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Dissertation title: Joint spectral radius of the Shur-Hadamard product of
set of matrices and Schur-Hadamard multipliers with application to deriva-
tion norm inequalities for operators

Abstract: In the first and the second chapter of dissertation we prove
some new inequalities for the spectral radius, essential spectral radius, oper-
ator norm, measure of non-compactness and numerical radius of Hadamard
(Schur) weighted geometric means of positive kernel operators on Banach
function and sequence spaces. The list of extensions and refinings of known
inequalities has been expanded. Some new inequalities and equalities for
the generalized and the joint spectral radius and their essential versions of
Hadamard (Schur) geometric means of bounded sets of positive kernel op-
erators on Banach function spaces have been proved. There are additional
results in case of non-negative matrices that define operators on Banach
sequence spaces. In the third part we present some inequalities for opera-
tor monotone functions and (co)hyponormal operators and give relations of
Schur multipliers to derivation like inequalities for operators. In particular,
let W, ® be s.n. functions, p > 2 and ¢ be an operator monotone function on
[0,00) such that ¢(0) =0. If A, B, X € B(H) and A and B are strictly ac-
cretive such that AX—X B € € (H), then also AXp(B)—¢(A)XB € Cy(H)
and

|AX@(B) — p(A)XB|, < H\/¢<A+2A*> _ A—gA*(p,(A_EA*> (AJ;A*>1
A(AX — XB)B<¥>_1\/¢<BEB*) ()

under any of the following conditions:

(a) Both A and B are normal,

(b) A is cohyponormal, B is hyponormal and at least one of them is normal,
and U := d@)"

(c) Ais cohyponormal, B is hyponormal and ||.||;, is the trace norm ||.||;.
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Alternative inequalities for ||.||y,) norms are also obtained.
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HacaoB aucepranuje: 3ajeannaku ciekTpaann paanjyc [yp-Agamaposor
Ipou3BoJa cKyna Marpuia u LLLyp-AgaMapoBa MHOXKHOIM ca IIPUMEHaMa, Ha
JepUBALIOHe HOPMAa HejeIHAKOCTH 34 OIEepaTope

Pe3ume: Y npsom u ipyrom norsiap/by AucepTalyje J0Ka3yjeMo HOBe Heje/l-
HAKOCTH 3a CIEeKTPAJHU PaJINjyc, eCeHITH]aTHA CIEeKTPAJIHA PAIHjyc, HOPMY
ornepaTopa, Mepy HeKOMIIAKTHOCTH U HyMepudku paaujyc Agamapose (I1Ty-
pOBe) TEeXKHHCKe IeOMETPHjCKe CDEeIMHe MO3MWTHBHUX HHTEIDAJHHUX Olepa-
Topa Ha banaxoBum (PyHKIIN]CKOM TPOCTOPUMA U MPOCTOpUMa HU30Ba. [Ipo-
HIIpeHa je JUCTa eKCTEeH3Mja U padpuHalMja TO3HATHX HejeaHakocTu. Jloka-
3aHe Cy HeKe HOBe HejeJJHAaKOCTH W JeJITHAKOCTH 3a TeHepPAaJTU30BaHW U 3aje]l-
HUYKH crekTpaaun paaujyc Agamapose (Ilypose) reomerpujcke cpejne
OrpaHuYeHnX CKYIIOBa IMO3UTHUBHUX UHTEI'DAJIHUX OIIEpaTOopa Ha BaHaXOBI/IM
PYHKIMJCKUM MPOCTOPUMA M IbUXOBE eceHIujasine Bep3uje. ma n momar-
HUX Dpe3yJTaTa y CJy4ajy HeHeraTHBHUX MATpHIA Koje nedWHUITY orepa-
Tope Ha BamaxoBum mpocTopuma HH30Ba. Y TpelieM jiesly Tpe3eHTOBaHe Cy
HEKe HEejeTHAKOCTH 3a onepaTop MoHOTOHe (dyHKIHje H (KO)XHIOHOpMAJHE
oneparope u jgar je oanoc [lynmoBux MHOXKMOIA V¥ HEjeTHAKOCTUMA 3a Olle-
parope aepuBanuonor tumna. [locebno, neka cy ¥, ® c.u. dyukiuje, p > 2
u ¢ omeparop MoHoToHa dyHKIHja Ha [0,00) TakBa ga ¢(0) = 0. Ako cy
A, B, X € B(H) u Au B crporo akperusuu taksu 1a AX — X B € Cy(H),
onaa crequ 13 AXp(B) — p(A)XB € Cy(H) n

HAX(,O(B) —SO(A)XBH\I, < H\/90<A+2A*> . AJEA*w,(AJ;A*) (AEA*>_

A(AX — XB)B(BJFTB*>_1\/(P<B+2B*> ()

\\

Axo cy nenymenu ciaenehn yeaosn:

(a) Oba A u B cy HOpMaJIHH,

(6) A je xoxumoHopmaJsiaH, B je xumoHopMmasiaH U GapeMm jelaH O HHX je
HopMasad, u U = &®)"

(B) A je koxunonopmasas, B je xunonopmasas u ||.| g je HyK/IeapHa HOpMa

11

Jobujene cy u agTepHATHBHE HEjeJHAKOCTH 32 |.| ) HOpMe.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

It is well known that entrywise Hadamard-Schur product o of matrices (or
more general kernel operators) plays an important role in operator theory
and matrix analysis, for instance in the theories of operator means, Schur
multipliers, preservers (e.g in tropical mathematics) and elsewhere, see e.g.
[17, 44]. As pointed out in [17] the application of Hadamard-Schur product is
a common and powerful technique in investigation of general matrix (and/or
operator) norm inequalities, and particularly so in that of perturbation in-
equalities and commutator estimates. Assumed that n x n complex matrices
H, K and X are given with H and K positive (definite) and write diagonal-
izations H = Udiag(sy, S2,. .., S,)U" and K = Vdiag(ty,ts,...,t,)V*. To a
given scalar mean M(s,t) (for s,t > 0) one can associate the corresponding
matrix mean M (H, K)X by

M(H,K)X = U([M(s;,t;)] o (U*XV))V*.

For a scalar mean M (s,t) of the form " | fi(s)g;(t) one can observe that
M(H,K)X =5"", fi(H)X¢;(K) and we note that this expression makes a
perfect sense even for Hilbert space operators H, K, X with H, K positive
(semidefinite). However, for the definition of more general matrix means
(such as interpolation means and binomial means) the use of Hadamard
products or something alike seems unavoidable. In the development of op-
erator means theory [17] several classical tools are used such as kernel oper-
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES

ator representation of Hilbert-Schmidt operators and Schur multipliers, but
also more involved tools such as (Stieltjes) double integral transformations
and Grothendieck theorem (see [17]).

Let p be a o-finite positive measure on a o-algebra M of subsets of a
non-void set X. Let M (X, 1) be the vector space of all equivalence classes of
(almost everywhere equal) complex measurable functions on X. A Banach
space L C M (X, p) is called a Banach function space if f € L, g € M (X, p),
and |g| < |f| imply that g € L and ||g|| < ||f]]- It is assumed that X is the
carrier of L, that is, there is no subset Y of X of strictly positive measure
with the property that f = 0 a.e. on Y for all f € L. By R we denote
the set N of all natural numbers or the set {1,..., N} for some N € N. Let
S(R) be the vector lattice of all complex sequences (z,)ner. A Banach space
L C S(R) is called a Banach sequence space if x € S(R), y € L and |z| < |y|
imply that x € L and ||z||, < ||ly||z. Observe that a Banach sequence space
is a Banach function space over a measure space (R, 1), where  denotes the
counting measure on R. Denote by L the collection of all Banach sequence
spaces L satisfying the property that e, = x(» € L and |le,||r = 1 for all
n € R. For L € L the set R is the carrier of L.

The cartesian product L = E x F' of Banach function spaces is again a
Banach function space, with the norm ||(f, ¢)||z = max{||f|| &, ||9]|7}-

Standard examples of Banach sequence spaces are Euclidean spaces, [P
spaces for 1 < p < oo, the space ¢y € L of all null convergent sequences
(equipped with the usual norms and the counting measure), while standard
examples of Banach function spaces are the well-known spaces LP(X, )
(1 < p < o0) and other less known examples such as Orlicz, Lorentz,
Marcinkiewicz and more general rearrangement-invariant spaces, which are
important e.g. in interpolation theory and in the theory of partial differen-
tial equations (|1]).

The cone of positive elements in L is denoted by L,. A non-negative
function f € L, is said to be strictly positive if f(x) > 0 for almost all
r e X.

By M(X, ), we denote the cone of all equivalence classes of (almost
everywhere equal) p-measurable functions on X whose values lie in [0, o0].
A subset A C M (X, u), is said to be solid, if f < g a.e., f € M(X,u)4,
g € Aimplies f € A.
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A mapping h: M (X, p)y — [0,00] is a function seminorm if the follow-
ing conditions hold for all f,g € M (X, p)y and a > 0:

1.) If f < g a.e., then A(f) < h(g),
2.) h(f+g) < h(f)+ h(g),
3.) h(af) = ah(f).

For a function seminorm h we define Cj, = {f € M(X,u)+ : h(f) < oo},
which is a solid subcone of M (X, pu),. If, in addition, h(f) = 0 implies
f =0 a.e., then h is said to be a function norm.

A vector subspace L C M (X, u) is called an ideal if f € M(X,pu), g€ L
and |f| < |g| a.e. imply that f € L. It is assumed that X is the carrier of a
such ideal L C M (X, p).

A seminorm p on the ideal L C M (X, u) is called a lattice seminorm
(also Riesz seminorm) if f € M(X,p), g € L and |f] < |g| a.e. imply that
p(f) < p(g). A lattice norm is a lattice seminorm which is also a norm.
An ideal L C M(X, ) equipped with a lattice norm p is sometimes called
a normed Kothe space (|45, p. 421]) and that a complete normed Kothe
space is coincides with the Banach function space defined above.

If {fulnewy C M(X,u) is a decreasing real sequence and f = inf{f, €
M(X,pn) : n € N}, then we write f,, | f. A Banach function space L has
an order continuous norm, if 0 < f,, | 0 implies ||f,|[z — 0 as n — oo.
The spaces LP(X, ), 1 < p < oo have order continuous norm. Moreover,
every reflexive Banach function space has an order continuous norm. In
particular, we will be interested in Banach function spaces L such that L
and its Banach dual space L* have order continuous norms. Examples of
such spaces are LP(X, ), 1 < p < oo, while the space L = ¢; is an example
of a non-reflexive Banach sequence space, such that L and L* = [ have
order continuous norms.

By an operator on a Banach function space L we always mean a linear
operator on L. An operator A on L is said to be positive if it maps non-
negative functions to nonnegative ones, i.e., AL, C L., where L, denotes
the positive cone L, = {f € L: f > 0 a.e.}. Given operators A and B on
L, we write A > B if the operator A — B is positive. Positive operator A is
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always bounded, i. e., its operator norm

[A]l = sup{[|Az[|, - @ € L, ||zl <1} = sup{[|Az[|. : 2 € Ly, [lz]o <1}
(1.1)
is finite. For the proof see [33]. Its spectral radius p(A) is always contained
in the spectrum.
In the special case L = L*(X, ) we can define the numerical radius w(A)
of a bounded operator A on L*(X, 1) by

w(A) = sup{[{Af, )] : f € LX(X, p), || fll2 = 1}.

If, in addition, A is positive, then

w(A) =sup{(Af, f) : f € L*(X, )+, | fll2 = 1}.

From this it follows easily that w(A) < w(B) for all positive operators A
and B on L*(X,u) with A < B.

Definition 1.1.1 Let (X,pu) and (Y,v) be o-finite measure spaces, L C
M(Y,v) and N C M(X,p) ideals. An operator A : L — N s called a
kernel operator if there exists a p X v -measurable function a(z,y) on X XY
such that 'Y is the carrier of N and for all f € L and for almost all x € X,

/Y a(e,9) f(W)|dv(y) <o and (Af)(x) = /Y alz, ) f(y) dv(y).

A kernel operator A is positive iff its kernel a is non-negative almost every-
where. For the proof see e.g. [33, Izrek 1.15].

Let L be a Banach function space such that L and L* have order con-
tinuous norms and let A and B be positive kernel operators on L. By v(A)
we denote the Hausdorff measure of non-compactness of A, i.e.,

7(A) = inf {0 > 0 : there is a finite M C L such that A(Dp) C M + D},

where Dy = {f € L : ||f|l < 1}. Then v(A) < [|A|, v(A+ B) < y(A) +
v(B), v(AB) < y(A)y(B) and y(aA) = ay(A) for « > 0. Also 0 < A< B
implies y(A) < v(B) (see e.g. |30, Corollary 4.3.7 and Corollary 3.7.3]). Let
pess(A) denote the essential spectral radius of A, i.e., the spectral radius of
the Calkin image of A in the Calkin algebra. Then

Pess(A) = lim (A7) = inf y(A7)? (1.2)
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and pess(A) < v(A). If L = L*(X, p), then v(A*) = v(A) and pess(A*) =
Pess(A), where A* denotes the adjoint of A . Equalities (1.2) and pess(A*) =
Pess(A) are valid for any bounded operator A on a given complex Banach
space L (see e.g. [30, Theorem 4.3.13 and Proposition 4.3.11]).

Let A and B be positive kernel operators on a Banach function space L
with kernels a and b respectively, and « > 0. The Hadamard (or Schur) prod-
uct Ao B of A and B is the kernel operator with kernel equal to a(z, y)b(z, y)
at point (x,y) € X x X which can be defined (in general) only on some order
ideal of L. Similarly, the Hadamard (or Schur) power A of A is the kernel
operator with kernel equal to (a(z,y))* at point (z,y) € X x X which can
be defined only on some order ideal of L.

Let Ay, ..., A, be positive kernel operators on a Banach function space
L, and ay, ..., positive numbers such that »>7" a; = 1. Then the
Hadamard weighted geometric mean A = Agal) o AgaQ) o0 ALY of the
operators Ay, ..., A,, is a positive kernel operator defined on the whole space

L, since A < a1A; + asAs + ... + a,, A, by the inequality between the
weighted arithmetic and geometric means.

A matrix A = [a;;]i jer is called nonnegative if a;; > 0 for all 4,5 € R.
For notational convenience, we sometimes write a(i, j) instead of a;;. We
say that a nonnegative matrix A defines an operator on L if Az € L for all
x € L, where (Ax); = Y, pajz;. Then Az € L, for all x € Ly and so A
defines a positive kernel operator on L.

The problem of comparing the spectral radius p(A o B) of the Schur
product of two nonnegative matrices A and B in terms of p(A o A) and
p(B o B) was motivated by studies of word relationships between random
sequences generated from a m-letter alphabet A where the successive letters
in each sequence occur as independent realizations of an m-state Markov
chain with the transition matrix P (see e.g. [25] ). Let S be such a randomly
generated sequence with total length N. The length of the longest word
occurring at least r times in § is denoted by LﬁN), where by a word in S
of length k& we mean a contiguous set of k letters from 4. Karlin and Ost
established in [26] that the expected length of L™ is of asymptotic order

()

(_ log pr) 7
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where p, = p(P™) is the Schur power of the transition matrix P.

Another motivation that leads to Schur products comes from comparing
between several letter sequences. Let &) and Sy be two random strings of
N letters from the alphabet A, where the realization of S; is governed by
the Markov transition matrix P and the realization of S, is governed by the
Markov transition matrix (). It is assumed that S; and S, are generated
independently. The length of the longest word common to §; and & is
denoted by WgQ. In particular, when () = P* the transition matrix @ is
exactly that of the time reserved Markov chain to P. Another important
class of examples is the case when Q = II7' PII, where II is a fixed permuta-
tion matrix. It was established by Karlin and Ost that the random variable
WP, grows on the average as (log N?)/(—log ppq) where ppg = p(Po Q).

In [25] Karlin and Ost showed for the spectral radius of the Schur powers
pr = p(AM) that the function (1/r)logp, is strictly decreasing for r > 0
when A is a nonnegative irreducible matrix, while in the case when A is in
addition a stochastic irreducible matrix the function (1/r—1)log p, is strictly
increasing for integers r > 2. In [25] they also established a connection
between the entropy of a finite Markov chain and dp, /dr|.—; stating that
dpy
e —n(xy
where H is the entropy of the Markov chain {X,,} associated with an irre-
ducible matrix P. See e. g. |27, Chapter 9] for the definition of the entropy

of a stationary Markov chain and the theory of the stationary processes.

1.2 Spectral radius of measurable functions

In this sections we present the results from [34] which enabled the proof
of the key theorems Theorem 1.2.16 and Theorem 1.2.17 which are used to
obtain further results.

First we consider measurable functions on the product measure space
X x X.

Definition 1.2.1 Let ¢ : M (X, p)4 — [0,00] be a function norm such that
forall f,g € M(X x X), the function

(f*x9)(x,y) = o(f(x,)9(-,y)) (1.3)

6
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is measurable, i.e., fxg € M(X x X),. By fll = f, fUl = fi=1l« f we
define the powers of f € M(X x X)), with respect to x. We will also use the
notation fix fox---x fr, = (- (fixfo)®- - % frn_1) % fon, for f; € M(X x X) 4.

Remark 1.2.2 In Definition 1.2.1 it is required that f*g € M(X x X)4
for all f,g € M(X x X),.This is often satisfied according to Luzemburg-
Gribanov theorem ([45, Theorem 99.2]). See also [34, Example 2.6] and the

rest of the section below.

Definition 1.2.3 Let h : M(X x X); — [0,00] be a function seminorm.
By
ra(f) = lim sup A(fV1)" (14)
Jj—o0

we define the spectral radius of f € M(X x X)), with respect to h and .

The spectral radius r, : M (X x X ), — [0, 00] is monotone and positively
homogenous. If h is submultiplicative with respect to x (i.e., h(f * g) <
h(f)h(g) for all f,g € M(X x X)), then ry(f) < h(f) for all f € M(X x
X)),

The following result was proved in [34].

Theorem 1.2.4 Let f,g € M(X x X)4 and let a function seminorm h :
M(X x X); — [0,00] be submultiplicative with respect to the product *,
which is associative. Then the following properties hold.

(i) If f € Cy, then

ri(f) = inf A(fUNY7 = Tim p(fU91)Y9.

JjEN j—o0
(i) Ifgx f < frgorfxg<gxf, then

ra(f*g) <ra(f)ra(g)-
(i1 ) If f,g € Cy and g* f < f =g, then

ru(f+9) <ru(f) +ralg).
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Proof: For the proof see |34, Proposition 2.4]. [ |

Example 1.2.5 Let ¢(u) = [, u(z)dz for u € M(X,p)4, then * is convo-
lution, 1. e.,

(f+g)(x.y) = /X £z, 2)9(zy) dz

for f,g e M(X x X);.
So, the spectral radius of a positive kernel operator is also a special case
of rn(f). See Example 1.2.10 below.

Next, we will use the Young’s inequality
oy Cax + (1 —a)y
for z,4y > 0 and « € (0,1) and its sharpened version

o l-a - 1 _1
%y :glg{atax—l—(l—a)t 1fay}. (1.5)
The use of the sharpened version of the Young’s inequality was proposed by
Professor T. Ando to obtain alternative proof of some results from [10] in a
letter addressed to Professor R. Drnovsek shortly after Positivity conference
in Dresden. A. Peperko applied that in [34] after R. Drnov8ek presented
him the content of the letter.

The following proposition has been known for years (see e.g. [15, Propo-
sition 1.1 and Remark 1.2.5]).

Proposition 1.2.6 Let h: M (X, p), — [0, 00| be a function seminorm and
a; >0,1=1,...,m, such that " o, = 1. If fi € C}, for i =1,...,m,
then fi f52--- fom e Cy, and

hOff2 - ) < )™ R(f2)™ - - h(fm) ™ (1.6)

If, in addition, h is a function norm, then (1.6) holds for arbitrary f; €
M(X, 1)y, i=1,....,m.

Proof: It is sufficient to prove (1.6) for m = 2. The rest of the proof follows
by induction.
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Let f,g € C, and a € (0,1). We must show that

h(f*g' =) < h(f)*h(g)' ™" (1.7)
From Young’s inequality, monotonicity and convexity of h we get
h(f79' %) < Maf + (1= a)g) < ah(f) + (1 - a)h(g). (1.8)
Replacing f by ta f and g by t_ﬁg for t > 0 in (1.8) we have
h(f*g' ™) < at=h(f) + (1 — a)t == h(g).

Taking the infimum over all ¢ > 0 we obtain the inequality (1.7). |

Let L C M(X, i) be an ideal, equipped with a lattice seminorm p. Since
p(f) = p(|f]) for all f € L, the following result follows from Proposition
1.2.6 and was also presented in [34].

Corollary 1.2.7 Let L C M(X, u) be an ideal, equipped with a lattice semi-
norm p. Then f{" 3% .- fom € L and

pUT IS o fm) < p(f) ™ p(f2)™ - p(fm) ™" (1.9)
forall fie L and o; >0, i=1,...,m, such that )" a; = 1.

The following Lemma, Theorem and Examples listed below were also part
of [34].

Lemma 1.2.8 Let f;,9; € M(X X X); and o; > 0,1 =1,...,m, such that
St a; =1. Then

(IS o) * (95 g5 -+ go) < (fr % g1)* (f2 % 92)™ - (fon % G) ™
(1.10)

and
[e%} oD

sz fa P < (AN ()T )
for all j € N.

Proof: For almost all (z,y) € X x X we have by Proposition 1.2.6 used for

¢
(e fam) * (g - gmm) (2, y)
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O (fit (@) fr (@) (hy) - g (5 y)
o ((filz, )gr (9™ - (fin(@, ) gm (- 9))™™)
<o (frlz,)g(y)™ - b (fnl, ) gm (-, 9)™™

= (fl * gl)al(xay) T (fm * gm)am(x7y>7

which proves (1.10).
Since ¢ is monotone, (1.11) follows from (1.10) by induction. |

Theorem 1.2.9 Let h: M(X x X)), — [0,00] be a function seminorm and
a;>0,i=1,...,m, such that Y ;" o, = 1. Then (" oz pam)ll € o
and

T (f1 co o) K ra(fr) P ra(fo)?? R (fo) (1.12)

for all f; € M(X x X)+ such that fim eCy foralli=1,...,m and j € N.
If, in addition, h is a function norm, then (1.12) holds for arbitrary
Fiveos fn € M(X x X))

Proof: Let j € N. From (1.11) we get

(g g ) < ()7 () - ™)
<h( 1m>‘“h< 2[j]>“2...h(f7gl‘})am

by monotonicity of h and (1.6). Taking the j-th root and upper limits now
gives (1.12). |

Example 1.2.10 Let (X, ) and (Y, v) be o-finite measure spaces, L and N
normed Kothe spaces in M(Y,v) and M (X, u) respectively, such that Y is
the carrier of N. Assume that o; >0, i =1,...,m, such that > ;" o; = 1.
Let C be a cone of all a € M(X X Y)y such that a(x,y) is the kernel of a
bounded positive kernel operator A: L — N. The cone C 1is a solid subcone
of M(X XY ),. If we define h(a) = ||A|| for a € C (where || A|| is the operator
norm of operator A) and h(a) = oo fora ¢ C, then h: M(X xY); — [0, 00]
s a function norm and C' = C},.

Let Ay, ..., A, be bounded positive kernel operators from L into N with

kernels ay, . .., a,, respectively. Then we have by Proposition 1.2.6
|47 0 AP o0 ARWI < AL [ Agl|® - [ Awll™,  (113)

10
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since || ALY 0 AL o0 AL = R(a1aS? - a%m).

Let (X,u) = (Y,v), L = N and let ¢ be as in Example 1.2.5. Then
(a1 * a2)(x,y) = [y a1(x, 2)az(z,y) dz is the kernel of a bounded positive
kernel operator A1Ay on L. Therefore all is the kernel of A7 for all j € N
and so rp(a) = r(A) (the spectral radius of the operator A). By Theorem
1.2.9 we have

r(A 0 AP oo ALY (A P(Ag)%2 -1 (Ao (1.14)

Example 1.2.11 Let L be a Banach function space in M (X, ), such that
X is the carrier of L and let L and L* have order continuous norms. Let ¢ be
as in Example 1.2.5 and a; > 0 for i =1,...,m such that Y ", a; =1 and
let C be as in Example 1.2.10. Define h(a) = v(A) for a € C and h(a) = oo
fora ¢ C. Here~y(A) denotes Hausdorff measure of non-compactness. Then
h:M(X xX)y — [0,00] is a function seminorm (see e.g. [30, Corollary
4.3.7 and Corollary 3.7.8]) , C = C}, and for a € C we have

rh(a) = lim ’Y(Aj)l/j = inf ’Y(Aj)l/j = ress(A>

j—oo jEN

(the essential spectral radius of K; see e.g. [30, Theorem 4.3.13]). By
Theorem 1.2.9 we have

ress(Agal) o AgOQ) O0---0 ArgzOCM)) < ress(Al)al ress(/él?)a2 ot ress(Am)ama
where Ay, Ao, ..., A, are positive kernel operators on L.

Now, we restrict our attention to the completely atomic case and consider
measure spaces (X, u) where either X = Nor X = {1,2,..., N} for some
N e N.

Proposition 1.2.12 Let h : M(X,p)y — [0,00] be a function seminorm
satisfying the condition that h(xgy) = 1 for all i € X. Lett > 1, f €
M(X, 1)y and oy, > 0, k = 1,...,m, such that s, = >, ax = 1. Then
the following properties hold:

(i) If f(i) < oo, then f(i) < h(f).
(i) A(f") < h(f)"

11
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(iii) If f1,..., fm € Ch, then f{* f5*--- fom € C), and

h(f S5 - o) < h(A) S R(f2)% - - h(fn) ™™ (1.15)

If, in addition h is a function norm, then (1.15) holds for any fi,..., fm €
M<X7 M)-‘r

Proof: Let f(i) < oo. Since f(i)xqy < f for all i € X, we have h(f) >
h(f(@)xg) = f(@)h(xgy) = f(i). This establishes (i).

To prove (ii) we may assume that 0 < h(f) < oo because of (i). Further-
more, we may assume that h(f) = 1, since h is positively homogeneous. If
f(i) < oo, then f(i) < h(f) =1 by (i). It follows that f* < f, since ¢t > 1.
Therefore h(f*) < h(f) = 1, which proves (ii).

The property (iii) follows from (ii) and (1.6). |

Lemma 1.2.13 Lett > 1, fi,... f, € M(X x X); and ¢(xqy) = 1 for all
1€ X. Then

fion fu < (freox o). (1.16)

Leth : M(X xX); — [0,00] be a function seminorm satisfying the condition
that h(xqu ) = 1 for all (i,7) € X x X. Then

h(fiss fo) SA(frs o fu)l, (1.17)

and

rh(ff*---*fﬁ)<rh(f1*---*fn)t. (1.18)

Proof: First we prove (1.16) for n = 2. We need to show that
frxg' < (fxg) (1.19)
for all f,g € M(X x X). Take (i,j) € X x X. Then we have
(f = g0, ) = &(f'(i,-)9" (-, 3)) = &((f (i, )g(-.5))")

< B(f(i,)9(9)" = (f *9)'(i,5)
by Proposition 1.2.12(ii) used for ¢, so we have proved (1.19).

12



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Now (1.16) follows from (1.19) by induction. The inequality (1.17) fol-
lows from (1.16), monotonicity of h and Proposition 1.2.12(ii).
For the proof of (1.18) we first show that

i (f) < ra(f)h (1.20)
for f € M(X x X),. By (1.17) we have
n () < a(riy (1.21)

for all j € N. Taking the j-th root and upper limits we obtain (1.20), while
(1.18) follows from (1.16) and (1.20), which completes the proof. |

Theorem 1.2.14 Let h and ¢ be as in Lemma 1.2.13 and oy, > 0, k =
L,...,m, such that s, = > 1 o = 1. Then (f{* f52 - f;,’;m)m € Cy, and

Th( f‘l 512 .. f%m) < Th(fl)mrh(fQ)w .. .rh(fm>am (1.22)
provided flm, e Il e Cy, for all j € N.

If, in addition, h is a function norm, then (1.22) holds for arbitrary
Ji,oo fm € M(X x X)),

Proof: Using (1.20) and (1.12) the proof of (1.22) is similar to the proof of
Proposition 1.2.12 (iii). |

Now let a; > 0,4 =1,2,...,m, such that > ", a; = 1. From (1.10) we
can (applying induction by n) conclude that

e S ) o (fad o o) S (i fan) ™ oo (frm %o fum) ™
(1.23)
forall f e M( X xX);,j=1,...,n,i=1,...,m.

Theorem 1.2.15 Let h : M(X x X),; — [0,00] be a function seminorm
and fg, € M(X x X), i =1,....n,k =1,....,m and o > 0, such that
Z;n:lakzl.

If fik %% for € Cp for all k = 1,...,m, then (f{{ - fom)* - %
(5t i) € O and

n

R i) (ol o ) SB(fros o fa)® oo A fim % % fam) ™
(1.24)

13
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andif(flk*~~*fnk)meChforqllkzl,...,m and j € N, then
(CFI e i) e (ff - ﬁﬁ%))m e Cy, and

“J1m n

ra (U0 - o) o (F - o))

S 7ah(fll Koeee ok fnl)al e rh(flm koo X fnm)am- (125)

If, in addition, h is a function norm, then the inequalities (1.24) and (1.25)
hold for arbitrary fa € M(X x X),.

Proof: Inequalities (1.24) and (1.25) follow from (1.23), Proposition 1.2.6
and Theorem 1.2.9, since h are r; are monotone. [ |

Theorem 1.2.16 Let {Aij}k’”{"j:l be positive kernel operators on a Banach

function space L and let oy, «a,..., oy, are positive numbers.
(i) If >°7%, aj = 1, then the positive kernel operator
A= (Agc;ﬂ 6.0 Agfnw) . (A,(jl) o0 A,ﬁj“ﬁ) (1.26)

satisfies the following inequalities

A< (A A) oo (A -+ Apm) @™, (1.27)
Al < H(An - ‘Akl)(al) 00 (A ‘Akm)(am)
< A Al ([ A A7 (1.28)

p((AH...Akl)(al) 0---0 (Alm"‘Akm)(am))
p (A Ap)™ - p (A - Ag) ™™ (1.29)

p(A)

IA A

If, in addition, L and L* have order continuous norms, then

v(A) < vy ((An e Ag) @ oo (Alm"'Akm)(am)>
< Ay Ap) A (A - A )™, (1.30)
Pess (A) < Pess ((An e Ap) oo (Ayy, - Akm)(am))
< Pess (A1 Ap)™ -+ pess (A -+ Agm) ™™ (1.31)

14
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In special case when L = L*(X, ) then

w(A) < w((An - A oo (A - -'Akm)(a’"))
< w(Ag - Apg)™ - w( A - Agm) ™ (1.32)

(it) If L € £, X7 o > 1 and {Aij}f;nij:l are nonnegative matrices that
define positive operators on L, then A from (1.26) defines a positive operator
on L and the inequalities (1.27), (1.28) and (1.29) hold.

Proof: (i) The proof of (1.27), (1.28) and (1.29) follows from Theorem
1.2.15 and Example 1.2.10. To prove (1.32) notice that numerical radius w
on L?*(X, i) is monotone and that we can apply the proof of the Theorem
1.2.15.
(ii) The proof of the inequalities (1.27), (1.28) and (1.29) in that case is
based on Proposition 1.2.12(ii), Theorem 1.2.14 and Example 1.2.10. |
The following theorem is a special case of Theorem 1.2.16.

Theorem 1.2.17 Let Aq,..., A, be positive kernel operators on a Banach

function space L and o, . .., q, positive numbers. (i) If Z;”:l aj =1, then
1S 0 AF® 00 AltmI|| < ||| Az - - || Apa (1.33)
and

p(A™) 0 AV 00 ALY < p(A1)* p(A2) - p(An)* ™. (134)
If, in addition, L and L* have order continuous norms, then
YA 0 AT 00 AR < (A1) (An)™ - y(An)™ (1.35)
and
Pess (A1 0 A 00 AT < Py (A1) peass (A2)™ -+ pess(An) ™ (1.36)
If, in special case L = L*(X, ) then
w(AP 0 AF? o0 ALY <w(Ay) M w(An)2 - w(A,) (1.37)

(i) If Le £, 377" a; > 1 and if Ay, ..., Ay are nonnegative matrices that
define positive operators on L, then Agal)oAgQ)o .o Alem) defines a positive
operator on L and (1.33) and (1.84) hold.

15
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(1)) If L € L, t > 1 and if A, Aq,..., A, are nonnegative matrices that
define operators on L, then A® defines an operator on L and the following
inequalities hold

Agt) ] ,,A7(7tl) < (A - 'Am)(t); (1.38)
p(Agt) . ,A&)) < p(Al - Am)t7 (1.39)
HAY)“'A%)H < HAl"'AmHt- (1.40)

1.3 Essential spectral radius of
Schur-Hadamard weighted geometric
means

In this section we present some results from [28], including the essential
versions of Theorems 1.2.16(ii), 1.2.17(ii)-(iii), under the assumption that L
and L* have order continuous norms.

We start with the following lemma, proved in [28].

Lemma 1.3.1 Let L € L have order continuous norm. Then for each x € L
it holds that x(i) — 0 as i — 0.

Proof: Suppose there exists x € L such that the entries z(i) do not converge
to zero as © — o0o. Then there exists ¢ > 0 such that there are infinitely
many positive entries of |z| that are greater than . For k € N let z4(i) =0
when ¢ < k and z(i) = |z|(i) otherwise. Then 0 < x; | 0. However, ||zl
does not converge to zero, since we have ||xi| > |||z|(7) - ;|| = |x(7)| > ¢ for
infinitely many ¢ > k. |

For the proof of the Theorem 1.3.3, given in [28] we need the following
result, proved in [39, Corollary 2.10].

Theorem 1.3.2

A < |44, (1.41)
JAO] < Al AlL (1.42)
p(AD) < A p(A). (1.43)

16
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If, in addition, L and L* have order continuous norms, then

Y(AY) <Al (A), (1.44)
pess(AY) < AN pess(A). (1.45)

First we establish the essential version of Theorem 1.2.17(iii), that was
proved in [28].

Theorem 1.3.3 Let L € L such that L and L* have order continuous
norms. Lett > 1 and let A, Aq,..., A, be nonnegative matrices that de-
fine operators on L. Then

Y(AW) < A(A), (1.46)

Pess(AD) < pess(A), (1.47)
V(AP ADY < (A A (1.48)
pess (A - AD) < pees(As -+ Ay (1.49)

Proof: First we prove (1.46). If y(A) = 0, then y(A®) = 0 by (1.44). We
may assume that ¢ > 1. We may also assume that y(A) = 1 since ~(-)
is positively homogeneous. Having v(A) = 1 means that for any 0 > 1,
there is a finite set U C L such that A(Dy) C U,ey(u + 0Dg), where
A(Dyp) is the image of the closed unit ball Dy. Since U is a finite set in
L, then by Lemma 1.3.1 there are only finitely many entries ¢ such that
max,cy [u;| > 6% — 4. Let I denote this set of indices. For all other indices
i ¢ I, we must have (Az); < max |u;| +6 < §? forall x € Dy, © > 0. In
particular, A;; = (Ae;); < 6% for all j and all ¢ ¢ I.

Then §~*Al;, < Ay foralli ¢ I, j € Nand ¢t > 1. This means that
5*2tA§t) < A; for all rows A; such that ¢ ¢ I. Let P; be the orthogonal
projection onto span{e; : i € I'}. Then P;A® is compact since it has fi-
nite dimensional range, and if Q; = id — P;, then §2Q;A® < A and
52y (A®) = 6724 (QAW) < y(A) = 1 (since v(-) is invariant under com-
pact perturbations and since it is monotone). Then v(A®) < §%. Since

17
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§ > 1 can be chosen arbitrarily close to 1, we conclude that v(A®) < 1 for
all t > 1. This proves (1.46).

Inequality (1.48) follows from (1.38), monotonicity of (-) and (1.46).
Inequality (1.49) follows from (1.2) and (1.48) since

pess(A)=lim (AT AP < m A(Ar- - A)) = peas(Ar - A)'.

Inequality (1.47) is a special case of (1.49). |
The following essential versions of Theorems 1.2.16(ii) and 1.2.17(ii) were

established in [28] applying standard techniques used also in [10] and [34].

Theorem 1.3.4 Let L € L such that L and L* have order continuous
norms. Assume Aq,..., A, are nonnegative matrices that define operators

on L and let aq, ..., a,, be positive numbers such that s, = 2721 a; = 1.
Then inequalities (1.35) and (1.36) hold.

Proof: For j =1,...,m define #; = 72 and so ", B; = 1. Then by (1.46)
and Theorem 1.2.17(i) we have

(5m) .
V(Agal)o- . oASrc:m)):ry((Agﬁl) Q-0 Aggm)) ) <,Y<Agﬂl) 0-+-0 Aggm,)>

< (VA (An) )T = A (AD)M (A2)2 -y (Am)

which proves (1.35) under our assumptions. Similarly, (1.36) follows from
(1.47) and Theorem 1.2.17(i). ]

Theorem 1.3.5 Let L € L such that L and L* have order continuous
norms. Assume {Aij}fff’j:l are nonnegative matrices that define operators

on L and let aq,...,a,, be positive numbers such that s,, = Z;n:l a; > 1.

Then for A from (1.26) inequalities (1.30) and (1.31) hold.

Proof: Inequalities (1.30) and (1.31) under our assumptions follow from
(1.27) in Theorem 1.2.16(ii), monotonicity of () and pess(-) and from The-
orem 1.3.4. |

Now we turn our attention to hyponormal operators. A bounded linear
operator on A on a Hilbert space H is called hyponormal if A*A > AA*,
that is [|Az| > ||A*z| for all z € H, or equivalently if A*A — AA* is positive

18
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semidefinite. In particular, every normal operator is hyponormal. Let B(H)
denote the Banach algebra of bounded linear operators on H and let 7 be the
canonical projection of B(#H) onto the Calkin algebra B(H)/Cu(H), where
C(H) is the set of all compact operators on H. Since the set Co(H) is a
closed two-sided ideal in B(H), the Calkin algebra is a C*-algebra and the
canonical projection is a *-isomorphism. The essential norm of A € B(H)
is by definition ||A| .. = |[|[7(A)| and we have p..(A) = p(7(A)).

The following proposition and the following lemma were proved in [28].

€SS

For more background information see e. g. [32| and [43].

Proposition 1.3.6 Let H be a Hilbert space. If A € B(H) is hyponormal,
then

pCSS(A> = V(A) = HAHess'

Proof: For A € B(H) and K € C(H) it is clear that y(A) = v(A+ K) <
|A+ K|. Therefore y(A) < |4 By (1.2) [32, Theorem 1| and since
v(A™) < y(A)", it follows that

pess(A) < 7("4) < ||A||ess :

It remains to show that pess(A) = [|Al|,,, when A is hyponormal. Since the
spectrum of m(A*A— AA*) is a subset of the spectrum of A*A— AA* (see e.g
[12, Theorem 2.3|), it follows that m(A*A — AA*) is positive and therefore
7(A) is hyponormal whenever A is hyponormal. In that case, [43, Theorem
1] says that p(r(4)) = [(A)] and peas(4) = |A].,,. =

€SS

ess”

Lemma 1.3.7 Let H be a Hilbert space and A € B(H). Then pess(A*A) =
v(A*A) = vy(A)2. Consequently Equalities below hold

Pess(ATA) = pess(AAT) = y(A"A) = vy(AA") = 7(A>2 (1.50)
and A(4) = (A%,
Proof: By the polar decomposition theorem for bounded operators on a
Hilbert space, A = VD where V is a partial isometry and D = v A*A.
It follows that pess(A*A) = pess(D?) = pess(D)?. By Proposition 1.3.6,
Pess(D) = v(D). Since V is a partial isometry, (V) < ||[V| < 1 and we

have
1(A)? = 7(VD)? < Y(D)? = pess(D)? = pess(A™A). (1.51)
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It remains to prove the reverse inequality. Since v(V*) < ||[V*|| = ||V < 1,
we have

1(A"A) = y(DV7A) <7 (D)y(A).

Since pess(A*A) = y(A*A) = v(D)?, we conclude that pes(A*A) < v(A)?,
which together with (1.51) establishes p.s(A*A) = v(A*A) = v(A)%. By
(1.62) and Proposition 1.3.6 also the remaining equalities in (1.50) follow.
The equality (7") = v(T*) follows from (1.50). [
Let Ay = [a1(4,7))ijer, - - An = [an(i, j)]i jer be nonnegative matrices
and let aq,...,qa, be nonnegative numbers such that ZLI a; = 1. The
nonnegative matrix C'(Ay,..., Ay, a1,...,ay) = [c(i,])]ijer is defined by

c(i, ) = { ar(hg)-anlig) A
aray(i,1) + -+ apan (i i) if i=j
The diagonal part of C(Aq,..., A, a1,...,q,) is equal to the diagonal part
of oy A1+ -+a,A,, while its nondiagonal part equals the nondiagonal part
of Agal) o Agaz) o0 AP,
By the inequality between weighted geometric and weighted arithmetic
means, we have

Aﬁ“l) oAéaQ) 0.0 A < C(Ay,..., Ap,an, ... 00) <AL+ -+ oA,

(1.52)
It follows that the matrix C'(Ay, ..., Ay, a4, ..., ) defines an operator on L
provided the matrices Ay, ..., A, define operators on L € L. The following
result was obtained in [11] and in [39).

Theorem 1.3.8 Given L in L, let Ay, ..., A, be nonnegative matrices that
define operators on L and oy, . . ., oy, nonnegative numbers such thaty ;| o; =
1. Then for r = p we have

r(C(Ay, ..., A, ar, . qn)) <apr(Ay) + -+ ar(Ay). (1.53)

In particular, if Ay, ..., A, have the same non-diagonal part, then
r(a1Ar + -+ anAy) <aqr(Ay) + -+ apr(4,). (1.54)
In other words, if D+,...,D, are diagonal matrices and A a matriz such

that A+ D1, ..., A+ D, are nonnegative matrices that define operators on
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L, then we have

r(a(A+ D)+ +an(A+D,)) <ayr(A+ D)+ -+ a,r(A+ D,).
(1.55)
If, wn addition, L and L* have order continuous norms then under the above
conditions inequalities (1.53), (1.54) and (1.55) hold also for r = pess.

1.4 Inequalities for the joint and generalized
spectral radius

The following section contains basic notions of the joint and the generalized
spectral radius, as well as notion of Hadamard weighted geometric mean of
sets, and some results established in [36] and [38].

We start with the following inequalities. For the proof see [31].

For nonnegative measurable functions and for nonnegative numbers «
and (3 such that a + 3 > 1 we have

fege 4+ el < (fid A fn) (g gm)? (1.56)

More generally, for nonnegative measurable functions {f;};"7,_; and for
nonnegative numbers «;, j = 1,...,m, such that Z;":l a; > 1 we have

(i fam) et fom) < (fut e fa)™ o (frm o fam) ™
(1.57)
Let 3 be a bounded set of bounded operators on a complex Banach space
L. For m > 1, let
X" = {AlAQAm : Az S Z}

The generalized spectral radius of X is defined by

p(X) = limsup [ sup p(A)]Y™ (1.58)

m—oo  Aexm
and is equal to

p(X) = sup [sup p(A)]"".
meN AeXm
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The joint spectral radius of X is defined by

p(E) = lim [sup [|A[[]*/™. (1.59)

m—00 Acyxm

Similarly, the generalized essential spectral radius of ¥ is defined by

Pess(X) = limsup | sup pess(A)}l/m (1.60)

m—oo  Aexm

and is equal to
1/m.

Pess(X) = sup [ sup pess(A)]
meN Aexm
The joint essential spectral radius of ¥ is defined by
Pess(2) = lim [ sup ~(A)]"™. (1.61)

m—ro0 Aeym

We will use the following well known facts that hold for all » € {p, p, pess, Pess }:

r(X™) =r(X)™ and r(UX) =r(XV¥) (1.62)

where VY = {AB: A € ¥, B € £} and m € N. The sum of bounded sets
U and X is a bounded set defined by V+ X = {A+ B : A e ¥, B e X}
Let Wq,...,¥,, be bounded sets of positive kernel operators on a Banach
function space L and let as, . .. a,, be positive numbers such that > o; =
1. Then the bounded set of positive kernel operators on L, defined by

U o owlom) = fAl) oo glem) s 4 e Wy A, €0, ),
is called the weighted Hadamard (Schur) geometric mean of sets Wy, ..., ¥,,.

The set \Ifﬁ) o0---0 \Ilq(j) is called the Hadamard (Schur) geometric mean
of sets Wy,...,V,,.

The following result that follows from Theorem 1.2.16(i)was established
in [36, Theorem 3.3| and [38, Theorems 3.1 and 3.8].

Theorem 1.4.1 Let Uy, ..., V,, be bounded sets of positive kernel operators
on a Banach function space L and let aq, ..., ., be positive numbers such
that 37" ;= 1. If r € {p, p} and n € N, then

r(W oo W)y < (U)o o (W) @)Y < (W) - (B,,) 0
(1.63)
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and
1

r (xpfm) o0 wﬁg”) < (U Wy Wy, (1.64)

If, in addition, L and L* have order continuous norms, then (1.63) and
(1.64) hold also for each r € {pess, Pess } -

The following result was established in [38, Theorem 3.5].

Theorem 1.4.2 Let U and X be bounded sets of positive kernel operators
on a Banach function space L. If r € {p,p} and § € [0,1], then we have

T (\I/(%) o E(%)) <r ((\PE)(%) o (Z\I/)(%)) 2

<r ((\1;2)(%) o (Ux)( (1.66)

[T
N~—
N——
=
/N
—
™
S
S~—
—~
[
~—
O
—~
\g!
S
S~—
—~
[IE
N~—
N———
]
IN
=
—~
S|
™
S~—
=

If, in addition, L and L* have order continuous norms, then (1.65) and
(1.66) hold also for each r € {pess, Pess } -

Given L € L, let Uy,...,¥,, be bounded sets of nonnegative matrices that
define operators on L and let aq,...,q, be positive numbers such that
> a; > 1. Then the set

P oo plom) = fA) 6o Alm) L 4 €Wy Ay € UL, )

is a bounded set of nonnegative matrices that define operators on L by
Theorem 1.2.17(ii).

By applying Theorem 1.2.16(ii) the following result can be also proved
in a similar way as in |38, Theorem 3.§].
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Theorem 1.4.3 Given L € L, let WV, V.,...,V,, be bounded sets of nonneg-
ative matrices that define operators on L. Let au, . . ., a,, be positive numbers
such that 37" a; > 1, n € N and r € {p, p}. Then Inequalities (1.63) hold.

In particular, if t > 1, then

r(U) < T((\p")(t))% <7r(¥). (1.67)
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Chapter 2

Inequalities for Schur-Hadamard
weighted geometric mean

2.1 Geometric symmetrization

In this section we present some results from [5] regarding geometric sym-
metriyation.

Let A be a positive kernel operator on L?(X, 1) with kernel a. The geo-
metric symmetrization S(A) of A is the positive selfadjoint kernel operator
on L?(X,u) with kernel equal to \/a(x,y)a(y,z) at point (z,y) € X x X.
S(A) = A1/ o (A*)1/2)_ since the kernel of the adjoint operator A* is equal
to a(y,z) at point (z,y) € X x X.

Let A be a positive kernel operator on L*(X,u) and « € [0,1]. Denote
S,(A) = A@ o (A)1=%) which is a kernel operator on L?*(X,p) with a
kernel a®(z,y)a'~*(y, ). We also have (S,(A))* = So(A*) = S1_o(A).

The following result generalizes and refines |39, Propositions 3.1 and 3.2]
and was proved in [5].

Proposition 2.1.1 Let A, Ay, ..., A, be positive kernel operators on L*(X, )
and o € [0,1]. Then we have

7(Sa(Ar) -+ Sa(An))
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(S (A1) 4 Sa(Ap)) <7 (Sa(Ay + -+ Ap)) < (A1 +--+A,) (2.2)

fOT’ all r € {p7p6557/77 H ’ ||7w} In particular, fO’I’ all r € {pa Pesss Vs || ’ H)w}
we have

r(Sa(A)) < r(A). (2.3)

We also have
7 (Sa(A1)Sa(A2)) <7 ((A142) ™ 0 ((A2A1)) 7)) < r(A14,).  (2.4)

forr € {p, pess}-

Proof: We have by (1.28), (1.29), (1.30) and (1.31).

7 (Sa(Ay) - Sa(An)) =7 ((A@ o (Aik)(l—a)) . (A(a) o (A*)(l—a))>

n

<r ((Al e An>(a) o ((An . Al)*>(1fa))
<r(Ar- A p((Ap - AT = 1(Ay - A0)® p(An -+ A1

This proves (2.1). In particular, the inequality (2.3) is a special case of
(2.1) and (2.4) follows from (2.1) and (A1 As) = r(Ax4;) for r € {p, pess }-
Inequalities (2.2) follow from (1.56) and (2.3). |

If A is a nonnegative matrix that defines an operator on [?(R) and if «
and [ are nonnegative numbers such that o + § > 1, then a nonnegative
matrix S, 5(A4) = Ao (A*)P also defines an operator on [2(R) by Theorem
1.2.16 (ii).

The following result was established in [5] and generalizes [9, Lemma 2.1|
and [9, Theorem 2.2].

Lemma 2.1.2 (i) If A is a positive kernel operator on L*(X,u) and o €
[0, 1], then
So(A?) > S, (A)2 (2.5)
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(ii) If A is a nonnegative matriz that defines an operator on I*(R) and if o
and [ are nonnegative numbers such that o+ > 1, then

Sap(A%) 2 Sap(A)". (2.6)

Proof: The kernel of S,(A?) at (z,y) € X x X is equal to

(/x a(m,z)a(z,y)dﬂ(z))a (/X a(yaz)a(z,x)dﬂ(z))la.

This is larger or equal to

/X (alz, 2)a(z, 9)(aly, 2)a(z, )~ du(2)

:/Xa(x, 2)%a(z,2)" " %a(z,y)aly, 2)' " *du(z)

and this equals the kernel of S,(A)? at (x,y), which proves (2.5).
Inequality (2.6) is proved in a similar way by [34, Proposition 4.1]. H
The following result was proved in [5] and generalizes |39, Theorem 3.5]

and its method of proof.

Theorem 2.1.3 Let A be a positive kernel operator on L*(X, ), a € [0,1]
and let v, = r(S,(A¥)?" forn € NU{0} and r € {p, pess}- Then for each
n

r(Sa(A) =10 <1 <--- <1, <r(A).

Proof: By (2.5) we have

r(Sa(A%) > 1(Sa(A)?) = r(Sa(A))*. (2.7)
Using (2.3) we obtain 7(S,(A4%")) < r(A?") = r(A)*" and so 7, < p(A).
Since r,_1 <1, for all n € N by (2.7) the proof is completed. [ |

The following result from [5] generalizes and extends [41, Theorem 2.2
and Theorem 3.2(3)].

Proposition 2.1.4 Let A be a positive kernel operator on L*(X,u) and

a € [0,1]. Then for all v € {p, pess, 7. - ||, w} and n € N we have
F(S(4)) < 1 (Sa(A)) < r(A) and 23)
F(S(AM)7 < 1 (Sa(A")7 < r(A). (29)

27



CHAPTER 2. INEQUALITIES FOR SCHUR-HADAMARD

WEIGHTED GEOMETRIC MEAN

Proof: Since S(K) = S(S,(K)) Inequalities (2.8) follow from (2.3). In-

equalities (2.9) follow from (2.8). |
The following result which was established in [5] generalizes and extends

|41, Theorems 2.3 and 3.3] and it’s proved in a more general context in |7,

Theorem 3|. The proof presented below uses that method.

Theorem 2.1.5 Let A be a positive kernel operator on L*(X, ).
Forr € {p, pess; 7, || - ||, w} and a € [0,1] define f.(a) =r(Sa(A)). Then f,

is decreasing in [0, 0.5] and increasing in [0.5, 1].

Proof: Assume 0 < a3 < ap < % and let o = %’f;l Then o € (0,1)

(
and for every positive kernel operator A on L*(X,p) we have S,,(A) =
Sa(Sa, (A)). Indeed, the kernel of the operator S, (S, (A4))is equal to

(50, (@) () (50, (@) (y, )7

= (a(z,y)"aly, x)""")*(aly, z)" a(z,y) )

(1—a1)+a1(1—a) 1—a2

o¢1a+(1_041)(1_a)a( = a(x7y>a2a(y7x) ’

= a(z,y) Yy, x)*

which is a kernel of the operator S,,(A) since
agat+(Il—a)(l—a)=al2a;—1)+1—a1=a1+a—1+1—a; =ay
and
all—ag)+a(l—a)=a(l —20q)+a1=1—a; —as+a; =1 — as.
It follows from (2.3)
£1(02) = 7(Sua(A)) = 7(Sa(San(4))) < 7(San(A)) = fila).

Similarly, in the case % <ap <o <1leta= %"f;l It follows that

a € (0,1) and S,,(A) = Sa(Sa,(A)) for every positive kernel operator on
L*(X, j1). This holds since the kernel of S,(S,,(A)) equals

(502 (a) ()" (Say (@) (y, )"~

= (a(z,y)*a(y, x)'7*2)*(a(y, z)**a(z,y) 7)™
_ CL(ZL‘, y)a2a+(1—a2)(1—a)a(y7 x)a(l—ag)—&-ag(l—a) _ a(x, y)ala(y7 [E)l_al,
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which is a kernel of the operator S,, (A) since asar + (1 — az)(1 — ) =

and a(l — ag) + az(l —a) =1 — ay. From (2.3) we obtain in a similar way
fr(an) = 1(5a,(A)) = 1(5a(5a,(A))) < 7(Say(A)) = fr(az)

which completes the proof. [ |

2.2 Some refinements and generalizations of
known inequalities

This section contains main results from [5].
The following refinement of inequalities (1.33) and (1.34) was proved in
|38, Corollary 3.10].

Theorem 2.2.1 Let Ay, ..., A, be positive kernel operators on a Banach
function space L. If o, ..., o are positive numbers such that Y a; =1
and if m € N then

r(AI 00 AL < (A7) oo (A7) ) < (A - (A)™
(2.10)
forr=p
If, in addition, L and L* have order continuous norms then Inequalities
(2.10) hold also for r = pess.

The following refinement is obtained by iterating (2.10).

Corollary 2.2.2 Let Aq,..., A, be positive kernel operators on a Banach
function space L. If o, ..., o are positive numbers such that Y a; =1
and if m,l € N then

r(A o0 ALY < ((AP) D oo (AT) @)Y
< (AT oo (AT e < (A - (A,)0 (211)

forr=p.
If, in addition, L and L* have order continuous norms then Inequalities
(2.11) hold also for r = pess.
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In case of sequence spaces L € L it was proved in [5] (using standard methods
from [10] and [34]) that inequalities (2.11) hold also under the condition
> i, a; > 1. In this case additional refinements of (2.10) are also proved.

Theorem 2.2.3 Given L € L, let Ay, ..., A, be nonnegative matrices that
define operators on L. If aq,...,«q, are nonnegative numbers such that
Sp= . q0; > 1 and if m,l € N and §; = ?—; foralli=1,...,n, then we
have

p(AI™ 00 A™) < p((AT) W o0 <Az><a”>>%

A 0o (AT € AT o0 (AP0
< p(A)T - p(An)™ (2:12)
and
p<A§“”o---oA<a">>_ p((AT) W o <Am><an>>%
< (AT 0o (AT < <<Aml> oo (A7) )
< p(A)T e p(An)n (2.13)

Proof: To prove that inequalities (2.11) hold under above assumptions we
have by (1.27)

(Agan o...oAglaw)m _ (Agm) o...oA;w) (Agcm o...oAglam)
< (AM) @) oo (Am) @), (2.14)

It follows from (2.14) and (1.34) that
p(ALPD oo Alemym — ((Agm) 0.0 Agu)"‘)

< p((AT) o o(AT) ) < p(AT)™ - r(AT) = (p(A)™ -+ p(A)™)™"

which proves (2.10) in this case. By iterating we obtain (2.11) under above
assumptions.
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To prove (2.13), since s, > 1 and «o; = [;s,, it follows by the first
inequality in (2.11) in case s, > 1 using (1.39) and (1.34) that

(A(O‘l) oA W) < p((Am) a)o. .o (Azm)mn))%

1

<< W <Aml><ﬁn ) < (o <Aml> oAy
p(A)™ - r(An)™,
which proves (2.13). Now (2.12) follows from (2.11) in case s, > 1 and

(2.13), which completes the proof. [ |
The following result is a new variation of [37, Theorem 4.1] and was

IN

established in [5]. By o,, is denoted the group of permutations of the set
{1,...,m}.

Theorem 2.2.4 Let m be even, {T,v} C 0, and let Hy, ..., H,, be positive

kernel operators on L*(X,p). Forj =1,...,% denote A; = HZ o5 1y Hr2))

7(2j-1)
and A%+j = A = HT(2 )H (2j-1)- Let R = Al,(i) c 'A,,(m)AV(l) o -A,,(i_l)
fori = 1,...,m

(i) Then

1

1 1 1
H oo Hyt | < p(A77 oo Al

1

(2) () R
<p(P™ oPy,m o---0 Py <o (Avy - Aumy) ™™ (2.15)

(ii) If Hy, ..., H,, are nonnegative matrices that define operators on I*(R)
and if a > %, then

|H{ 0o HPI < p(AY 00 ARD):

<p (Pf‘” oPo.. 0 P<a>> < p (A Avom) ® - (2.16)

Proof: First to prove (2.15). By

1\:\)—
—~~
e
—
-J
~—

|H| = p(H*H)? = p(HH")?,
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(1.29) and commutativity of Hadamard product we have

() () () N e () 4
[Hy™ oo Hu || = p((Hy™ 0+ 0 Hy" ') (Hy™ 0+ -0 Hy"'))2 =
* 1 * * L * 1
P[((HT(l))(m) (HT(m 1))( ) o o (H; 2 ))( m oo (Hr(m))(m)))'

(%) (%) (i) (%) 1
(Higy oo Hog o Hoffy oo Hog )]

* L 1 * 1
< P((HT(1)HT(2)>(””) 0---0 (HT(m 1)HT(m))(m) (HT@)HT(D)(W)
R 1
©---0 (HT(m)HT(mfl))(m)))
() ()L ()

=p(A;m 00 Ay)? :p<Ay(1) OAV(m)
which proves the first inequality in (2.2.4). The second and the third in-
equality in (2.15) follow from [37, Inequalities (4.2)]. Inequalities (2.16) are
proved in a similar way by applying Theorem 1.2.16(ii). [ |
By interchanging H; with H} for all ¢+ in Theorem 2.2.4 we obtain the

following result, established in [5].

[V

Corollary 2.2.5 Let m be even, T € 0y, B € [0,1] and let Hy,..., H,, be
positive kernel operators on L*(X, ). Let A; for j =1,...,m be as in The-
orem 2.2.4 and denote B; = H(o;_1)H . and B%H =B = H-o;H;

7(25) J 7(2j-1)
Jorj=1,...,%.
(i) Then
1 1 1 1
|H o0 HYP || < p(By™ o0 B)3
and

B
2

S 1 1 1 S —
[H ™ o0 H | < p(AT o0 A ) Ep(BI o0 B

(ii) If Hy, ..., H,, are nonnegative matrices that define operators on [*(R)
and if a > %, then

| om0 BRI < p(B 0--- 0 BY)?

and
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The following two results extend, generalize and refine [46, Theorem 2.8]

and give an extension and a different refinement of [37, Inequality(4.16)| in
the case a > 2 and were also established in [5].

Theorem 2.2.6 Let m be even, a > %, T € 0, and let Hy, ..., H,, be non-
negative matrices that define operators on I>(R). Let A; for j =1,...,m be
as in Theorem 2.2.4 and denote S; = A; - - - A%Al v Ajg fori=1,...,%.
Then

IH o0 B < p(A)” 00 A2 < p(Af 00 AL)

— m 5

= p((‘H:(l)HT(Q))(a) o (H:(S)HT(AL))(OC) o---o(H! )Hf(m))(o‘))

T(m—1

HIS

<p (Sia) ° Séa) ©---0 S(%a)) < p(H:(l)HT(Q)H:(B)HT(ZL) e H:(mfl)HT(m»a'
(2.18)

Proof: By the first inequality in (2.16) and Theorem 1.2.16(ii) we have

=

1 o+ 0 HE| < p(Af 0+ 0 AL
= p(A 0 0 AY 0 (AN@o. ..o (A*%)(a))%
< (p(A 00 A)p((A[Y 0+ 0 A)))7 = p(A[Y 0+ 0 AY)

= p((H} 1y Hr2))'™ © (H} 3y Hra)) '™ 0+ 0 (HZ gy Ho)) ).

Since

m

((H 1) Hr) ™ 0 (Hi g Hri)) ' 0 - 0 (H 1y Hrgm) @) % =
((H ) Hr () 00 (H 1y Hro)) @) (H 3y Hr )@ 00 (H 1) Hi)) )
- (( :(m—l)HT(m))(a) oo :(m—S)HT(m*Q))(a))v
we obtain by (1.29) that

p((H 1y Hr ) 0 (HZ gy Horga)) @ 0 -+ 0 (H 1y Heon) @) <

p(SIY 0 857 00 S < (p(S1)* - pl(Sp)*)m
= p(H 0y Hro) Hy g Heay - - H 1y He ),
where the last equality follows from p(S1) = -+ = p(Sm). |

2
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Corollary 2.2.7 Let m be even, a > %, T € om, B € [0,1] and let
Hy, ..., H, be nonnegative matrices that define operators on I*>(R). Let
Aj and B; for 7 = 1,....,m be as in Corollary 2.2.5 and denote S; =
A,----A%Al---Ai_l andTi:Bi---B%Bl---Bi_l fori=1,...,2. Then

?.

[V

p(BYo...o B (2.19)

m

1H{™ 00 H|| < p(Af 00 AL)

< p((H 1y Hr(2)'™ © (HZ 3y Hea)) '™ © - 0 (HZ oy Ho)) )
28 2(1-8)
<p (St o800 88) 7 p (T 0TV o o) 7
2 2
< p(H: oy Hoy H 5y Hray -+ H ) Hr o) p(H ) H 0 o) Hi

. HT(m_l)H:(m))a(lfﬁ)_

The following result, established in [5], extends [46, Theorem 2.13] and [37,
Theorem 4.1].

Theorem 2.2.8 Let Hy, ..., H,, be positive kernel operators on L*(X, 1)
and {T,v} C op.

Denote Q; = Hy ) Ho) 2y Hoom) H oy Hoqry - 2y Hyg-1) for
j=1,...,m.
(i) Then

1

G HSN < o((H e Hooir) () H (o oy )G
[y oo Hyd || < p((Hzq) Ho)) 77 0 - 0 (Heguy Hom)) )

N

T

() (5)\ - * * L
< p(@ 00 Qui)2m < p(Hq)Hyy -+ H oy Hugm)) 2. (2.20)

(ii) If Hy, ..., H,, are nonnegative matrices that define operators on I*(R)
and if a > %, then

N

1H™ o -0 HIO|| < p((Hzy Ho) ) 0+ 0 (H ) Hum))

a a)y =1 * * a
< p(@Q 00 Q)2 < p(HyyHoyry -+ HE iy Hoy) (2.21)
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Proof: Let us first prove (2.20). By (2.17) and (1.29) if follows

(&) (L) () (&) ye (77 (£))\ 2
[Hy™ oo Hy || = p((Hy™ 0+ 0 Hy" )" (Hy™ 0 --- 0 Hy""))? =

P(((H:u))(”) oo :(m))(E)>((HV(1)>(E) 0+ 0 (Hym) )2

< P((H:(UHV(I))(E) ©--0 (H:(m)Hu(m))(E))g-

Notice that

" 1 % 1y\m " 1
((HT(l)Hya))('”)O-“O( T(m)Hy(m))(m)) = (( T(I)Hy(l))(m)

1

0+ 0 (Hy Hym)) )

T T

((H*(Q)HI/(Q))(E) 0:--0 (H*(l)Hu(l))(E))

1

* = * 1
-~ (( T(m)Hu(m))(m)O"'O(HT(m_nHu(mfl))(m))-
It follows by (1.29) that

1

* L * _—
p((HT(l)HV(l))(m) ©---0 (Hr(m)HV(m))(m)>

o=

1 Ay o1
< p(@Q 00 Qi)

1

1 . . 1
< (/0<Q1) T T(Qm))2T’L2 = p(HT(l)HV(l) U HT(m)HV(m))2ma

where the last equality follows from p(Q1) = ... = p(@Q,,). This completes
the proof of (2.20). The proof of (2.21) is similar by applying Theorem
1.2.16(ii). n

The following corollary is a refinement of [37, Inequality (4.11)], which
differs from refinements in [37, Inequalities (4.15) and (4.17)]. It also extends
and generalizes [46, Corollary 2.15] and was obtained in [5].

Corollary 2.2.9 Let m be odd and let H, ..., H,, be positive kernel oper-
ators on L*(X, ).
(i) Then
() ()
[Hy™ oo Hy™|
< p((H7Hy)'#) 0w 0 (Hy\ o Hyd) ™) o (Hy Hy) ) o (Hy H) (o

1

< p(H{Hy- H, yHy, H* HH;Hs-- H  Hp,)%n. (2.22)
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(ii) If Hy, ..., H,, are nonnegative matrices that define operators on I*(R)
and if a > %, then

|H o 0 HO|
p((HyHy) @ oo (Hf, oHypy 1) o (H:H) ) o (Hy Hz) o
o (Hi_ Hy) )2

< p(HyHy-- Hy, oHm Hy HiHyHs - H},  Hpy)? . (2.23)

Proof: The result follows by taking the permutations 7(j) = 2j — 1 for
1 <j<mr() =23 — 2 for 22 < j < mand v(j) = 2j for
1<j<2bip() =20 — %) — 1 for 2 < j <min Theorem 2.2.8. M

The following corollary, obtained in [5], gives new lower bounds for the
operator norm of the Jordan triple product ABA which differ from the one
obtained in [37, Corollary 4.10]. The result follows from Corollary 2.2.9 and
Theorem 2.2.8 by taking H; = A, H, = B* and H3 = A.

Corollary 2.2.10 Let A and B be positive kernel operators on L*(X, ).

(i) Then
1AG) o (B1)(3) 0 A(3)
< pi ((A*B )(3) o (4*4)(5) o (BA)(%)>
< %(QPB,FABAﬂ) @ﬁABAA%?ﬂ@o(BAA%TAUQ@U
< ||ABA|3. (2.24)

(ii) If A and B are nonnegative matrices that define operators on I>(R) and
if a > %, then

|A©@ o (B*)(@ o A@)||
Pt ((A"B)@ o (A"A)@ o (BA))

P% ((A*B*A*ABA) a) o (A*ABAA*B*)(Q) o (BAA*B*A*A)(O‘))
[ABA||". (2.25)

VAN VAR VAN
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The following result, established in [5], generalizes [46, Inequality (2.12)].

Lemma 2.2.11 Let a > % and let C' be a nonnegative matrixz that defines
an operator on [*(R). Then

p(C) 0 (C)) < p(C™ 0 C) < p(C)*.

Proof: By applying Theorem 1.2.16(ii) twice it follows
p(C 0 (C7) ) = p((C1) 0 1) B o (€)@ 0 (C7))H)

< PO 0 CONE(C) o (€)= p(C) 0 C)) < p(C)™,

which completes the proof. [ |

The following result, obtained in [5], generalizes [46, Theorem 2.17] and
refines |37, Inequalities (4.9)|. It follows from Theorem 2.2.8 (or |37, In-
equalities (4.9)]) and Lemma 2.2.11.

Corollary 2.2.12 Let a > % and let A and B be nonnegative matrices that
define operators on I*(R). Then

< p? ((A"B) o (A"B)™) < p*(A"B). (2.26)

2.3 Results on the joint and generalized
spectral radius and their essential

versions

In this section we present some results obtained in [6].
In [38] and later it remained unnoticed that several inequalities in The-
orem 1.4.2 are in fact equalities and this result was established in [6].
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Theorem 2.3.1 Let ¥ and X be bounded sets of positive kernel operators

on a Banach function space L and let oy, ..., ., be positive numbers such
that 370 o = 1.
(i) If r € {p, p} and 5 € [0,1], then

F(0) = (T o ... o Plam)) (2.27)
and
r(UE) = (U0 vE)(SH) o 5i)))
= r(wn)®o (mz)@)ﬁ r (0o (2w)(3)

7 (2.98)

If, in addition, L and L* have order continuous norms, then (2.27) and
(2.28) hold also for each r € {pess, Pess } -

(1)) If L € L, r € {p,p}, myn €N, a > 1 and if V is a bounded set of
nonnegative matrices that define operators on L, then

r(P0) Sr(Too o W) S r(Wo- o WM)n <r(B),(229)

where in (2.29) the Hadamard products in W o ---oW and in V"o --- o U"
are taken m times, and

r(T@) < (D o W) < p((I) @D o Y)n < p(T)2, (2.30)

Proof: (i) To prove (2.27) first observe that ¥ C W(®) o ... o W(@m) since
A= Al o...0 Alem) for all A € . Tt follows that
r(¥) < r(\I/(o‘l) 0--+0 \Il(am)) <r(W)* (W) = (W)

by Theorem 1.4.1 and so r(¥) = r(¥(*) o ... o Plam)),

Similary, to prove (2.28) observe that UY C (¥(2) o U(2)) () o £()),
since AB = (A2) 0 AG))(B%) o B&)) for all A € ¥ and B € ¥. It follows
that
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by (1.66), which proves (2.28). It is proved similarly that (2.27) and (2.28)
hold also for each r € {pess, Pess} in the case when L and L* have order

continuous norms.

(ii) For the proof of (2.29) observe that U™ C Wo...o ¥, since A™ =
Ao---0A forall A € V. By Theorem 1.4.3, Inequalities (2.29) follow.
Inequalities (2.30) are proved in a similar way.

The following result was established in [6] and extends Inequalities (1.29)
and (1.63) and Theorem 1.4.3. |

Theorem 2.3.2 Let {\Ifij}fg’jzl be bounded sets of positive kernel opera-

tors on a Banach function space L and let aq, ..., ., be positive numbers.

(i) If r € {p,p}, D" i =1 and n € N, then
r <(\I/(161Y1) 0---0 \I/&%’L)) oo (‘11531) 0---0 \Ilggnm)>>
r ((‘1’11 . \pkl)(al) 0 0 (Upp--- \pkm)(am))

<
< (T ) 0o (T T
< r (\Ijll . \I{kl)al cep (\le . \I]km>am . (231)

1
n

If, in addition, L and L* have order continuous norms, then Inequalities
(2.31) hold also for each r € {pess, Pess } -
(i) If L e L, r€{p,p}, > 5 a; > 1 and {\I/ij}f’ijzl are bounded sets of
nonnegative matrices that define positive operators on L, then Inequalities
(2.81) hold.

In particular, if U1, ...,V are bounded sets of nonnegative matrices that
define positive operators on L and t > 1, then

T(\ygﬂ .. q;](f)) < (T T) D) < (T - - \pk)n)(t))% < r(Wy - Tp)
(2.32)

Proof: (i) Let r € {p,p}, > i",a; = 1 and n € N. To prove the first
inequality in (2.31) let [ € N and

I
Ae <<\IJ50161) 0---0 \If(li@m)> (qlgjl) 0 01111(60;7;”))> )
Then A= Ay --- A, where for each : = 1,...,] we have
A= (Aglall) o--- oA(am)> <A£Z‘11) 0.--0 A(O‘m)) 7

ilm ikm
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where A;11 € Vit ..., At € Vi, ooy Akl € Vi, ooy Aigmn € Vi, Then
by (1.27) for each i = 1,...,[ we have

A < (= (AillAi21 te Aik1>(a1) ©---0 (AilmAi2m " 'Aikm)(am)a
where C; € (Uyy - - \I/kl)(o‘l) 00 (WUypy--- \I!km)(am). Therefore
A<SC:=C-Cre (g )@ 00 (Tyy, - - \pkm)(am))l’

p(A)YVE < p(C)Y! and ||A||YE < ||C||M, which implies the first inequality in
(2.31). The second and third inequality in (2.31) follow from (1.63).

If, in addition, L and L* have order continuous norms and 7 € {pess, Pess
then Inequalities (2.31) are proved similarly. Under the assumptions of
(ii) Inequalities (2.31) are proved in a similar way by applying Theorems
1.2.16(ii) and 1.4.3. u

Next it follows an extension of Theorem 1.4.2 by refining (1.64), obtained
in [6].

Theorem 2.3.3 Let Vq,...,V,, be bounded sets of positive kernel operators
on a Banach function space L and let ®; = W, .. W, V.. .U,y forj =
1,...,m. If r € {p, p}, then

(o oult oo wf®) < (3 o0l o...o¢g;>)*

< r ((@f)(%) o (d) G o0 (cbfn)(%))m < (U Wy---W,,) . (2.33)

If, in addition, L and L* have order continuous norms, then Inequalities
(2.33) are valid also for all 1 € {pess, Pess }-

Proof: Let r € {p, p}. Denote

Y1 = \Ilgﬁ)o-no\lf,(nﬁ>, 22:\Ifga)ou'o\llr(f)o\llgﬁ),...,
1

1 1
o = uF oulPo ould]

Then by (1.62), (2.31) and commutativity of Hadamard product we have
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(o eaeonfd) <o (s eaf o cufd)))

1 1

= (X188, <r (Cbg’”) ° ‘I’§E) 0 dfﬂ)) )

which proves the first inequality in (2.33). The second and the third in-
equality in (2.33) follow from (1.63) (or from (2.31)), since 7(®,) = r(Py) =
(D) = (U Wy - - U,,) by (1.62). If, in addition, L and L* have order
continuous norms, then (2.33) for r € {pess, Pess } 15 proved in a similar way.
|
The following result extends (2.28) and was obtained in [6].

Theorem 2.3.4 Let Vy,...,V,, be bounded sets of positive kernel operators
on a Banach function space L and let o, ..., a,, be nonnegative numbers
such that 27210(]' = 1. If q)] = \I/J\I]m\ljl\DJ,1 fOT'j = 1,...,m,
B € 10,1], then for all r € {p, p} we have

r (U0 T,,) = 7 ((wﬁ o q,gus)) () o ‘Ififfm))

— r (q>gﬁ> 0 <1>§1‘5>)a1 o (0 0 RN (2.34)

m

If, in addition, L and L* have order continuous norms, then Equalities
(2.84) are valid for r € {pess, Pess }-

Proof: Let r € {p, p}. To prove Equalities (2.34) we use the first inequality
in (2.31) and (1.62) to obtain that

r ((\If@ 0 qf§1*5>> (TP o \1:(1-5))) <r (cpgm 0 q>§1*m) (2.35)

m

for all i = 1,...,m. Indeed, by (1.62) and the first inequality in (2.31) we
have
P 0 W) (U 0 W)

= (0P o W) (0 0 g (0D o Gy (0l o B

7

< (@ 0 1),

%
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which proves (2.35). Since } 7", a; = 1, Inequality (2.35) implies

P00 07 (U oW ) < (@0 @) (@) 0@l )

ST(\Ifl' ( .36

Vi)
The second inequality in (2.36) follows from (1.63) and the fact that r(®,) =
c=1r(dy) =r(¥y---U,). Since ¥; C \Ill( ) \1151_5) foralli=1,...,m
and 5 € [0, 1], we obtain

\_/

r(Wr e W) < (U 0 ) (WD 0 W),

which together with (2.36) proves Equalities (2.34). If, in addition, L and L*
have order continuous norms, then Equalities (2.34) are proved in a similar
way for 7 € {pess, Pess }- [ |
The following result, established in [6] that extends main result from [35],
is proved in a similar way as Theorem 2.3.3 by applying Theorems 1.4.3 and
2.3.2(ii) instead of Theorems 1.4.1 and 2.3.2(i) in the proofs above.

Theorem 2.3.5 Given L € L, let Vq,...,V,, be bounded sets of nonnega-
twe matrices that define operators on L and ®; = V; .. W, W, .. .V, ; for
j=1,...,m. Assume that o > L o; >0, j =1,...,m, doay > 1
and n € N. Ifr € {pp} and £; = O w™wl™ Y for
7 =1,....m, then we have

1

(U000 w@) <r (3o 0a)”

m

1
r \Ilga)o---olllq(f;) <r \Ifgam)-~~\11£,?m) "<
(0ovt) (30
(0 W) ) < (U - W) ) O) r (Wy - 0, (2.38)

If, in addition, o > 1 then

m

r <\1;§0‘) o...o\pgg)> <r <<p§a) o...oq)gg))z < r((q)?)(a) 0.0 (q;n)(a)>%

@

< (@) o (@) < (0,
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1
1 13\ m
r(qua)o...oqz;?) <r (2o oxi)
1 1

< r ((2”) o (2 )Gn ) <r (\yga"ﬂ . \yf;;m)ﬁ
1

< (W W) @) L (T )Y < g (B D) (2.40)

Proof: Inequalities (2.37) are proved in a similar way as Theorem 2.3.3 by
applying Theorems 1.4.3 and 2.3.2(ii) instead of Theorems 1.4.1 and 2.3.2(i).
For the proof of (2.38) observe that

qua> 0---0 \11520 = (quam))(#) 0..-0 (\I/ﬁ,ﬁ}m))(%)

for i = 1,...,m. Now the first inequality in (2.38) follows from (1.64) (or
from (2.39)):

r (\Ifga) 0-+-0 \Ilfﬁ‘)> =7 ((\Ifgam))(%) 0--+0 (\If(am))(%)>
1

<r (W wem)”

Other inequalities in (2.38) follow from Theorem 2.3.2(ii).

Assume a > 1. The first and second inequality in (2.39) follow from
(2.37). To prove the third inequality in (2.39) notice that (®7)) = ((&2)™)G),
- 2> % and apply Theorem 1.4.3. The last inequality in (2.39) follows again
from Theorem 1.4.3 and the fact that r(®y) =+ =r(®,,) =r(Vy---U,,).

To prove the first three inequalities in (2.40) observe that U'*) = (¥{™*)) ),
2> % and apply Theorem 2.3.3. The remaining three inequalities in (2.40)
follow from (2.38), which completes the proof. [

The following result was established in [6].

Theorem 2.3.6 Let {U,; o 1j—1 be bounded sets of positive kernel opera-
tors on a Banach function space L and let aq, ..., ., be positive numbers.

(i) If r € {p,p}, >j=, a5 =1 and n € N, then
r ((\pgﬁn oo \Ifﬁjj;”)) T (q/,g‘;‘“ oo \I/,ﬁj“;")))
\Ijll_|_ +\I/k1)(a1) o...o(\plm_|_..._|_\11km)(am))

r ( (Wyg +---+ \I/kl)")(oél) oo ((Upp4 -+ 11/]%1)71)(047n))Z
r (\1111 + -t \I/kl)al e T (\Iflm + -+ \I/km)am . (241)

r
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If, in addition, L and L* have order continuous norms, then Inequalities
(2.41) hold also for each r € {pess, Pess } -

(ii) If L e L,r€{p,p}, > 5 a; > 1 and {\Ifij}f’zrij:l are bounded sets of
nonnegative matrices that define positive operators on L, then Inequalities
(2.41) hold.

Proof: (i) Let r € {p,p}, D" s = 1 and n € N. To prove the first
inequality in (2.41) let [ € N and

!
Ae ((Q’ﬁl) o---o@%ﬁfﬂ) +...+ <\If](€a11) o---o\IJ](S;fL”)>> )
Then A= A;---A;, where for each i = 1,...,[ we have

A (A oo 52 o (Ao o ).

ilm ikm

where A;1, € \Pll,...,Ailm S \Ijlm,...,Aikl S \Ilklwu,Az’k'm € V,,. Then
by (1.57) for each i = 1,...,l we have

A < Cpi= (A + A+ + Aigt) o0 (Ajin + Ajgm + -+ An) @™,
where C; € (W 4 -+ V)@ oo 0 (U, + - -+ + Uy, ) @) Therefore
A<C:=C,---C, € ((\1;11+...+\1,k1)(a1)o...o(@1m+...+\pkm)(am))z’

r(A)YE < r(C)Y and ||A||Y < ||C||M!, which implies the first inequality in
(2.41). The second and third inequality in (2.41) follow from (1.63).

If, in addition, L and L* have order continuous norms and r € {pess, Pess }
then Inequalities (2.41) are proved similarly. Under the assumptions of
(ii) Inequalities (2.41) are proved in a similar way by applying Theorems
1.2.16(ii) and 1.4.3. ]

Let U and ¥ be bounded sets of positive kernel operators on L?(X, )
and o € [0,1]. Denote by ¥* and S,(V¥) bounded sets of positive kernel
operators on L*(X, 1) defined by ¥* = {A*: A € U} and

Sa(T) = U@ o ()= = 4@ o (B*)1=2) . A B € U},

We denote simply S(V) = S%(\I/), the geometric symmetrization of W. Ob-
serve that (VX)* = ¥*U* and (U™)* = (U*)™ for all m € N. By (1.63) it
follows that

r(Sa(®)) < r(Sa(W™)m < r(P) (2.42)
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for all m € N and r € {p, p, pess, Pess }» since r(V) = r(¥*). In particular,
for all 7 € {p, p, pess, Pess } and n € NU {0} we have

r(Sa(P)) < r(Sa(T)2 " < r(0). (2.43)

Consequently,
r(Sa(P))? < r(Sa(¥?)) < r(¥)? (2.44)
holds for all © € {p, p, pesss Pess } -
The following result that follows from (2.43) was established in [6], is an

extension of Theorem 2.1.3 and extends [9, Theorem 2.2], [39, Theorem 3.5]|
and [5, Theorem 3.5(ii)].

Theorem 2.3.7 Let VU be a bounded set of positive kernel operators on
L*(X,p), a € [0,1] and let 7, = r(So(¥*"))* " for n € NU {0} and
T € {p, P, Pess, Pess - Then for each n

P(Sa(®) =19 <11 < --- <1y < (D).

Proof: By (2.43) we have r, < (V). Since 7,y < r, for all n € N by the
first inequality in (2.44), the proof is completed. [ |
The following result, established in [6], extends Proposition 2.1.1.

Proposition 2.3.8 Let Vq,...,V,, be bounded sets of positive kernel op-
erators on L*(X, ), a € [0,1], n € N and 7 € {p, p, pess, Pess}- Then we
have

7(Sq(W1)- - Sa(V,)) <r ((\1;1 ) @ o (B - - \Ijl)*)u_a))

< (W1 W) o (U W)Y
< (W) (W, W) (2.45)
r(Sa(U1) 4+ -+ Sa(Uy)) <7 (Sa(¥1+ -+ V)

< r (Sa((\ljl +-+ U ) )) (\Dl +oe At \Dm) (2'46)

In particular, we have

< r(((qfl%)”)(a)o(((\ygqll)*)”)“—a)ﬁgr(qfl%). (2.47)
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Proof: By Theorem 2.3.2(i) we have
7 (Sa(Vq) - Sa(Vy)) =7 ((lllga) o (\Iﬁlk)(lfa)) o (\117(7?) o (@;)(1704)))
T((\I}l...q]m)(a)o<<\11m U, ) )

r (((\1;1 T )@ o (- - W) )™) a))%
(WU W) (W - - Wyp)" )1 = (W W) (W - Ty)

ININ A

where the last equality follows from the fact that r(¥) = r(¥*). The in-
equalities in (2.46) are proved in similar way by applying Theorem 2.3.6
and (2.43). The first and second inequalities in (2.47) are special cases
of (2.45), while the third inequality follows from (2.45) and the fact that
r(U1Ws) = r(WyWy). |

Let ¥ be a bounded set of nonnegative matrices that define operators on
I>(R) and let « and 8 be nonnegative numbers such that a4 5 > 1. The set
S p(W) = W@ o (I*)B) = [A o (B*)B : A B € U} is a bounded set of
nonnegative matrices that define operators on [*(R) by Theorem 1.2.16(ii).

For r € {p, p} the following result extends Theorem 2.3.7 in the case of
bounded set of nonnegative matrices that define operators on [(R). It also
extends a part of [5, Theorem 3.5(ii)| and was established in [6].

Theorem 2.3.9 Let VU be a bounded set of nonnegative matrices that define
operators on I>(R) andr € {p, p}. Assume o and 3 are nonnegative numbers
such that a+ 8 > 1 and denote r, = r(Sa 5(¥?"))? " forn € NU{0}. Then
we have

7(Saps(¥)) =19 <1y < - <1y < (W)HF, (2.48)

Proof: By Theorem 1.4.3 we have

r(Sas()) = r(T@o(W) @) < r (1)@ o (09 D)* " =1, < (W),
(2.49)

In particular, for n = 1 we have
7(Sa,5(9))* < 7(Sa5(¥?)) < (W), (2.50)

Since 1,1 < 1y, for all n € NU{0} by the first inequality in (2.50), the proof
of (2.48) is completed. |

The following result, established in [6], is proved in similar way as Propo-
sition 2.3.8 using Theorem 2.3.2(ii) instead of Theorem 2.3.2(i).
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Proposition 2.3.10 Let ¥, ¥y, ..., W, be bounded sets of nonnegative ma-
trices that define operators on I2(R), n € N and let o and 3 be nonnegative
numbers such that o+ 3 > 1. Then we have

T<So¢,,8<\ljl> o Sa,ﬁ(‘l’m)) <r ((‘1’1 . \Ijm)(o‘) o ((Wpy--- \1;1)*)(6))
< r (((\1’1 . \pm)n)(a) o (T, --- q;l)*)n)(ﬁ))ﬁ
< (U0, (U, - 0P (2.51)
P(Sa,(¥)) < 7(Sap(¥™)* < (W), (2.52)
T(Saps(W1) + -+ 80s(Wm)) <7 (Saps(Vi+---+V,))
< r(Sap((Py+---+ \Ifm)”))% <p(Uy 4 -+ 0, )P (2.53)
7(Sas(P1) + -+ Sa5(¥m)) <7 (Sap(Vi+- 4+ Upn))
< P (Sap((Uy 4+ U )" NW < (T 4o+ 0,)0HF (2.54)
r(Sa,5(¥1)Sa,5(W2)) <7 ((T1W2) o ((Uy0)"))
< (0 0)") @ o (((‘92‘1’1)*)”)(5))% < (W 0y)* P (2.55)
forr e {p,p}.

Proof: Inequalities (2.51) and (2.54) are proved in a similar way as inequal-
ities (2.45) and (2.46) by using Theorems 2.3.2(ii) and 2.3.6(ii). Inequalities
(2.52) and (2.55) are special cases of (2.51). |

Remark 2.3.11 The obtained results remain valid when spectral radius p is
replaced by the essential spectral radius pess and the operator norm ||.|| by the
Hausdorff measure of non-compactness . To be more precise, the essential
versions of results Theorem 2.2.4(i), Corollary 2.2.5(i), Theorem 2.2.8(i),
Corollary 2.2.9(1), Corollary 2.2.10(i) hold on L*(X,u) and the essential
versions of results Theorem 2.2.4(ii), Corollary 2.2.5(ii), Theorem 2.2.6,
Corollary 2.2.7, Theorem 2.2.8(ii), Corollary 2.2.9(ii), Corollary 2.2.10(ii),
Lemma 2.2.11, Corollary 2.2.12, Theorem 2.3.9 and Proposition 2.3.10 hold
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on I?(R), while the essential versions of the results Theorem 2.2.3, Theorem
2.3.2(ii), Theorem 2.3.5 and Theorem 2.5.6(ii) hold when L and L* have
order continuous norms. These facts were proved in [28] by applying Lemma
1.3.7 and Theorem 1.3.3 in the setting of bounded sets of positive kernel
operators.
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Chapter 3

Relations of Schur-multipliers to
derivation’s inequalities of
operators

3.1 Symmetricaly norming functions and
associated ideals of compact operators

Let B(H) and C..(H) denote respectively spaces of all bounded and all
compact linear operators acting on a separable, complex space H.

Definition 3.1.1 Let ¢, be the space of all sequences & = {£,}22, of real
numbers which tend to zero. We denote by ¢ the lineal of ¢,, consisting
of all sequences with a finite number of nonzero terms. A real function
D(&) = P(&, &, - . .) defined on the lineal € is called a symmetrically norming
(s.n) function if the following properties are satisfied:
) D(E) >0 (€€ e€ £0),
ii) for any real o ®(af) = |a|P() (€ € ),
i) B(§+1n) < ©(§) + 2(n) (§,m €7),
iv) ®(1,0,...) =1
1)) @(§1;§2; s 7€na0707 H ) = CD(|€]1|’ |€]2|7 tt gjn 70707 - ');

where & = {£,}5° 1 is any vector from ¢ and j1, j2, ..., jn 1S any permuta-
tion of integers 1,2,...,n.
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We can extend the domain of the function (&) on ¢, where

P d:ef {é’ c c0|supn>1 (I)(fl, . ,§n,0,0, .. ) < +OO}

and define (&) % limy, oo ®(&1, ..., &0,0,0,...) for any & € cp. The limes
on ¢g is well defined since the sequence {®(&1,...,&,,0,0,...), }>°, is non-
decreasing.

So, each ,symmetrically norming” (s.n.) function, or also called ,sym-
metric gauge” function ® on sequences of complex numbers, gives rise to a

symmetric or unitarily invariant (u.i.) norm on compact operators defined

by ||Alle = P ({s,(A)}2,), where s1(A) = s2(A) > -- - are the singular val-

nes of A, ie., the eigenvalues of [A| & (4*A)Y/2 Any such norm is defined

on the naturally associated norm ideal Cg(H) of Co(#H), defined as a set of
all operators A € Cg(H) for which s(A) = {s,(A), }nen € ta and it satisfies
the invariance property |[UAV||e = ||A||s for all A € C¢(H) and for all uni-
tary operators U,V € B(H) (see [14] and [42] for more details). Examples

of u.i. norms are Schatten p-norms defined by || 4|, o (>, SZ(A))I/p, for
def

1 < p <+o0, while ||Al|lo = $1(A) coincides with the operator norm || A]l.
For p := 1 the corresponding s.n. function is the trace s.n. function (also
denoted by ¢! or ¢1), defined by £ ((A\,)22;) = > oo, [An], while for p=o0 the
s.n. function ¢*° is defined by ¢ ((A\,)52;) = sup,ey |An]- The €1 (H) class
is known as the trace class or the class of nuclear operators, while Cy(H) is
known as the Hilbert-Schmidt class. Ideals of compact operators associated
to these norms will be denoted by €,(#). Schatten p-norms represent basic
examples of ( by the degree) p modified norms. Namely, for any p > 0, a
wi. norm ||{je can be p-modified by setting ||Allom <= |||AJ?||%?, for all
A€ C(H) such that |[A]P € @y(H).We refer to a s.n. function & as to
a p-modified function. For the simple proof of the triangle inequality (for
p = 1) and other properties of these norms, including Hélder’s inequality,
see the preliminary section in [19], as well as Corollary IV.2.6 and Exercises
IV.2.7-8 in [2|. If p := 2, then ||-||> are also known as @-norms. Hence,
as @) = (®(2)@ then ®® are also Q-norms for all p > 2, while its dual
norms ||-||m* are commonly known as (Q*-norms. Each norm ||-||¢ is lower
semi-continuous, i.e., |[[w—lim, ,A,|l¢ < liminf, ,||An||e. This follows

from the uniform boundedness principle and the well known representation
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formula

[tr(AB)|

IAlle = p{
1]

B is a finite rank operator,}

@*

where ®* stands for the s.n. function dual to ® (see [42, Th. 2.7 (d)]).
Monotonicity is another useful property of all u.i. norms, saying that
sn(A) < sp(B), for all n € N implies ||Al|¢ < ||Bl|o- This may be combined
with the monotonicity of singular numbers, which states that s,,(A) < s,(B),
for all n € N, whenever 0 < A < B. Moreover, we have the following double
monotonicity property for u.i. norms, saying that

[AX Bllo < |CXDlle (3.1)

whenever A*A < C*C and BB* < DD*. For the proof of (3.1) see [22,
p.62]|.

An operator A € B(H) is called hyponormal if and only iff A*A > AA*,
and similarly, A is cohyponormal iff A* is hyponormal, i.e., iff AA* > A*A.
Also A € B(H) is called accretive iff Ay oo AEA” > 0 and strictly accretive
iff Ay > ¢l for some ¢ > 0.

For a more complete account of the theory of norm ideals, the reader is
referred to [2], [14], [13], [40] and [42].

3.2 Gel’fand or weak*-integral

If (2,90, 1) is a space  with a measure p on o-algebra 9, then we will
refer to a function A: Q — B(H): t — A; as to a weakly*-measurable if
t— <Atg, h> is measurable for all g, h € H. If, in addition, those functions
are integrable, then there is the unique (known as Gel’fand or weak*-integral
and denoted by [, Aydpu(t)) operator in B(H), satisfying

</9Atdu(t)h,k> = /Q<Ath, k)du(t)  forall h,k € H. (3.2)

Thus, it also complies with the definition of Pettis integral. For a more
complete account about weak*-integrals the reader is referred to [8, p.53|,
|18, p.320] and [21, Lemma 1.2]. For every h € #H, the function ¢t —
|A¢h|| is also measurable, and, if additionally [, [|Ah[*du(t) < +oo for
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all h € H, then there exists weak*-integral [, A Aydpu(t) € B(H), satisfying
< Joy A% A, dpu(t)h, h> = [ | Ah|Pdp(t) for all h € H, as shown in [18, ex.2].
Such families {A;}1eq will be simple called [u] square integrable ([u] s.i.).
We use the notation L*(Q, u, H) for the space of all (weakly) measur-
able functions f : Q +— H such that [, [|f(¢)| du(t) < 400 and notation
L%(Q, 1, B(H)) for the space of all weak*-measurable functions A : Q —
B(H) such that [, |A¢h| du(t) < +oo for all h € H, i.e. for [p] s.i. families.
Thus A € LE(Q, p, B(H)) if and only if Af € L*(Q, u, H) for all f € H.

3.3 Operator monotone functions

Definition 3.3.1 A real function ¢ defined on an interval J C R is said to
be matriz monotone of order n if for every pair of n x n hermitian matrices
A, B with 0(A),0(B) C J we have A < B = p(A) < p(B). If ¢ is a matriz
monotone function of order n for alln € N (or the above property holds for
every A, B € B(H) with arbitrary Hilbert space H), then ¢ is said to be
operator monotone.

We are going to consider a more general setting, when H is a complex,
separabile, Hilbert space and A, B € B(H).

Example 3.3.2 (1) When a > 0 the function t — at + b is operator mono-
tone on R.

(2) When ¢ ¢ (a,b) the function t — (c — t)~" is operator monotone on
(a,b).

(3) Wh,en 0 < p < 1 the function t — t? is operator monotone on [0, 400).
(4) t — 7 is operator monotone on [0, +00).

(5) t— logt is operator monotone on (0,400).

(6) f(t):=% =lost L is operator monotone on [0, +00), where f(0)=0 and f(1)=

The study of operator monotone functions was introduced by Léwner. His
classical theorem states that operator monotone functions on real intervals
are described by holomorfic functions on the upper half plane. K. Léwner in
[29] gave a definite characterization of operator monotone functions in 1934.
His well known theorem states that function ¢ : (a,b) — R is operator
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monotone if and only if ¢ has analytic continuation to (C\ RU (a, b)) which
maps the upper half-plane C*:= {z € C : Sz > 0} into itself and the
extension to the lower half plane C:= {z € C : Sz < 0} is obtained by

reflection across (a,b), that is ¢(Z) = ¢(z) for all z € C*.

The following theorem gives the integral representation of an operator
monotone function on (—1,1). See [16, Theorem 2.5.7| for the proof.

Theorem 3.3.3 Let f be a non-constant operator monotone function on
(—=1,1). Then, there exists a unique probability Borel measure p on [—1,1]
such that

Lo

f@) = FO) +£O) [ ). we LD (3

The previous result can be transferred to an arbitrary finite interval (a,b)
since an arbitrary function f on is operator monotone on (a,b) if and only
if f(@ + =) is operator monotone on (—1,1).

For continuous positive functions defined on [0, +00) we have the follow-

ing integral representation. For the proof see e. g. [16].

Theorem 3.3.4 Let f be a continuous non-negative function on [0, 400).
Then f s operator monotone if and only if there exists a positive finite Borel
measure m on [0,4o00| such that

£(#) = /[0 N t(jj;) dm(\),  te0,00).

The measure m is unique, and if a := m({0}) and b := m({cc}) then

f(t):a+bt+/ td+A)

dm(A tel0 . 3.4
Saam, teleo G

Also, a = f(0) and b = limy_,, @ Moreover, a continuous real-valued

function f on [0,00) is operator monotone if and only if there exist a b > 0
and a positive Borel measure m on (0,00) such that (3.4) is valid.

Proot: From {050 — 140X o avery X € [0,0) it Fllows that 1122

is operator monotone on [0, 00) and therefore f is also an operator monotone
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function if the above integral representation holds. Conversely, assume that

f = 01is continuous and operator monotone on [0, 00). Consider the function

Y(x) = £ on (—1,1). It is a bijective mapping between intervals (—1,1)
and (0, 00) and since t = ¢ (z) = %% = —1+4 72, ¢ is an operator monotone

function on (—1,1). Tt follows that g(z) := f(¢(z)) is also an operator
monotone function on (—1,1). Therefore, Theorem 3.3.3 implies that there
exists a probability Borel measure p on [—1, 1] such that

o) =90) +90) [ ), we (L)

T

Since g(—1) = lim, 14 g(z) = f(0) > 0 it follows that [_, , Tdp(N) <
oo and in particular p({—1}) = 0. Hence,

o) —g(1) =g [ ¢

1+
L+ Ax)(14+X)

Transforming this by x = ¢~1(¢) and A = ¢¥~1(() and introducing the mea-

sure m on (0, 00| by m d—ef fop~t, where dj(\):=2 1+/\ 9O 7,(\) we obtain

/(0] C*D imi), teo,00).

C+t

Adding the mass f(0)do({0}) to m, where Jy is Dirac measure we have

(1) = /[O N %dm@)? te 0, 0.

The uniqueness of the measure m follows from the Theorem 3.3.3. The last

du(N).

statement follows by applying the above to the case f — f(0). [ |
For J := [0, +00), transforming the measure in Theorem 3.3.4 we obtain
the following integral representation theorem, which we will use in the sequel.

Theorem 3.3.5 A function f : [0,+00) — R is operator monotone if and
only if there is a € R, b > 0 and a positive Borel measure i on (0, +00)
satisfying fooop%\du(/\) < +o0, such that

tA

F(t) =a+0bt+ /0 N oY) (3.5)

Note also that ¢(0) =
For some more details about operator monotone functions see [2, p.p. 144-
145] and [16, Theorem 2.7.11].
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3.4 Spectral measure, integration and

functional calculus

In this section we provide an overview of projection valued or spectral mea-
sure, integrals with respect of such measures and functional calculus for
selfadjoint and normal operators. For more details see e.g. [3].

Denote by P(H) the family of all orthogonal projections on H and let
(2,901) be an arbitrary measurable space.

Definition 3.4.1 A mapping E : M — P(H) is called a spectral measure
onH zf the followmg conditions are satisfied:

i) E(U op) = s — Z E(6,), where {0,}22, is countable or finite set of

dzsyomt sets 0, €M (countable additivity).
ii) E(Q) =1 (completeness).
(Q, 9, H, E) is referred to a spectral measure space.

Basic properties of spectral measures follow from finite additivity.

Theorem 3.4.2 Let 0; and 05 be arbitrary measurable subsets of €, i. e.
(01,02 € M). Then

i) E(61)E(02) = E(02)E(01) = E(61 N ds) (commutativity).

i) E(61Nd2) =0 4f 6 Ny = O (orthogonality).

iii) E(61) < E(62) if 61 C 6o (monotonicity).

With any spectral measure we consider the family of complex measures
defined on 9 with i54(9) oo (E(6)f,g) for 6 € M. A spectral measure
generates a family of finite scalar measures on 9. Namely, for f =
we denote the measure py, simply as py and since pr(0) = <E ) fs f> =
|E(8)f|[* > 0 sy is a positive measure and 417(Q) = || E(Q )fH = |I£1I>

We have 4117,4(0) = f1519(0) + pr—g(0) + it 1ig(0) — ifiy—ig(9)-

11g,$(0) = (E(0)g, [) = (9, E(0)f) = (E©)f, 9) = 17,4(3),

7,9 () < 115(0) 1(0).

The last inequality follows from

[(EO)f,9)| = KE©)f. E(@0)g)| < [|E@) ][ E(0)g]|
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If 0, € 9 for n € N are disjoint sets and 6 = |J I,

Z |11,9(0n Z \/ fr (6 \/ g (0 Z fir (0 1/2 Z :ug((sn))lﬂ

n

=/ 117(0)/ 14(0)-

The varaiation |uys,| of py, satisfies

1,9l (6) < 4/ (6)4/ 11g(0) (f,g€H,6eM).

In particular, for 6 = Q we have |us,[(2) < | f]l 9] -
If ¢ is a real measurable function on €2 then

E—-suwpp={ae€R:ply)<a E-—ae}

A function ¢ is called simple if there exists a partition dq,...,05 of €

into disjoint measurable subsets such that ¢ is constant on each 9, i.e.

©ls, = ¢p for n = 1,...N. If xs is the characteristic function of the
N

set 0 then ¢ = > ¢,xs,.- The set TI(Q,9) of all simple functions is a

n=1
dense subalgebra of L>*(Q, E), where by L>(£2,9) is denoted the set of
E-bounded E-measurable functions on Q. L>(€, F) is endowed with the
norm ¢ p = E — suple|.

N
Definition 3.4.3 The integral of ¢ € TL(Q, M) ¢ = > c,xs, with respect

n=1

to E is the operator

N
I(p) = /gpdE =N, B(
n=1

The definition is independant of the choice of representation. This follows

N
from the finite additivity of spectral measure. Indeed, let ¢ = > ¢, xs, =
n=1

Z dmXm- Then p(z) = ¢, = d,, for all z € §,,N,y, # 0 and ¢, E(0,NY,) =
dm (6,N7m) forall 1 <n < Nand 1< m< M. In case when 6, N7, =0
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then E(6, N ’ym) = O and the previous equation is valid. It follows that

5 0B0.) = X X B @N9) = 32 3 duE M) = 3 dnEl)

The basic properties of the integral defined on IT(£2,90t) are hsted below.

Proposition 3.4.4 If o, € II(Q, M), a, f€ C and f,g € H then
1) I(ap + B) = aZ(p) + BL(1)),

2) I(py) = Z(p)Z(¥),

3) L(p)* = Z(o),

4)I(1) =1,

5) Z(e)f.9) = [ eduyg,
6) Z(p)f, [) =

f7 ngd,Uf,
N IZ() 17 = [ leldpy,
8) |1 Z(p)| = £ —suplo| = o] 5 -

Now, the definition of the integral extends to L*°(£2, E') by passing to the
limit, i.e. for ¢ € L>*(Q, E) we put Z(p) T |onll where {©n }nen
is an arbitrary sequence of simple function such that |¢,, — ¢||; = 0. Since
in B(H) the linear operations, the multiplication, the norm and the invo-
lution 7" +— T are continuous with respect to the convergence in B(H), it
follows thet 4) — 6), 7) 11) hold for arbitrary functions in L>°(2, E). The
above properties establish the central result of the theory of integration with
respect to a spectral measure.

Theorem 3.4.5 The mapping I : ¢ — IZ(p) is an isometric isomorphism
of the Banach algebra L>(Q2, E) with unit 1 and involution ¢ — @ onto a
commutative subalgebra of B(H) with unit I and involution T — T*.

Self-adjoint, normal and unitary oprators admit representations in the form
of integrals taken with respect to suitable spectral measures. Such repre-
sentations are called spectral resolutions (see [3]).

Theorem 3.4.6 Let A be a self-adjoint operator on H. Then, there exists
a unique spectral measure E defined on the o-algebra of Borel subsets of
[ [All Al such that

A= / y AE(N).
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Theorem 3.4.7 Let A be an arbitrary unitary operator. Then, there exists

a unique spectral measure on the Borel subsets of the unit circle T such that

A /T ME(),

Theorem 3.4.8 For any normal operator A there exists a unique spectral
measure E defined on Borel subsets of o0(A) such that

A= / ME(N).
a(A)

In other words, the spectral theorem for normal operators says that every

normal operator is a spectral integral of independent variable taken with

respect to its associated spectral measure. If we denote by j the identical

mapping, the spectral theorem actually says that Z(j) = A. From the

Proposition 3.4.4 4) we have Z(1) = I and from the properties 1) and 2)

of the same Proposition 3.4.4 it follows that Z(j") = A™ and Z(p) = p(A)
1

for any polynomial p. For every A\ ¢ o(A) the function p(z) = = is

continuous and therefore bounded on the compact o(A). From 2) of the

Proposition 3.4.4 we obtain

(A—)J)I(apA):/(A)(z—)\)dE/(A)Zi)\dE:/(A)(z—)\)Zi)\

which means that it is in fact Z(¢)) = (A — AI)~'. From the Proposition
3.4.4 1) and 2) it follows that for any other rational function r with poles
outside the o(A) the operator r(A) can be identified with Z(r). Thus, for a
wider class of functions, a (normal) operator variable can be allowed, more

dE =1

precisely:

Definition 3.4.9 Let A € B(H) be a normal operator. For an arbitrary
Borel-measurable bounded function ¢ on o(A) we define

def

p(A) = / pdE.
o(A)

The following proposition gives rules for this type of functional calculus.
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Proposition 3.4.10 Let ¢, ¢ € L>®(, E), o, b€ C and f,g € H. Then
1) (oo + BY)(A) = ap(A) + Bi(A),
2) (p)(A) = p(A)v(A),

3) (A =v(A),
4) L(A) =1,
5) (p(A)f,9) = [edugg,

)
6) (p(A)f, f> J edpy,
7) (A FIIP = [ ||y,
8) lle(A)ll = E —sup || = [loll; -

3.5 Cauchy-Schwarz norm inequalities in
norm ideals of compact operators

We present Cauchy-Schwarz norm inequalities needed to derive inequali-
ties for operator monotone functions and hyponormal operators in the next
chapter.

If family {Ct}teﬂ
ators, i. e. CiC, = C,C; for all t,s € Q we will refer to it as a m. c. n. o.

in B(H) consists of mutually commuting normal oper-

family.

Furthermore, if one of the families {A; };cq and {B;}icq consists of mu-
tually commuting normal operators, then we have appropriate Cauchy-
Schwarz inequalities for ideals of compact operators Cgpw) (H) and Cgm+ (H)
when p > 2.

The following result was proved in [20].

Theorem 3.5.1 Letp > 2, X € B(H) and ® be an arbitrary s. n. function.
Let A,B € L4(Qp, B(H)). If {Atcq is a m. c. n. o. family and
X e GW) (H), then

1/2
< H ( / A;‘Atdu(t)) X
d(p) Q

1/2

. (3.6)

/ A, XB,du(t)
Q

| Binty
Q

®(p)
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Alternatively, if A*, B* € LE(Q, u, B(H)), {Bi}ieq s a m. ¢. n. o. family

and X € Com (H), then
1/2
X(/ BtB;‘du(t))
Q

Proof: For the proof see |20, Theorem 3.1(a)|. |

1/2
L (3.7)

®(p)

/ A, XB,du(t)
Q

| Aian

d(p)

Remark 3.5.2 The inequality (3.6) in Theorem 3.5.1 is exactly the inequal-
ity (33) in [24, Lemma 3.4] in special case Cy = A} and Dy = B, for allt € ,
while the inequality (3.7) is exactly the inequality (34) in [24, Lemma 3.4/
in special case Cy = Ay and Dy = B, for all t € Q.

In [20, Theorem 3.1 b)| it was shown that the commutativity and nor-
mality for any of families {A; };cq and {B; };cq is not required for the validity
of (3.6) if A, B € L%(Q, u, B(H)) and for (3.7) if A*, B* € L4(Q, u, B(H))
if ||.]|pw) is @ Hilbert-Schmidt norm |.||,, i.e. the following inequalities hold.

Theorem 3.5.3 Let A,B € LL(Q, 1, B(H)), X € B(H). If X € Cy(H)

then
1/2 1/2
/ A, XBydp(t) H( / A2 Adu(t) ) X / B! B,dp(t) (3.8)
211JQ
while if A*, B* € Lé(Q,/L,ﬂ(’H)) and X € Co(H)
1/2
/A XB,du(t) /A Aidu(t) (/ Bth‘du(t)) (3.9)
Q 2

Proof: For the proof see |20, Theorem 3.1 b)|. |
The following result was proved in [20] and points out Cauchy-Schwarz
norm inequality for the nuclear norm.

Theorem 3.5.4 If A, B* € L%(Q, u, B(H)) and X € C,(H) then

() )

The next theorem considers ideals Cgw)+ (H) and was established in [20].

(3.10)

/.AXBd,LL

1
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Theorem 3.5.5 Let p > 2, ® be an arbitrary s. n. function and at least
one of families { A }icq and {Bi}ieq is a m. c¢. n. o. family. If fQH.AtfH2 +
IB:f|1? du(t) < +oo for all f € H, then for all X € Cpuy (H)

1/2 1/2
<|( [aamao) x( [ ssan)
Hp)* Q Q

Proof: For the proof see [20, Theorem 3.1 d)]. |
The following result was established in [18].

. (3.11)

PH(p)*

/AtXBtdu(t)
0

Theorem 3.5.6 Let ® be s. n. function and let {A;}ieq and {Bi}ieq be
weakly*-measurable m. c. n. o. families such that [ AP +IBf |1 dp(t) <
+oo for all f € H. Then for X € Cq(H)

() ()

Proof: For the proof see [18, Theorem 3.2|. |
We present now different types of operator Cauchy-Schwarz inequalities
which are established in [20].

(3.12)

/.AXBdu

P

Theorem 3.5.7 Let A*, B € L(Q, 11, B(H)) and X € B(H).
al) Then t — A, X B, acting on ) is weak*-integrable and

/AXBdu

/Aww‘vh*waw) (3.13)

a2) For every e > 0

—1/2
‘(5[ +/ AtAfdu(t)> .AtXB du(t)
O

/B* XB,du(t).  (3.14)

a3) If [, AA;du(t) is additionally invertible, then eI could be omitted in
the inequality (3.14).
a4) If, in addition {Ai}icq is a m. c. n. o. family, then

zgéﬁXiéAMMWOX&@@. (3.15)

Proof: Inequalities (3.13), (3.14) and (a3) are proved in [20, Lemma 2.1],
while the inequality (3.15) is proved in |20, Corollary 2.3]. |

/ A, XB,du(t)
0
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3.6 Operator monotone functions and

hyponormal operators

The following results present new norm inequalities for operator monotone
functions, as well as to complement those presented in [18] and [23]. They
were proved in [4].

According to [16, Theorem 2.7.7|, an operator increasingly monotone
function ¢ on (0, 4+00) admits its unique extension to the Pick class function,
also denoted by ¢, which is analitic in C\ (—oo, 0] and satisfies Sp(z) > 0 for
all Sz > 0. Moreover, p(z) = ¢(0) +bz+f0°°ﬁtdu( ), where [ t=du(t) <
+o0 for all z in the open right half plane TT" % { € C: =2 >0}. Thus

@(A) = bA+ [[ZtA(tI + A)~'du(t) for an operator monotone function ¢ on
[0, +00) satisfying ¢(0) = 0 and for all strictly accretive operator A € B(H).

Lemma 3.6.1 Let ¢ be an operator monotone function on [0,+00), given
with the mtegml representation (3.5), satisfying ¢(0) = 0. Then ¢'(x) =
b+ [5° x+t ——=du(t) for all x € (0, +00).

Proof: We start from the integral representation of an operator monotone

function ¢ on [0, +00) given by (3.5). Since ¢(0) = 0, it follows that a =
T T 2 .

0 and % b+ [° m du(t) for any given xy € (0,+00).

Therefore,

_ e ¢ t2
gp(.ﬁ(]) SO(:EO) - b+/ / t2(f02 ) 5 (t)
T — Xo o (zo+1)2 (@o+1)2(z+1)
_ _ _t_ t(t+1)
|.Z' .%’0| / |900+t| |z+t| <t> < |$ .%’0’ /0 1+t \xo+t|2(t+%) d:u(t)

<|x—:c0|/0 1+|1—$|>$01+td,u() (3.16)

, where C:=C}, := <1+‘1— ‘)l

for |z —xo| <% and |z —x0| < o

C J° Ty dut)’
is a constant and 0 < [ {5 du(t) < oo. The second inequality in (3.16)

follows because |z —zo| < % implies % < z < 2% and -1 < t+1$_O.We obtain
2

the last inequality in (3.16) by the follovvlng estimates ‘tt}t‘ = |1+ ig_fg <

1+ ‘i —T—i‘ <1+ 1=l xol 1+|1_w_10 7 _t+1%0 <2 and +t < 1. The case when
f thu( ) =0 is trivial. =
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Lemma 3.6.2 If ¢ : [0,400) — R is operator monotone function satisfying
©(0) = 0 and operators A, B, X € B(H) are such that A and B are accretive,
then

AXp(B) — p(A)XB = /0 b t(tI + A)VA(AX — XB)B(tI + B) *dul(t).
(3.17)

Moreover, if A is also cohyponormal, then
(H] + AN+ A7 < (] + A4 72 (3.18)

Proof: The condition ¢(0) = 0 is equivalent to the fact that « = 0 in the
formula (3.5), s0 p(x) = bx + [~ L5 du(t) for all z satisfying = € [0, +00),
where [ Azdu(t) < +oo. This implies

AXo(B) — p(A)XB = AX (bB + /0 TUB( + B)‘%lu(t))
- (bA + /O T AT + A)*ldu(t))XB
= /OOO t(AXB(tI + B)™' — A(tI + A)"' X B)du(t)
= /OOO t(tI + A)TYA(AX — XB)B(tI + B) *du(t). (3.19)
The last equality in (3.19) follows from the following calculus

AXB(tI+ B)™ — A(tI + A)'XB

= (tl + A"t + A)AXB — AXB(tI + B))(t] + B)™*
= (tI + A" (A’XB — AXB*)(t + B)™!

= (tI + A)'A(AX — XB)B(tI + B)™*

If A is additionally cohyponormal, then
(tI + A)(t] + A*) = 2T + t(A + A*) + AA*
* * * * * 2 _A* 2
> 2] 4 AT  ANEAA 2T 4 p AT 4 (AEAT)T 4 (AAT)

= () 4 (457 > (0] A
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which proves the inequality (3.18) since the mapping (0, 00) — (0,00): t

t~! is operator monotone decreasing, due to [16, Lemma 2.5.5]. [ |

The previous lemma 3.6.2 implies

Lemma 3.6.3 Let A € B(H) be a strictly accretive operator, satisfying
Ay = cl for some ¢ > 0 and let ¢ be an operator monotone function on
[0, +00), such that ¢(0) = 0. Then ¢(c) — c'(c) > 0 and

o (H) = A5 (455 > (p(e) - e (), (3.20)

s0 that gp(A*QA*> — At @’(AJ;A*) is strictly positively definite and invert-
ible.

Proof: Consider the function g(x) = ¢(x) — z¢'(z) on [0,4+00). Since
g'(z) = 0 according to the properties of operator monotone functions (see
[16, Corollary 2.5.4]), if follows that g is an increasing real function on
[0,4+00). Therefore if Ay > ¢l for some positive scalar ¢ > 0 it follows
g(Ag) = g(c)I > 0. Indeed from the spectral calculus we have g(Ag —cl) =
Joiam 9(N) = 9(€))drey and ((g(An) — cg(I)h, )=/, , (9(t) = g(c))dun(t)
is strictly positive where F is the spectral measure associated to Ay and
iy, is the associated (scalar) measure for an arbitrary h € H, given by
dpp(8) = (E(d)h, h) for every Borel set § C R. |

Theorem 3.6.4 Let U, ® be s.n. functions, let p > 2, and let ¢ be an op-
erator monotone function on [0, +00), such that ¢(0) =0 and let A, B, X €
B(H). If A and B are strictely accretive, such that AX — X B€Cy(H), then
AXp(B) — o(A)XB € Cu(H) as well, satisfying

[AXo(B) — p(A)XB|y < H\/SO(AJFQA*) B AJEA*@,<AEA*> (AEA*>_1

A(AX — XB)B(B"‘TE;*)l\/SO(B-EB*) - BEB*sO’(B*;B*>

(3.21)

)4

al)if both A and B are normal,

a2)if A is cohyponormal, B is hyponormal and at least one of them is normal,
while U:= &®)",

a3) if A is cohyponormal, B is hyponormal and ¥ := (%
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(X 0B) — o)Xyt (o () g ()Y 7

H\/ A+A A+A*gp (A+A*> <A+A*>_114(AX - XB)BH\I], (3.22)

2 2

b1) if A is normal, B cohyponormal and ¥ = ®®)
b2) if A and B are both cohyponormal and |.|g = |||l

||< <A+A*> _ A—;A* @,<AEA*>>_1/2%(AX¢(B) B QD(A)XB)H\P

< ||acx - XB)B<B+TB*)1\/¢(B§B*) - B ()|

c1) if A is hyponormal, B is normal and ¥ = ®®),
c2) if A and B are both hyponormal and ||.|| = ||,

|45 (AXp(B) - p(A) X B) B (p (B2 ) — B4 ¢’<B+B*)>_1/2

2 2 2

. (3.23)

7
H\/ A+A _ Aty (AgA*>A(AX - XB)BH\IJ, (3.24)
d1) if A is normal, B is cohyponormal and W := &),
. . AN V2,0 .
[(o(255) - 259 (252) ) 452 AXRB) - o)X B) 2,
_ B+B*\ _ B+B* ,( B+B*
< HA(AX XB)B\/g0< - ) - <p’< ; )( Y (3.25)

el) if A is hyponormal, B is normal and ¥:= &),
Proof: To prove al), let us first note that {At}t>o given by A; := Vt(tI +
A)71AEA s the ] s.i. family, satisfying
Ay Agdp(t) < o(A55) — 48480/ (454, (3.26)
0

2
Indeed, the estimate (3.26) is based on

0 < [EATAdu(t) = [T (L + A)(HT + A%)) ™ A4 dp(t)
(0 4 ) A5 )
JoH(4T + ASAT ) (4] 4 ABAT) TRAEAT gy ()
Syt (T + A5A0) T dut) — A [ (] A5) T (1)
= p(455) - A (). (3.27)

<
<
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The second inequality in (3.27) follows from (3.18) since A is normal and

therefore cohyponormal as well. By analogy, denoting {Bt}
given by B, := t2tE (¢t + B)~!, we see that {B;}
family, which satisfies

0 < fy° BB du(t) < o BEES) — BEE- o (B4E2) (3.28)

2 2

the family

>0
is another [p] s.i.

t20

Starting from the formula (3.17), an application of Cauchy-Schwarz norm
inequality (3.12) in Theorem 3.5.6 to [u] s.i. families {At}t>0’ {B*}t>0 and
Y = (%)_IA(AX — XB)B (BJ“TB*)_1 (instead of X) we get the next
inequality in (3.29),

|AXo(B) = p(A)XBlly =

/ AY By dp(t)
0

\'

0 1/2 o0 1/2
gH( / A,*;Atdu(t)> Y( / BtBZ‘du(t)) (3.29)
0 0 v
< Vo () — 2 (25 (a5) " agax - x5
(25) o (35F) - 232 (35 (30)
v

while the double monotonicity property (3.1), combined by (3.26) and (3.28)
justifies the inequality in (3.30).

To prove the inequality (3.21) in the case a2), we apply Cauchy-Schwarz
norm inequality (3.11) in Theorem 3.5.5 instead of (3.12) in Theorem 3.5.6
to the same families {.At} and {Bt}
the proof of al).

The case a3) of the formula (3.21) is proved by analogy to the proofs

and for the same Y appearing in

=0 >0

already given, but this time by applying Cauchy-Schwarz norm inequality
3.10 for the trace ideals in Theorem 3.5.4. to the same families {At}t>0 and
{Bt}t>o and Y as above.

b1) To prove the inequality (3.22) in the case b1), let us note that ¢ <B+B )

2 2

(AX@(B) — @(A)X B)BEE" (p (BLEY) — BBy (E£B)) 712

= (Jyt(tl + A) T A(AX — XB)B(tI + B)'dp(t)) 255
(90 (B-;B ) _ B+B* S0/ (B+B*)) 1/2 fo AtYBtdlu(t)

2 2

B+—B*g0’<B+—B*) according to Lemma 3.6.3. Tt follows that
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1
A = \/f(t[—i—A)*l’sz  Br=+t(tI+B)"! B+23 (SO (B-&-QB ) B+23 S0/<B+23 )) 2
and Y := <%> A(AX — X B)B. By applying Cauchy-Schwarz inequality

(
(3.6) in Theorem 3.5.1 it follows that

00 1/2
([ aam) >
o) 0
-1

\//O P (L + AT+ A) A () (44) A(AX - XB)B

version for ()-norms
1/2

/ AY Bidp(t)
0

| BiBdnte

0

&(p)

X
H(p)

( (25) — 25 (B5)) ™ [R5 01 4 B7) 0T+ B) B )
1/2

. . “\\—1/2
e s )

< A+A*\ _ A4+A* ) (A+AF A+ A" _lA AX — XB)B
< |y (557) o (455) ( )

2 2 2

(3.31)

H(p)
The inequality (3.31) is obtained analogously as in Theorem 3.6.4 a) accord-
ing to the normality of operator A and the cohyponormality of B, combined
with the fact that (0,+00) — (0,+00): ¢t — ¢! is operator monotone de-
creasing function, as well as the double monotonicity property (3.1) for u.i.
NOImS.

b2) For the proof of the inequality (3.22) in this case we replace || om
by |||, and apply Cauchy-Schwarz norm inequality (3.8) in Theorem 3.5.3
on the same families A; and B; and the same Y instead of Cauchy-Schwarz
inequality (3.6) in Theorem 3.5.1 on those families and Y.

cl) In this case the inequality (3.23) proves in a similar way as the
inequality (3.22) by applying Lemma 3.6.3 and Cauchy-Schwarz norm in-
equality (3.7) in Theorem 3.5.1 on the families

Ay = Vi (ip (%) - ATA (AR TR AL g 4)7L (3.32)

B := ﬂ% (tI+ B)~!, where B; consists of commuting normal operators,

—1
operator Y := A(AX — XB)B(@) and by using the hypomormality
for the operator A.

¢2) Similarly, the proof of the inequality (3.23) in this case requires to

replace ||-||w by ||-]|]2 and to apply the Cauchy-Schwarz norm inequality
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(3.9) in Theorem 3.5.3 instead of Cauchy-Schwarz norm inequality (3.7) in
Theorem 3.5.1 to the same families A; and B; and the same Y.

dl) To prove the inequality (3.24) in this case, we note that gp(#) -

—BEB* d(%) is invertible due to Lemma 3.6.3. It follows that

M(AX P(B) = p(A)XB)EE (p (B5) — BP0 (240))

AL ([H(t + A)TA(AX — XB)B(H + B) (1)) 25
(90 (BEB ) — BEB o (BEBUY) TV [ 4y Bdu(t),
1
Ap = VA (4T A) Y By o= H(H + B) 7 BEBY (o (BEBY) _BEB” 1 (BEBY)) 72

and Y := A(AX — X B)B. By applying Cauchy-Schwarz inequality version
for Q—norms (3.6) in Theorem 3.5.1 it follows that

/2

H\/foo A+ AL + A*)fl% du(t)A(AX — XB)B
H(QP(BEB*) _ BJFQB*QOI (BJFQB*))_UQ/O;OBJFTB*@[—FB*)1<tI+B> 1B+B d/JJ( )

1/2

/ B Bydu(t)
0

q>(p> P(»)

X
H(p)

1/2

. " +\\—1/2
(0 (557) = 5579 (757))

(3.33)

) H% P (45) — 455 (*57)AAX - XB)B

o (p)

The inequality (3.33) is obtained similarly as in previous cases using normal-
ity of operator A and the cohyponormality of B, combined with the fact that
(0, +00) — (0,400): t — t~! is an operator monotone decreasing function,
and the double monotonicity property (3.1) for u.i. norms.

el) The inequality in (3.25) proves in a similar way as the inequality (3.24) by
applying Lemma 3.6.3 and Cauchy-Schwarz norm inequlity (3.7) in Theorem
3.5.1 for the families

A= VE(p (855 — A5y (52 VARG 4, (334

B, := Vt(tI+B)™! BJFQB*, where B, consists of commuting normal operators,
operator Y := A(AX — XB)B and by using the hypomormality for the
operator A.
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Theorem 3.6.5 Let U be s.n. function, let @ be an operator monotone
function on [0, +00) such that p(0) = 0 and let A,B € B(H). If A and
B are strictly accretive normal operators, then for all X € B(H) such that
AX —XBeCy(H), we have AX p(B)—p(A)X B € Cy(H) as well, satisfying

H (p (A54%) _ asa® oy (454 ) VXU X o(B) — o(A)XB)

2 2

* * * —1/2
(P (555) =55 (55) )

< sy hoax - xpm (),

(3.35)
\/90 A* A+A* o (A+2A*)

A(AX — XB)B\/go (BLE) — BLB" oy (BB

[ 4£4% (AX p(B) — p(A)

: (3.36)

v

A (p (A1) — 250 (A51)) T (AX@(B) — p(A)XB)

. . =1/ .
(¢(3+B)_B+B ! ( BB )) 12%

5 e (P < ||A(AX — XB)Blly. (3.37)

\\

Proof: The proof goes by analogy to the proof of Theorem 3.6.4a). gp(#)—
A o (A and o (BEE) — BEEL/ (BEE) are strictly positively defi-
nite and invertible according to Lemma 3.6.3. To prove (3.35) we just apply

* * * —1/2 * * * —1/2
(3.29) to (90 (A+A) A+2A S0/(A+2A )) 12y (gp (B+2B ) _ B+2B (p/(BJrQB )) /
instead of Y, where Y is the same as in Theorem 3.6.4. Similarly, (3.36) fol-

A+A* YB—i—B*
2

lows by direct application of (3.29) to instead of Y, and to prove

(3.37) we apply (3.29) to the operator A+A (p (AE2) — &y (AJ;A*))AQY

(90 (BJEB*) . BEB* o' (BBB*)) 1/2% instead of Y. u

Similarly as in the proof of Lemma 3.6.2, by applying Lemma 3.6.3 the

following can be obtained.

Corollary 3.6.6 If A, B € B(H), where A is strictly accretive and cohy-
ponormal and B 1s strictly accretive and hyponormal, and if ¢ is an operator
monotone function on [0,+00) such that ¢(0) = 0, then
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(o (452 — 252 (AEA*)V/O P (A (0 A A

1

(QO(AJ;A ) A+A I(A+A )) 2
(@(B-;B*) B+B* /(B ))—% 0 75B+B* (tI + B)~ (t]+B*)_1B+TB*dM(t)
(1p (BHE5) — B (BEBY)) 2 < .

Theorem 3.6.7 Let U be s.n. function, let A, B € B(H) be strictly accre-
tive normal operators, X € B(H) and 6 € (0,1). If AX — XB € Cu(H)
then AX log(I + B) —log(I + A)XB, AXB? — A°’X B € Cy(H) as well and

| 452 (AX log (I + B) —log(I + A)X B)E£E

ALAT) A" (14 AR TIA(AX — XB)B

Vios (1+ B55) — B8 (14 B2y (339)

v

(5) 5 Aax - xB)B (2

|AXB’ — A’XB||, < (1- 9)‘

v
(3.39)
wy =2 )
| (2529 7% (axB? - A'x ) (242) 73|
<=0 (22 aax - xByB () (3.40)
||A—|—2A* (AXBG o AGXB)B—;B* .
<(-0)[(452) P Aa(ax - X BB (223 | (3.41)
[ (252172 (Ax B — a7XB) (2°)' 5| < (1 0)A(AX — XB)Bls.
(3.42)

Proof: The application of the inequality (3.36) on the operator monotone
function (t) :=log (1 + t) gives (3.38), while the applicatin of the inequal-
ities (3.21), (3.35), (3.36) and (3.37) on the operator monotone function
o(t) :==t for 6 € (0,1) gives (3.39), (3.40), (3.41) and (3.42), respectively.
|
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Theorem 3.6.8 Let A,B € B(H) be strictly accretive operators, X €

B(H) such that AX — XB € Cym(H), p = 2 and let 6 € (0,1) .

Then

AXlog(I + B) —log(I + A)XB, AXBY — A°’XB € Cy(H) as well and

a) If A is hyponormal and B is normal then

H (log (I + AEAT) — ALA" (1 4 LAY =1) T2 AN (A X log (1 + B)

—log (I + A)X B)2£E

PH(p)
< ||AAx - XB)B\/log(I + B — BEBL (T 4 BEE)1|

0 *
|(2525) " 2(AX B — A’X B)BEB

2 2

P(p)

L0
<(1- G)HA(AX — XB)B(££E5)2 ||w).

b) If A is normal and B cohyponormal then

A (AX log (I + B) — log (I + A)X B)E2tE (log (I + 2£E)

_B+QB* (I + BJrQB* )71>71/2

PHp)
< [|y/log (I +4%55) — 442 (1 4 A45) 1 A(AX — XB) By,

. -t
|45 (AXB” = APX B)(#47) 2 |
N
< (1= 0)[[(455)2A(AX = XB)B| 4

(3.43)

(3.44)

(3.45)

(3.46)

Proof: The inequalities (3.43) and (3.45) are direct consequences of the ap-
plication of inequalities (3.25) and (3.24) to the operator monotone function
[0,400) = [0,400): t — log(1 + t), while the inequalities (3.44) and (3.46)
are proved by applying the inequalities (3.25) and (3.24) to the operator

monotone function [0, +00)— [0, +00): t >t/ for 0 < 0 < 1.
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Mpunor 1.

Usjasa o ayTtopcTey

[Motnucanu-a kﬂ(ﬂ-\PmHﬁ EO\"‘A}F\H-DQVIVT

6poj unpekca 203 /2017

Uzjasmyjem
na je JOKTOpCKa AvcepTaLmja noj HacroBoM
JoiNT sfe cTRRC RADIus of ThE Schuo- Hapauary PloDYCT of

£E€T OF NATRICES AND Scfiyp- FADAMARQ MULTIPLICERS Wi T
KPPLICATION To PERIVATION Nogm 1NeEGUALTICS Fon OPERKTOLY

e  pe3ynTart CONCTBEHOr UcTpaxmBaudkor paaa,

e [a npeanoxeHa auceprauuja y LenuHu Hu y genosuma Huje 6una npegnoxexa
3a pobujare Guno Koje gunnome npema CTyOMjCKUM NporpaMmuma Apyrux
BMCOKOLLIKOIICKUX YCTaHOBA,

e [a cy pesynTaTy KOPEeKTHO HaBedeHU U

e [a HuWcaMm KpLimo/nma ayTopcka npaBa ¥ KOPUCTUO MHTEMEKTYyariHy CBOjUHY
Opyrux nuua.

MoTnuc pokropanga

Y Beorpagy, 0F M 2075.

(wﬁ\o)a_wé U«’%aw UYptte




Mpunor 2.

U3jaBa 0 MICTOBETHOCTU LUTAMMaHe U eNleKTPOHCKe
Bep3uje OOKTOPCKOr paga

Wme n npesume ayTopa KAatapvHA  boraancei i

Bpoj unpekca 013 /2017

Cryavjcku nporpam Nate MATnK A

JoiNT SPECTRAL RAD(US OF THE Schyp - HAoAMAe i PLOpucT -
Hacnoe paga OF SET  OF MATRICES MWD SChua~Hronp nen NOUUTIPLIERS wiTiy
A PVL crr? ON 76 DERJVATION NOLN (REQUAUMES FoL CPELATORS
MenTop H’()cp AP Am-HKu quﬂ'uﬁ AP Amow\ Nepcerkd

N

Motnucanw/a &k BTAPLIBA Do LA AHOBY n

VsjaBrbyjem ga je wramnada sepavja MOr JOKTOPCKOr paja UCTOBETHA ENEKTPOHCKO)
Bep3uju Kkojy cam npepao/na 3a o6jaBrbMBarbe Ha noprtany JururanHor
penosutopujyma YHuBep3auteta y beorpapy.

HossorbaBam fa ce objaBe MOjM NUYHM nogauy BesaHu 3a Oobujarbe akagemckor
3Barba AOKTOpA HayKka, Kao LUTO Cy UMEe 1 NpesumMe, rogmHa u MecTo poherwa v fatym
onbpaxe paga.

OBM nuuHM nopauu Mory ce oGjaBuTu Ha MPEeXHUM CcTpaHuuama gurutanHe
GrbnuoTeke, y eNeKTPOHCKOM KaTanory u y nybrnvkaumjama YHusepauteta y Beorpaay.

Mornuc pokropanga

Y Beorpagy, 07. M. 2025 .

%‘ q apelusk X UG qpupyss
J




Mpwnor 3.

UsjaBa o kopuwhemwy

Osnawhyjem YHusepauteTcky 6ubnmoteky ,Csetosap Mapkosuh® na y AurutanHu
penosuTtopujym YHusepauteTa y Beorpamy yHece Mojy LOKTOpCKy AucepTauujy nop
HacroBoOM:

Joini SPectrre RRDIUS oF THE ScHue- HADAMARD peC OucT
GP SET of MATRICES AND Sciie- Hapmyarn NULTIPLIERS Wi TH

APPLICATION TO DERIVATION NOEM iINCR UALITIES FOR GPER HTons
Koja je Moje ayTopcko feno.

OucepTauujy ca cBuMm npurosuma npegao/na cam y enekTpoHckoM dopMarty norogHom
3a TpajHO apxuBMUpat-e.

Mojy noktopcky aucepTaumjy noxparweHy y OuratanHu penosutopujym YHusepauteTa y
Beorpany mory aa kopucTte c©BM koju nowTyjy oapeabe cagpxate y ogabpaqom Tumny
nvueHue KpeaTusHe 3ajearuue (Creative Commons) 3a kojy cam ce oasty4no/na.

1. AyTtopcTBo

2. AyTopcTBO - HEKOMeEpLUjanHo

3. AytopcTBO — HekomepLmjanHo — bes npepane

4. AyTOpCTBO — HEKOMEpLIMjariHo — AefNUTU NOf UCTUM YCrioBUMA
5. AytopctBo — 6e3 npepage

6. AytopcTBO — [EenuTi NoA UCTUM YCroBUMa

(Monumo faa saokpyxuTe camo jedHy of LecT MOoHyHeHWUX NULEeHLM, KpaTak onuc
nvueHum AaT je Ha nonefuHu nucta).

MoTnuc gokTopaHaa

Y Beorpagy, 0% . A 2025~

T(ﬂ\q ahelas 72{;{@&/} TN
Y
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