0

�
max
1¶k<n

�
ck ,n (γ)

2

(n −k )2

��� n∑
r=k+1

L r

����¾ ξ�¶D3n−min(2γ,1)(1+ Ind
�
γ¾ 1

2

�
log(n )).

Therefore, given that the above inequalities hold:

max
1¶k<n

�
ck ,n (γ)|Ck 3|

�
= oP (1), n→∞,
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and the term |Ck 3| does not impact the limiting distribution.
Next, we demonstrate that Ck 4 does not impact the limiting behavior. We note that the

random variables

Kr = Jν(−X r , X r )−E Jν(−X r , X r ), r = 1, 2, . . . , n

are independent and identically distributed with zero mean and finite variance. By applying
the Hájek-Rényi inequality, we obtain that for every real constants ξ > 0 and γ ∈ [0,1], the
following inequality holds:

PH0

�
max
1¶k<n

�
ck ,n (γ)

1

k 2

��� k∑
r=1

Kr

����¾ ξ�¶ Var(K1)
ξ2n 2γ

n∑
k=1

1

k 2(1−γ) .

The last term can be upper-bounded by D4n−min(2γ,1)(1+Ind(γ¾ 1
2 ) log(n )), where D4 is a positive

constant. We obtain

PH0

�
max
1¶k<n

�
ck ,n (γ)

1

(n −k )2

��� n∑
r=k+1

Kr

����¾ ξ�¶D4n−min(2γ,1)(1+ Ind
�
γ¾ 1

2

�
log(n )).

Hence, it follows that
max
1¶k<n

[ck ,n (γ)|Ck 4|] = oP (1), n→∞,

and the term |Ck 4| does not affect the limiting distribution. Furthermore, it is worth noting
that

Var(Ck 1) =O
�
2
� n

k (n −k )

�2
E q̃ 2(X1, X2)

�
.

Since
p

Var(Ck 1) andCk 2 are of the same order, it remains to determine the limiting distribution
of Ck 1 in Step (II).

Step (II): Consider the auxiliary statistic:

Sk (q̃ ) =
∑

1¶i< j¶k

q̃ (X i , X j ), k = 1,2, . . . , n .

Under H0, we have:

E (Sk+1(q̃ )|X1, X2, . . . , Xk ) = Sk (q̃ ) +
k∑

j=1

E (q̃ (X i , Xk+1)|X1, X2, . . . , Xk ) (4.4)

= Sk (q̃ ), k = 1,2, . . . , n −1.

We establish that {(Sk (q̃ ),σ(X1, X2, . . . , Xk )), k = 1,2, . . . , n} is a martingale. σ(X1, X2, . . . , Xk ) de-
notes the σ-algebra generated by X1, X2, . . . , Xk . Applying the Háyek-Rényi inequality yields
the following result:
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2

¶ D0

ξ2
E q̃ 2(X1, X2),
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for some positive constant D0. Repeating the computation for the function S̃k (q̃ ) =∑
k+1¶i< j¶n

q̃ (X i , X j ), which satisfies (4.4), and combining the results, we obtain:

P (max
1¶k<n

[ck ,n (γ)|Ck 1|]¾ ξ)¶ D1

ξ2
E q̃ 2(X1, X2),

for some positive constant D1. This equality holds true if we replace q̃ with any function that
satisfies (4.2). We utilize the function q̃ − q̃K , such that q̃K is defined by:

q̃K (x , y ) =
K∑

s=1

λs fs (x ) fs (y ),

where (λs , fs ) are the (sorted) eigenvalues and eigenfunctions defined in (4.3) and K denotes
the arbitrary natural number.

Moreover, by utilizing the fact that

E q̃ 2(X1, X2) =
∞∑

k=1

λ2
k ,

and applying the Háyek-Rényi inequality once more, we establish that

P
�

max
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�
¶ D5

ξ2
E (q̃ (X1, X2)− q̃K (X1, X2))

2 =
D5

ξ2

∞∑
j=K +1

λ2
j , (4.5)

where D5 is a positive constant and n ¾ 2 and K ∈N and Ck 1(K ) denotes Ck 1 where q̃ is replaced
with q̃K . We can now conclude that
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Using the Donsker theorem [126], we obtain:¦ 1p
n

[n t ]∑
i=1

f K (X i ), t ∈ (0,1)
© D ((0,1))−−−→

n→∞ WK (t ), t ∈ (0,1),

where WK = (W1, . . . , WK ) is a K -dimensional Wiener process with independent components in
RK and f K = ( f1, f2, f3, . . . , fK ) is a vector of eigenfunctions up to the position K . Therefore, we
establish that the asymptotic distribution of max

1¶k<n
[cn ,k (γ)Ck 1(K )] is given by:

max
1¶k<n

��k (n −k )
n 2

�γ K∑
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Step (III): Note that the random processes λs

�
n 2

k (n−k ) (Ws (k/n )− k
n Ws (1))2 − 1

�
are independent

for s = K +1, K +2, . . . . Additionally, these random processes have a zero mean.
Furthermore, as their variances are finite, we can apply the Hájek-Rényi inequality, yield-

ing the following:
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From (4.5), we can observe that for a sufficiently large value of K , the asymptotic dis-
tributions of Ck 1 and Ck 1(K ) are close to each other. Consequently, by taking the limit
as K tends to infinity, we conclude that the asymptotic distribution of max

1¶k<n
[cn ,k (γ)Ck 1] =

max
1¶k<n

��
k (n−k )

n 2

�γ k (n−k )
n Ck 1

�
is identical to that of

max
t ∈(0,1)

��
t (1− t )

�γ ∞∑
s=1

λs

� (Ws (t )− t Ws (1))2

t (1− t )
−1

��
.

This concludes the proof.

Since the limiting null distribution of novel statistics is not free of distribution of X1, for
the derivation of p-values, we suggest the usage of the permutation bootstrap algorithm from
[62]. This approach can be theoretically justified in a similar manner for our test.

4.4 A power study

In this section, we present the results of a power study. All computations were performed
using MATLAB [64]. The algorithm developed in [72] was implemented to evaluate the Bessel
functions of two matrix arguments.

In our study, we fix the value of parameter ν to ν = 1, as is common practice in problems
of this nature (see [12, 84]).

The empirical powers in various settings, for the level of significance α= 0.05, are obtained
using a warp-speed modification of the permutation bootstrap algorithm - Algorithm 3 (see,
e.g., [46]), with N = 500 replications.

The following distributions are considered:

1. Wishart distributions with the shape parameter a > 1
2 (d − 1) and the scale matrix Σ > 0,

denoted by Wd (a ,Σ), with a density (2.10).

2. Inverse Wishart distributions with the shape parameter a > 1
2 (d −1) and the scale matrix

Σ> 0, denoted by I Wd (a ,Σ), with a density (2.11).

3. Sample covariance matrix distributions obtained from the uniform vectors (U1, . . . ,Ud ),
where Ui ∈U [0, 1], denoted by C M Ud , with a density (2.12).

4. Sample covariance matrix distributions obtained from the random vectors having the
multivariate t -distribution with a > 0 degrees of freedom, denoted by C M Td (a ,Σ), and
matrix parameter Σ> 0, with a density (2.13).

Throughout the above cases, d denotes the dimension of the respective matrices. When esti-
mating sample covariance matrices, we considered samples of dimension d .

Tables 4.1 and 4.2 present the empirical powers for n = 40 and n = 100, with varying change
point positions (k ) and tuning parameter (γ) values, for d = 2 and d = 3, respectively. The
results indicate that the empirical sizes closely approximate the significance level, with only
a few notable deviations that diminish as the sample size increases. It is also noteworthy that
the tests exhibit low sensitivity to the tuning parameter γ - in most instances, discrepancies do
not exceed 10%. This behavior aligns with expectations, as similar test statistics have shown
robustness to variations in the parameter γ [62].

Conversely, the change point location appears to significantly influence its detection. Gen-
erally, central change points are more easily detected compared to those near the boundaries.
In asymmetric scenarios, optimizing the parameter γ could potentially improve test power.
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Importantly, change point detection occurred even in cases where distributions shared the
same expectation.

As anticipated, there is a decrease in power as the dimension increases. Nevertheless, the
ratio of rejection rates among different alternatives remains relatively consistent.

Table 4.1: Powers of the test for different sample sizes and change point locations: 2× 2 ma-
trices, γ= 0.5 (γ= 1).

n = 40, k = 20
Distributions W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5,2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 7 (4) 29 (29) 12 (11) 100 (100) 16 (23) 27 (32) 18 (33) 51 (52) 57 (62) 68 (71) 80 (85)
I W2(2.5, I2) 4 (3) 9 (12) 100 (100) 62 (68) 6 (8) 5 (6) 19 (21) 23 (26) 32 (34) 42 (49)
C M T2(1, I2) 6 (7) 100 (100) 23 (35) 4 (7) 9 (7) 23 (29) 34 (38) 47 (48) 59 (60)
C M U2 7 (4) 100 (100) 100 (100) 100 (100) 100 (100) 99 (99) 98 (99) 97 (98)
W2(2.5, 2I2) 6 (4) 78 (82) 67 (68) 77 (80) 85 (86) 86 (91) 93 (95)
I W2(4,2.5I2) 4 (6) 7 (10) 26 (27) 35 (43) 41 (44) 58 (57)
W2(2.5, K2) 8 (5) 21 (19) 27 (27) 32 (32) 45 (45)
C M T2(3, K2) 3 (3) 4 (5) 11 (6) 12 (11)
C M T2(5, K2) 2 (3) 7 (7) 11 (10)
C M T2(3, I2) 3 (4) 7 (6)
C M T2(5, I2) 7 (5)

n = 40, k = 10
Distributions W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5,2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 4 (4) 12 (13) 7 (10) 100 (100) 18 (23) 18 (16) 10 (15) 20 (21) 26 (29) 32 (35) 49 (47)
I W2(2.5, I2) 25 (24) 6 (4) 6 (5) 100 (100) 55 (54) 10 (5) 6 (9) 7 (6) 9 (14) 16 (20) 26 (17)
C M T2(1, I2) 14 (10) 5 (4) 5 (6) 100 (100) 23 (24) 8 (6) 10 (6) 10 (13) 17 (17) 32 (20) 34 (31)
C M U2 100 (100) 100 (100) 100 (100) 5 (5) 100 (100) 100 (100) 100 (100) 98 (96) 98 (97) 90 (85) 82 (85)
W2(2.5, 2I2) 5 (9) 28 (28) 5 (6) 100 (100) 3 (7) 50 (43) 34 (32) 34 (37) 53 (45) 63 (55) 70 (65)
I W2(4,2.5I2) 19 (16) 6 (3) 3 (5) 100 (100) 58 (64) 4 (6) 7 (4) 10 (11) 15 (14) 13 (14) 26 (24)
W2(2.5, K2) 19 (24) 5 (7) 3 (7) 100 (100) 66 (57) 7 (7) 5 (3) 8 (11) 20 (14) 19 (18) 27 (26)
C M T2(3, K2) 46 (43) 16 (14) 17 (14) 98 (97) 65 (65) 26 (24) 21 (18) 6 (5) 6 (8) 6 (6) 6 (8)
C M T2(5, K2) 59 (53) 25 (23) 23 (23) 96 (96) 75 (69) 28 (28) 29 (20) 8 (6) 4 (3) 4 (5) 8 (6)
C M T2(3, I2) 59 (53) 28 (33) 29 (35) 92 (91) 76 (78) 36 (37) 36 (23) 8 (8) 12 (9) 3 (3) 2 (4)
C M T2(5, I2) 70 (65) 36 (41) 45 (43) 88 (88) 88 (81) 52 (50) 41 (33) 8 (7) 7 (7) 6 (6) 5 (5)

n = 100, k = 50
Distributions W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5,2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 7 (5) 64 (67) 19 (22) 100 (100) 53 (65) 65 (67) 75 (74) 94 (94) 99 (99) 99 (99) 100 (100)
I W2(2.5, I2) 6 (5) 11 (16) 100 (100) 99 (99) 9 (9) 8 (10) 33 (51) 58 (58) 70 (78) 90 (92)
C M T2(1, I2) 5 (6) 100 (100) 54 (61) 14 (14) 19 (25) 59 (63) 72 (77) 90 (90) 94 (96)
C M U2 5 (6) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 4 (4) 100 (100) 99 (100) 99 (100) 100 (100) 100 (100) 100 (100)
I W2(4,2.5I2) 7 (6) 10 (9) 51 (54) 78 (79) 85 (89) 93 (96)
W2(2.5, K2) 4 (4) 42 (53) 61 (65) 73 (81) 87 (86)
C M T2(3, K2) 4 (6) 7 (6) 18 (21) 31 (31)
C M T2(5, K2) 6 (5) 9 (10) 16 (17)
C M T2(3, I2) 4 (4) 10 (10)
C M T2(5, I2) 6 (6)

n = 100, k = 25
Distributions W2(2.5, I2) I W2(2.5, I2) C M T2(1, I2) C M U2 W2(2.5,2I2) I W2(4, 2.5I2) W2(2.5, K2) C M T2(3, K2) C M T2(5, K2) C M T2(3, I2) C M T2(5, I2)
W2(2.5, I2) 7 (4) 58 (51) 23 (22) 100 (100) 17 (24) 41 (49) 61 (66) 86 (85) 93 (92) 95 (95) 100 (99)
I W2(2.5, I2) 38 (45) 7 (7) 12 (11) 100 (100) 85 (87) 6 (6) 6 (7) 27 (25) 47 (45) 59 (59) 76 (73)
C M T2(1, I2) 8 (7) 11 (10) 4 (3) 100 (100) 24 (32) 5 (9) 9 (13) 43 (46) 58 (58) 71 (69) 84 (87)
C M U2 100 (100) 100 (100) 100 (100) 3 (3) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W2(2.5, 2I2) 46 (46) 94 (94) 56 (59) 100 (100) 3 (5) 99 (98) 97 (98) 99 (99) 99 (99) 100 (100) 100 (100)
I W2(4,2.5I2) 39 (33) 8 (9) 10 (10) 100 (100) 97 (97) 4 (3) 11 (8) 49 (48) 65 (65) 79 (76) 91 (90)
W2(2.5, K2) 29 (39) 5 (5) 13 (12) 100 (100) 93 (94) 8 (9) 7 (5) 30 (29) 50 (51) 68 (62) 72 (73)
C M T2(3, K2) 73 (58) 17 (18) 39 (43) 100 (100) 98 (95) 28 (29) 21 (15) 5 (4) 8 (7) 12 (16) 23 (16)
C M T2(5, K2) 87 (88) 30 (33) 55 (50) 100 (100) 100 (99) 45 (36) 32 (34) 5 (4) 8 (6) 9 (6) 8 (14)
C M T2(3, I2) 89 (90) 40 (43) 68 (64) 100 (100) 99 (100) 51 (60) 46 (43) 12 (10) 7 (6) 5 (7) 6 (5)
C M T2(5, I2) 98 (98) 61 (58) 82 (75) 100 (100) 100 (100) 73 (76) 65 (69) 15 (18) 10 (10) 6 (6) 7 (7)
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Table 4.2: Powers of the test for different sample sizes and change point locations: 3× 3 ma-
trices, γ= 0.5 (γ= 1).

n = 40, k = 20
Distributions W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (4) 16 (19) 7 (6) 100 (100) 9 (8) 22 (42) 8 (10) 26 (38) 36 (49) 27 (38) 40 (45)
I W3(3, I3) 5 (5) 7 (12) 100 (100) 15 (29) 6 (5) 21 (27) 11 (10) 16 (17) 14 (21) 23 (24)
C M T3(1, I3) 6 (4) 100 (100) 7 (7) 12 (16) 7 (7) 23 (27) 38 (44) 30 (34) 44 (46)
C M U3 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 5 (5) 45 (58) 6 (5) 32 (41) 38 (58) 41 (48) 51 (59)
I W3(5,3I3) 5 (6) 46 (62) 17 (16) 20 (16) 16 (20) 18 (28)
W3(3, K3) 4 (6) 32 (46) 49 (49) 36 (47) 43 (54)
C M T3(3, K3) 5 (6) 6 (7) 6 (6) 4 (7)
C M T3(5, K3) 4 (4) 6 (4) 3 (3)
C M T3(3, I3) 6 (7) 6 (7)
C M T3(5, I3) 6 (7)

n = 40, k = 10
Distributions W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (7) 7 (6) 6 (4) 100 (100) 11 (10) 15 (15) 10 (10) 6 (13) 13 (15) 14 (12) 18 (25)
I W3(3, I3) 17 (20) 4 (4) 8 (10) 100 (100) 21 (25) 7 (4) 19 (23) 5 (8) 5 (9) 9 (9) 6 (12)
C M T3(1, I3) 9 (7) 4 (6) 5 (6) 100 (100) 8 (8) 9 (10) 11 (11) 8 (7) 9 (14) 9 (14) 12 (16)
C M U3 100 (100) 100 (100) 100 (100) 5 (6) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 3 (4) 8 (8) 5 (8) 100 (100) 5 (5) 14 (17) 8 (6) 9 (16) 22 (22) 14 (18) 17 (30)
I W3(5,3I3) 27 (25) 5 (4) 8 (12) 100 (100) 42 (46) 5 (6) 42 (49) 6 (6) 10 (11) 7 (12) 13 (16)
W3(3, K3) 5 (5) 7 (10) 3 (4) 100 (100) 6 (4) 20 (28) 6 (5) 8 (13) 17 (24) 13 (17) 18 (28)
C M T3(3, K3) 27 (31) 9 (10) 22 (24) 100 (100) 41 (40) 14 (14) 37 (38) 4 (5) 4 (5) 6 (5) 6 (6)
C M T3(5, K3) 32 (45) 16 (16) 27 (34) 100 (100) 41 (45) 20 (20) 36 (43) 9 (7) 3 (4) 7 (7) 6 (6)
C M T3(3, I3) 31 (33) 16 (13) 30 (30) 100 (100) 35 (34) 20 (19) 34 (40) 7 (4) 5 (8) 5 (5) 5 (5)
C M T3(5, I3) 43 (46) 22 (20) 32 (36) 100 (100) 39 (46) 24 (23) 40 (42) 6 (7) 5 (5) 5 (4) 7 (7)

n = 100, k = 50
Distributions W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (3) 34 (51) 6 (5) 100 (100) 13 (26) 73 (84) 21 (28) 77 (79) 91 (92) 76 (86) 95 (98)
I W3(3, I3) 5 (3) 28 (51) 100 (100) 59 (75) 8 (6) 55 (74) 26 (30) 47 (51) 35 (36) 54 (63)
C M T3(1, I3) 6 (3) 100 (100) 11 (11) 48 (67) 12 (17) 75 (75) 90 (91) 75 (80) 88 (92)
C M U3 5 (5) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 4 (4) 98 (99) 5 (6) 89 (95) 97 (98) 93 (96) 98 (98)
I W3(5,3I3) 6 (6) 99 (100) 30 (32) 52 (53) 39 (43) 58 (63)
W3(3, K3) 6 (5) 89 (92) 96 (99) 88 (95) 98 (99)
C M T3(3, K3) 4 (5) 8 (10) 7 (6) 11 (12)
C M T3(5, K3) 6 (6) 6 (7) 8 (6)
C M T3(3, I3) 5 (5) 6 (9)
C M T3(5, I3) 7 (7)

n = 100, k = 25
Distributions W3(3, I3) I W3(3, I3) C M T3(1, I3) C M U3 W3(3, 2I3) I W3(5, 3I3) W3(3, K3) C M T3(3, K3) C M T3(5, K3) C M T3(3, I3) C M T3(5, I3)
W3(3, I3) 5 (3) 36 (40) 7 (5) 100 (100) 6 (8) 65 (66) 3 (8) 62 (70) 86 (86) 74 (72) 89 (86)
I W3(3, I3) 14 (16) 4 (5) 17 (11) 100 (100) 24 (28) 5 (8) 28 (33) 22 (21) 38 (45) 23 (24) 43 (43)
C M T3(1, I3) 4 (6) 23 (25) 4 (4) 100 (100) 4 (6) 28 (36) 5 (6) 61 (62) 77 (76) 71 (65) 80 (82)
C M U3 100 (100) 100 (100) 100 (100) 100 (100) 6 (4) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)
W3(3, 2I3) 18 (14) 52 (57) 13 (11) 100 (100) 6 (5) 89 (90) 4 (6) 75 (80) 92 (94) 87 (85) 94 (94)
I W3(5,3I3) 46 (50) 7 (4) 32 (35) 100 (100) 76 (79) 5 (6) 73 (84) 24 (24) 52 (48) 35 (35) 49 (55)
W3(3, K3) 25 (31) 57 (64) 14 (14) 100 (100) 9 (5) 89 (94) 5 (6) 78 (81) 87 (91) 79 (82) 92 (94)
C M T3(3, K3) 46 (45) 10 (12) 36 (30) 100 (100) 45 (61) 12 (17) 59 (64) 7 (5) 6 (4) 4 (4) 10 (6)
C M T3(5, K3) 54 (56) 16 (22) 66 (58) 100 (100) 74 (81) 23 (19) 74 (78) 4 (7) 4 (5) 4 (3) 7 (7)
C M T3(3, I3) 32 (52) 13 (18) 39 (42) 100 (100) 59 (57) 14 (15) 60 (62) 5 (4) 5 (5) 3 (4) 7 (5)
C M T3(5, I3) 60 (69) 25 (28) 64 (69) 100 (100) 77 (85) 23 (29) 85 (75) 7 (10) 4 (5) 5 (4) 3 (4)
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4.5 Real data examples

In this section, we present recent real-world data examples that clearly demonstrate the appli-
cability of the proposed methodology.

4.5.1 Example 1 - most recent cryptocurrency data

This example analyzes recent Bitcoin (BTC) and Ethereum (ETH) data. Hourly BTC-USD
and ETH-USD data from January 1, 2023, to July 1, 2023, were obtained from Gemini
(http://www.gemini.com). We focused on the close prices X t and calculated hourly logarith-
mic returns log X t

X t−1
. Sample covariance matrices were computed daily, resulting in a total of

n = 181 observations. We employed a binary segmentation algorithm (Algorithm 4) to detect
multiple change points, using parameters W i nd o w = 10 and N B = 500.

We emphasize the importance of carefully selecting the W i nd o w parameter. Large values
may prevent the detection of change points, while small values can lead to the identification of
insignificant points, especially when analyzing volatile assets. Thus, fine-tuning the W i nd o w
parameter is crucial for optimal performance. We examined the algorithm’s performance with
γ= 1 and γ= 0.5 but observed no differences in the estimated change point locations.

Table 4.3 presents relevant crypto-related news. Notably, no change points were detected
from January to February, which aligns with expectations, as crypto markets generally trended
upwards during this period. While Bitcoin experienced a mid-February dip, it quickly recov-
ered. Ethereum remained largely unaffected [89, 114].

Identifying change point locations can be valuable for validating new trading systems with
the most recent data. It may prove particularly useful in automatically assessing the conserva-
tiveness of specific market strategies in conditions where other methods might be ineffective
due to the extreme underlying volatility of the assets in question.

Algorithm 3 Warp-speed bootstrap permutation algorithm
1: Sample x= (x1, . . . , xn1

) from FX and y= (y1, . . . , yn2
) from FY and let n = n1+n2 , and create

a pooled sample z= (z1, z2, . . . , zn1+n2
) = (x1, . . . , xn1

, y1, y2, . . . , yn2
).;

2: Compute III n ,γ,ν :=III n ,γ,ν(z);
3: Generate random permutations π : {1,2, . . . , n1+n2}→ {1,2, . . . , n1+n2} and the correspond-

ing bootstrap permutation sample z∗ = (zπ(1), . . . , zπ(n1), zπ(n1+1), . . . , zπ(n1+n2)).
4: Compute III ∗n ,γ,ν :=III n ,γ,ν(z∗);
5: Repeat steps 1-4 N times and obtain two sequences of statistics {III ( j )n ,γ,ν} and {III ∗( j )n ,γ,ν}, j =

1, ..., N ;
6: Reject the null hypothesis for the j–sample ( j = 1, ..., N ), if III ( j )n ,γ,ν > cα, where cα denotes

the (1−α)% quantile of the empirical distribution of the bootstrap test statistics (III ∗( j )n ,γ,ν, j =
1, ..., N ).

http://www.gemini.com
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4.5.2 Example 2 - performance on well-documented cases

This study examines the data example from Section 2.5.1 from a change point perspective. We
investigated the covariance structure of hourly logarithmic returns over 15-day periods before
and after well-documented Bitcoin price drops that coincide with significant historical events
[40]. Each period comprises n = 720 data points, with results presented in Table 4.6. Most tests
failed to detect change points both before and after the prominent events, except for February,
where increased volatility may have enhanced detection. Based on these findings, we conclude
that this method is not practically applicable for this specific analysis.

We then conducted a change point analysis using 1-minute BTC (Bitcoin) [146] and ETH
(Ethereum) [73] data. We selected two-day periods and calculated logarithmic returns for each
minute. Covariance matrices were computed hourly, yielding a total of n = 48 covariance ma-
trices (24 for each day). The results, shown in Table 4.5, demonstrate that our test successfully
identified change points on the day before and the day of the event’s occurrence. The test
consistently detected change points without failure or lag. This finding may have practical
significance for implementing stop-loss strategies in trading [68]. Both tests, using γ= 0.5 and
γ= 1, produced comparable results.
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4.5.3 Example 3 - DAX stock index data

We applied the novel test to a subset of German DAX index data, focusing on the following
stock trading symbols: ADS.DE, ALV.DE, BAS.DE, BAYN.DE, BEI.DE, BMW.DE, CON.DE,
DB1.DE, DBK.DE, DHER.DE, DPW.DE, DTE.DE, DWNI.DE, EOAN.DE, FME.DE, FRE.DE,
HEI.DE, HEN3.DE, IFX.DE, LHA.DE, LIN.DE, MRK.DE, MUV2.DE, RWE.DE, SAP.DE,
SIE.DE, VNA.DE, and VOW3.DE.

The study period runs from January 1, 2022, to January 1, 2023, covering 257 trading days.
We divided the data into sections of five consecutive trading days and estimated the covariance
matrix for each section, resulting in N = 52 observations. Given the high dimensionality of the
data and the considerable computational effort required, we performed data reduction before
applying the test.

We applied Principal Component Analysis (PCA) to the entire dataset. Table 4.4 presents
the explained variance (PCAEV). For data reduction, we replaced each covariancematrixwith a
diagonalmatrix containing the largest eigenvalues. Table 4.4 also shows the largest eigenvalues
(LE) per position. Based on these results, dimensions 2, 3, 4, and 5were considered for analysis.

We implemented the binary search procedure on the reduced data, using the parameters
W i nd o w = 5 and N B = 500. Each procedure consistently identified a change point location
at k = 50, suggesting the presence of a single change point in the data. This indicates that
the period from December 11 to 17, 2022, exhibited a significant shift in behavior within the
Germanmarket. This change likely reflects the impact of speculated recession in theUSmarket
and the global nature of the German economy.

Algorithm 4 Binary segmentation algorithm BS (x , N B ,γ,α, W i nd o w )
1: Compute n=Length(x).
2: if n <Window then
3: Return NULL.
4: else
5: Compute J ∗ =Jγ(x ).
6: Compute xi1

, xi2
, . . . , xiN B

- different permutations without replacement of x .
7: Estimate the distribution under the null hypothesis with

Null=Jγ(xi1
),Jγ(xi2

), . . . ,Jγ(xiN B
).

8: Estimate the p-value as pval=Mean(Null>J ∗).
9: if pval >α then

10: Return NULL.
11: else
12: Compute the position for which the maximum in J ∗ is attained. Denote this posi-

tion with k ∗.
13: Split x into two subsamples xh1 = x1, . . . , x[n/2] and

xh2 = x[n/2]+1, x[n/2]+2, . . . , xn .
14: Return list

[k ∗, BS (xh1, N B ,γ,α, W i nd o w ), [n/2] +BS (xh2, N B ,γ,α, W i nd o w )].
15: end if
16: end if



Conclusion and outlook

In this dissertation, we have presented two novel two-sample tests for matrix data. The tests
are first of their kind, and we have demonstrated their properties. However, there are many
possible avenues of research to be explored. The (noncentral) Wishart measure that has been
implemented in the construction of the test statistic can be replaced with an appropriately
chosen measure, conditional on the computation of the matrix integral. One possible measure
could be the matrix beta measure [50].

Regarding the two-sample test based on the Laplace transform in thematrix case, onemight
consider the development of GOF tests following the same approach, since it is a promising
direction for further research and no such undertakings are present in the modern literature.
The univariate tests can be extended to the multivariate setting. To the best of our knowledge,
there has been no such undertaking. The asymptotic properties of the matrix-variate two-
sample test could not be established using a well-known technique by utilizing a central limit
theorem. Therefore, the establishing of the asymptotic properties remains an open question.

The real data examples presented in the second part of the dissertation are mainly sampled
using a 1-minute time frame. They do illustrate the application for day traders; however, it
is still unclear what happens in the case of ultra-high-frequency data [20], i.e., data sampled
in intervals less than one second. The structure of the micro-shocks often significantly alters
the structure of the signal, which can lead to false detection and influence the trading system
performance. Nevertheless, it is a compelling area for future study, taking into account the
rapidly developing area of algorithmic trading.

Regarding change point inference, we have presented classes of novel tests in the univariate
case. The tests are based on integral transforms and have many favorable properties. There
exist many different areas of further research connected to univariate change point detection.
The area of algorithm development is still very viable. One might also want to consider the
problems of parametric change point detection associated with specific time series models.
Formally establishing the consistency of the change point estimator is left for further research
as well.

In the final chapter, we have presented the first-of-its-kind change point test for matrix
data, obtained by modifying the two-sample test presented in the second chapter. There exist
several areas of further research, such as the modification of the test to address online change
point inference. The online change point inference for complex data structures has many
potential real-world applications, see, for example, [23, 24, 137]. Moreover, establishing the
consistency of the change point estimator can be significant in establishing the quality of the
estimator with scientific rigor.

It is important to note that the dimensions considered when looking into the tests’ proper-
ties in this dissertation are set to 2 and 3, and hence are very small. The usual PC configuration
does not permit the analysis of higher dimensions, mainly because of the memory constraints
and the computational power required. Of course, it has been observed that the performance
of the novel tests drops whenever the dimension increases from 2 to 3. The performance in
higher dimensions remains a fruitful topic for future exploration. In order to mitigate compu-
tational difficulties, one might wish to consider using dimension reduction techniques, such
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as PCA, or developing novel dimension reduction techniques in future research.
There has been increased interest in the scientific community in so-called Stein methods

[5]. However, there has been little to no research connected to matrix-variate distributions.
Developing novel GOF tests can be an interesting avenue of research to explore in future work.
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