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Dissertation title: Joint spectral radius of the Shur-Hadamard product of

set of matrices and Schur-Hadamard multipliers with application to deriva-

tion norm inequalities for operators

Abstract: In the �rst and the second chapter of dissertation we prove

some new inequalities for the spectral radius, essential spectral radius, oper-

ator norm, measure of non-compactness and numerical radius of Hadamard

(Schur) weighted geometric means of positive kernel operators on Banach

function and sequence spaces. The list of extensions and re�nings of known

inequalities has been expanded. Some new inequalities and equalities for

the generalized and the joint spectral radius and their essential versions of

Hadamard (Schur) geometric means of bounded sets of positive kernel op-

erators on Banach function spaces have been proved. There are additional

results in case of non-negative matrices that de�ne operators on Banach

sequence spaces. In the third part we present some inequalities for opera-

tor monotone functions and (co)hyponormal operators and give relations of

Schur multipliers to derivation like inequalities for operators. In particular,

let Ψ,Φ be s.n. functions, p ⩾ 2 and φ be an operator monotone function on

[0,∞) such that φ(0) = 0. If A,B,X ∈ B(H) and A and B are strictly ac-

cretive such that AX−XB ∈ CΨ(H), then also AXφ(B)−φ(A)XB ∈ CΨ(H)

and

||AXφ(B)− φ(A)XB||Ψ ⩽

∣∣∣∣∣∣∣∣√φ
(

A+A∗

2

)
− A+A∗

2
φ′
(

A+A∗

2

)(
A+A∗

2

)−1

A(AX −XB)B
(

B+B∗

2

)−1
√
φ
(

B+B∗

2

)
− B+B∗

2
φ′
(

B+B∗

2

)∣∣∣∣∣∣∣∣
Ψ

.

under any of the following conditions:

(a) Both A and B are normal,

(b) A is cohyponormal, B is hyponormal and at least one of them is normal,

and Ψ := Φ(p)∗ ,

(c) A is cohyponormal, B is hyponormal and ||.||Ψ is the trace norm ||.||1.
Alternative inequalities for ||.||Ψ(p) norms are also obtained.

Keywords: operator monotone functions, hyponormal operators, compact



operators, Schur-Hadamard weighted geometric mean ,kernel operators ,

joint spectral radius
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Íàñëîâ äèñåðòàöèjå: Çàjåäíè÷êè ñïåêòðàëíè ðàäèjóñØóð-Àäàìàðîâîã

ïðîèçâîäà ñêóïà ìàòðèöà èØóð-Àäàìàðîâè ìíîæèîöè ñà ïðèìåíàìà íà

äåðèâàöèîíå íîðìà íåjåäíàêîñòè çà îïåðàòîðå

Ðåçèìå: Ó ïðâîì è äðóãîì ïîãëàâ§ó äèñåðòàöèjå äîêàçójåìî íîâå íåjåä-

íàêîñòè çà ñïåêòðàëíè ðàäèjóñ, åñåíöèjàëíè ñïåêòðàëíè ðàäèjóñ, íîðìó

îïåðàòîðà, ìåðó íåêîìïàêòíîñòè è íóìåðè÷êè ðàäèjóñ Àäàìàðîâå (Øó-

ðîâå) òåæèíñêå ãåîìåòðèjñêå ñðåäèíå ïîçèòèâíèõ èíòåãðàëíèõ îïåðà-

òîðà íà Áàíàõîâèì ôóíêöèjñêîì ïðîñòîðèìà è ïðîñòîðèìà íèçîâà. Ïðî-

øèðåíà jå ëèñòà åêñòåíçèjà è ðàôèíàöèjà ïîçíàòèõ íåjåäíàêîñòè. Äîêà-

çàíå ñó íåêå íîâå íåjåäíàêîñòè è jåäíàêîñòè çà ãåíåðàëèçîâàíè è çàjåä-

íè÷êè ñïåêòðàëíè ðàäèjóñ Àäàìàðîâå (Øóðîâå) ãåîìåòðèjñêå ñðåäèíå

îãðàíè÷åíèõ ñêóïîâà ïîçèòèâíèõ èíòåãðàëíèõ îïåðàòîðà íà Áàíàõîâèì

ôóíêöèjñêèì ïðîñòîðèìà è »èõîâå åñåíöèjàëíå âåðçèjå. Èìà è äîäàò-

íèõ ðåçóëòàòà ó ñëó÷àjó íåíåãàòèâíèõ ìàòðèöà êîjå äåôèíèøó îïåðà-

òîðå íà Áàíàõîâèì ïðîñòîðèìà íèçîâà. Ó òðå£åì äåëó ïðåçåíòîâàíå ñó

íåêå íåjåäíàêîñòè çà îïåðàòîð ìîíîòîíå ôóíêöèjå è (êî)õèïîíîðìàëíå

îïåðàòîðå è äàò jå îäíîñ Øóïîâèõ ìíîæèîöà ó íåjåäíàêîñòèìà çà îïå-

ðàòîðå äåðèâàöèîíîã òèïà. Ïîñåáíî, íåêà ñó Ψ,Φ ñ.í. ôóíêöèjå, p ⩾ 2

è φ îïåðàòîð ìîíîòîíà ôóíêöèjà íà [0,∞) òàêâà äà φ(0) = 0. Àêî ñó

A,B,X ∈ B(H) è A è B ñòðîãî àêðåòèâíè òàêâè äà AX −XB ∈ CΨ(H),

îíäà ñëåäè äà AXφ(B)− φ(A)XB ∈ CΨ(H) è

||AXφ(B)− φ(A)XB||Ψ ⩽
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Àêî ñó èñïó»åíè ñëåäå£è óñëîâè:

(a) Îáà A è B ñó íîðìàëíè,

(á) A jå êîõèïîíîðìàëàí, B jå õèïîíîðìàëàí è áàðåì jåäàí îä »èõ jå

íîðìàëàí, è Ψ := Φ(p)∗ ,

(â) A jå êîõèïîíîðìàëàí, B jå õèïîíîðìàëàí è ||.||Ψ jå íóêëåàðíà íîðìà

||.||1.
Äîáèjåíå ñó è àëòåðíàòèâíå íåjåäíàêîñòè çà ||.||Ψ(p) íîðìå.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

It is well known that entrywise Hadamard-Schur product ◦ of matrices (or

more general kernel operators) plays an important role in operator theory

and matrix analysis, for instance in the theories of operator means, Schur

multipliers, preservers (e.g in tropical mathematics) and elsewhere, see e.g.

[17, 44]. As pointed out in [17] the application of Hadamard-Schur product is

a common and powerful technique in investigation of general matrix (and/or

operator) norm inequalities, and particularly so in that of perturbation in-

equalities and commutator estimates. Assumed that n×n complex matrices
H, K and X are given with H and K positive (de�nite) and write diagonal-

izations H = Udiag(s1, s2, . . . , sn)U
∗ and K = V diag(t1, t2, . . . , tn)V

∗. To a

given scalar mean M(s, t) (for s, t ≥ 0) one can associate the corresponding

matrix mean M(H,K)X by

M(H,K)X = U([M(si, tj)] ◦ (U∗XV ))V ∗.

For a scalar mean M(s, t) of the form
∑n

i=1 fi(s)gi(t) one can observe that

M(H,K)X =
∑n

i=1 fi(H)Xgi(K) and we note that this expression makes a

perfect sense even for Hilbert space operators H,K,X with H,K positive

(semide�nite). However, for the de�nition of more general matrix means

(such as interpolation means and binomial means) the use of Hadamard

products or something alike seems unavoidable. In the development of op-

erator means theory [17] several classical tools are used such as kernel oper-
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES

ator representation of Hilbert-Schmidt operators and Schur multipliers, but

also more involved tools such as (Stieltjes) double integral transformations

and Grothendieck theorem (see [17]).

Let µ be a σ-�nite positive measure on a σ-algebra M of subsets of a

non-void set X. LetM(X,µ) be the vector space of all equivalence classes of

(almost everywhere equal) complex measurable functions on X. A Banach

space L ⊆M(X,µ) is called a Banach function space if f ∈ L, g ∈M(X,µ),

and |g| ≤ |f | imply that g ∈ L and ∥g∥ ≤ ∥f∥. It is assumed that X is the

carrier of L, that is, there is no subset Y of X of strictly positive measure

with the property that f = 0 a.e. on Y for all f ∈ L. By R we denote

the set N of all natural numbers or the set {1, . . . , N} for some N ∈ N. Let
S(R) be the vector lattice of all complex sequences (xn)n∈R. A Banach space

L ⊆ S(R) is called a Banach sequence space if x ∈ S(R), y ∈ L and |x| ≤ |y|
imply that x ∈ L and ∥x∥L ≤ ∥y∥L. Observe that a Banach sequence space

is a Banach function space over a measure space (R, µ), where µ denotes the

counting measure on R. Denote by L the collection of all Banach sequence

spaces L satisfying the property that en = χ{n} ∈ L and ∥en∥L = 1 for all

n ∈ R. For L ∈ L the set R is the carrier of L.

The cartesian product L = E × F of Banach function spaces is again a

Banach function space, with the norm ∥(f, g)∥L = max{∥f∥E, ∥g∥F}.
Standard examples of Banach sequence spaces are Euclidean spaces, lp

spaces for 1 ≤ p ≤ ∞, the space c0 ∈ L of all null convergent sequences

(equipped with the usual norms and the counting measure), while standard

examples of Banach function spaces are the well-known spaces Lp(X,µ)

(1 ≤ p ≤ ∞) and other less known examples such as Orlicz, Lorentz,

Marcinkiewicz and more general rearrangement-invariant spaces, which are

important e.g. in interpolation theory and in the theory of partial di�eren-

tial equations ([1]).

The cone of positive elements in L is denoted by L+. A non-negative

function f ∈ L+ is said to be strictly positive if f(x) > 0 for almost all

x ∈ X.

By M(X,µ)+ we denote the cone of all equivalence classes of (almost

everywhere equal) µ-measurable functions on X whose values lie in [0,∞].

A subset A ⊂ M(X,µ)+ is said to be solid, if f ⩽ g a.e., f ∈ M(X,µ)+,

g ∈ A implies f ∈ A.

2



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

A mapping h :M(X,µ)+ → [0,∞] is a f unction seminorm if the follow-

ing conditions hold for all f, g ∈M(X,µ)+ and α ⩾ 0:

1.) If f ⩽ g a.e., then h(f) ⩽ h(g),

2.) h(f + g) ⩽ h(f) + h(g),

3.) h(αf) = αh(f).

For a function seminorm h we de�ne Ch = {f ∈ M(X,µ)+ : h(f) < ∞},
which is a solid subcone of M(X,µ)+. If, in addition, h(f) = 0 implies

f = 0 a.e., then h is said to be a f unction norm.

A vector subspace L ⊆M(X,µ) is called an ideal if f ∈M(X,µ), g ∈ L

and |f | ⩽ |g| a.e. imply that f ∈ L. It is assumed that X is the carrier of a

such ideal L ⊆M(X,µ).

A seminorm ρ on the ideal L ⊆ M(X,µ) is called a lattice seminorm

(also Riesz seminorm) if f ∈ M(X,µ), g ∈ L and |f | ⩽ |g| a.e. imply that

ρ(f) ⩽ ρ(g). A lattice norm is a lattice seminorm which is also a norm.

An ideal L ⊆ M(X,µ) equipped with a lattice norm ρ is sometimes called

a normed K�othe space ([45, p. 421]) and that a complete normed K�othe

space is coincides with the Banach function space de�ned above.

If {fn}n∈N ⊂ M(X,µ) is a decreasing real sequence and f = inf{fn ∈
M(X,µ) : n ∈ N}, then we write fn ↓ f . A Banach function space L has

an order continuous norm, if 0 ≤ fn ↓ 0 implies ∥fn∥L → 0 as n → ∞.

The spaces Lp(X,µ), 1 ≤ p < ∞ have order continuous norm. Moreover,

every re�exive Banach function space has an order continuous norm. In

particular, we will be interested in Banach function spaces L such that L

and its Banach dual space L∗ have order continuous norms. Examples of

such spaces are Lp(X,µ), 1 < p <∞, while the space L = c0 is an example

of a non-re�exive Banach sequence space, such that L and L∗ = l1 have

order continuous norms.

By an operator on a Banach function space L we always mean a linear

operator on L. An operator A on L is said to be positive if it maps non-

negative functions to nonnegative ones, i.e., AL+ ⊂ L+, where L+ denotes

the positive cone L+ = {f ∈ L : f ≥ 0 a.e.}. Given operators A and B on

L, we write A ≥ B if the operator A−B is positive. Positive operator A is

3



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

always bounded, i. e., its operator norm

∥A∥ = sup{∥Ax∥L : x ∈ L, ∥x∥L ≤ 1} = sup{∥Ax∥L : x ∈ L+, ∥x∥L ≤ 1}
(1.1)

is �nite. For the proof see [33]. Its spectral radius ρ(A) is always contained

in the spectrum.

In the special case L = L2(X,µ) we can de�ne the numerical radius w(A)

of a bounded operator A on L2(X,µ) by

w(A) = sup{|⟨Af, f⟩| : f ∈ L2(X,µ), ∥f∥2 = 1}.

If, in addition, A is positive, then

w(A) = sup{⟨Af, f⟩ : f ∈ L2(X,µ)+, ∥f∥2 = 1}.

From this it follows easily that w(A) ≤ w(B) for all positive operators A

and B on L2(X,µ) with A ≤ B.

De�nition 1.1.1 Let (X,µ) and (Y, ν) be σ-�nite measure spaces, L ⊂
M(Y, ν) and N ⊂ M(X,µ) ideals. An operator A : L → N is called a

kernel operator if there exists a µ×ν -measurable function a(x, y) on X×Y
such that Y is the carrier of N and for all f ∈ L and for almost all x ∈ X,∫

Y

|a(x, y)f(y)| dν(y) <∞ and (Af)(x) =

∫
Y

a(x, y)f(y) dν(y).

A kernel operator A is positive i� its kernel a is non-negative almost every-

where. For the proof see e.g. [33, Izrek 1.15].

Let L be a Banach function space such that L and L∗ have order con-

tinuous norms and let A and B be positive kernel operators on L. By γ(A)

we denote the Hausdor� measure of non-compactness of A, i.e.,

γ(A) = inf {δ > 0 : there is a finiteM ⊂ L such that A(DL) ⊂M + δDL} ,

where DL = {f ∈ L : ∥f∥L ≤ 1}. Then γ(A) ≤ ∥A∥, γ(A + B) ≤ γ(A) +

γ(B), γ(AB) ≤ γ(A)γ(B) and γ(αA) = αγ(A) for α ≥ 0. Also 0 ≤ A ≤ B

implies γ(A) ≤ γ(B) (see e.g. [30, Corollary 4.3.7 and Corollary 3.7.3]). Let

ρess(A) denote the essential spectral radius of A, i.e., the spectral radius of

the Calkin image of A in the Calkin algebra. Then

ρess(A) = lim
j→∞

γ(Aj)1/j = inf
j∈N

γ(Aj)1/j (1.2)

4



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

and ρess(A) ≤ γ(A). If L = L2(X,µ), then γ(A∗) = γ(A) and ρess(A
∗) =

ρess(A), where A
∗ denotes the adjoint of A . Equalities (1.2) and ρess(A

∗) =

ρess(A) are valid for any bounded operator A on a given complex Banach

space L (see e.g. [30, Theorem 4.3.13 and Proposition 4.3.11]).

Let A and B be positive kernel operators on a Banach function space L

with kernels a and b respectively, and α ≥ 0. The Hadamard (or Schur) prod-

uct A◦B of A and B is the kernel operator with kernel equal to a(x, y)b(x, y)

at point (x, y) ∈ X×X which can be de�ned (in general) only on some order

ideal of L. Similarly, the Hadamard (or Schur) power A(α) of A is the kernel

operator with kernel equal to (a(x, y))α at point (x, y) ∈ X ×X which can

be de�ned only on some order ideal of L.

Let A1, . . . , Am be positive kernel operators on a Banach function space

L, and α1, . . . , αm positive numbers such that
∑m

j=1 αj = 1. Then the

Hadamard weighted geometric mean A = A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m of the

operators A1, . . . , Am is a positive kernel operator de�ned on the whole space

L, since A ≤ α1A1 + α2A2 + . . . + αmAm by the inequality between the

weighted arithmetic and geometric means.

A matrix A = [aij]i,j∈R is called nonnegative if aij ≥ 0 for all i, j ∈ R.

For notational convenience, we sometimes write a(i, j) instead of aij. We

say that a nonnegative matrix A de�nes an operator on L if Ax ∈ L for all

x ∈ L, where (Ax)i =
∑

j∈R aijxj. Then Ax ∈ L+ for all x ∈ L+ and so A

de�nes a positive kernel operator on L.

The problem of comparing the spectral radius ρ(A ◦ B) of the Schur

product of two nonnegative matrices A and B in terms of ρ(A ◦ A) and

ρ(B ◦ B) was motivated by studies of word relationships between random

sequences generated from a m-letter alphabet A where the successive letters

in each sequence occur as independent realizations of an m-state Markov

chain with the transition matrix P (see e.g. [25] ). Let S be such a randomly

generated sequence with total length N . The length of the longest word

occurring at least r times in S is denoted by L
(N)
r , where by a word in S

of length k we mean a contiguous set of k letters from A. Karlin and Ost

established in [26] that the expected length of L
(N)
r is of asymptotic order(

N
r

)
(− log ρr)

,

5



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

where ρr = ρ(P (r)) is the Schur power of the transition matrix P .

Another motivation that leads to Schur products comes from comparing

between several letter sequences. Let S1 and S2 be two random strings of

N letters from the alphabet A, where the realization of S1 is governed by

the Markov transition matrix P and the realization of S2 is governed by the

Markov transition matrix Q. It is assumed that S1 and S2 are generated

independently. The length of the longest word common to S1 and S2 is

denoted by WN
P,Q. In particular, when Q = P ∗ the transition matrix Q is

exactly that of the time reserved Markov chain to P . Another important

class of examples is the case when Q = Π−1PΠ, where Π is a �xed permuta-

tion matrix. It was established by Karlin and Ost that the random variable

WN
P,Q grows on the average as (logN2)/(− log ρP,Q) where ρP,Q = ρ(P ◦Q).
In [25] Karlin and Ost showed for the spectral radius of the Schur powers

ρr = ρ(A(r)) that the function (1/r) log ρr is strictly decreasing for r > 0

when A is a nonnegative irreducible matrix, while in the case when A is in

addition a stochastic irreducible matrix the function (1/r−1) log ρr is strictly

increasing for integers r ⩾ 2. In [25] they also established a connection

between the entropy of a �nite Markov chain and dρr/dr|r=1 stating that

dρr
dr

∣∣∣∣
r=1

= H
({
Xn

})
where H is the entropy of the Markov chain {Xn} associated with an irre-

ducible matrix P . See e. g. [27, Chapter 9] for the de�nition of the entropy

of a stationary Markov chain and the theory of the stationary processes.

1.2 Spectral radius of measurable functions

In this sections we present the results from [34] which enabled the proof

of the key theorems Theorem 1.2.16 and Theorem 1.2.17 which are used to

obtain further results.

First we consider measurable functions on the product measure space

X ×X.

De�nition 1.2.1 Let ϕ :M(X,µ)+ → [0,∞] be a function norm such that

for all f, g ∈M(X ×X)+ the function

(f ∗ g)(x, y) = ϕ(f(x, ·)g(·, y)) (1.3)

6
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is measurable, i.e., f ∗ g ∈ M(X × X)+. By f [1] = f , f [j ] = f [j−1] ∗ f we

de�ne the powers of f ∈M(X×X)+ with respect to ∗. We will also use the

notation f1∗f2∗· · ·∗fm := (· · · (f1∗f2)∗· · ·∗fm−1)∗fm for fj ∈M(X×X)+.

Remark 1.2.2 In De�nition 1.2.1 it is required that f ∗ g ∈ M(X × X)+
for all f, g ∈ M(X × X)+.This is often satis�ed according to Luxemburg-

Gribanov theorem ([45, Theorem 99.2]). See also [34, Example 2.6] and the

rest of the section below.

De�nition 1.2.3 Let h : M(X × X)+ → [0,∞] be a function seminorm.

By

rh(f) = lim sup
j→∞

h(f [j ])1/j (1.4)

we de�ne the spectral radius of f ∈M(X ×X)+ with respect to h and ∗.

The spectral radius rh :M(X×X)+ → [0,∞] is monotone and positively

homogenous. If h is submultiplicative with respect to ∗ (i.e., h(f ∗ g) ⩽
h(f)h(g) for all f, g ∈ M(X ×X)+), then rh(f) ⩽ h(f) for all f ∈ M(X ×
X)+.

The following result was proved in [34].

Theorem 1.2.4 Let f, g ∈ M(X × X)+ and let a function seminorm h :

M(X × X)+ → [0,∞] be submultiplicative with respect to the product ∗,
which is associative. Then the following properties hold.

(i) If f ∈ Ch, then

rh(f) = inf
j∈N

h(f [j ])1/j = lim
j→∞

h(f [j ])1/j.

(ii) If g ∗ f ⩽ f ∗ g or f ∗ g ⩽ g ∗ f , then

rh(f ∗ g) ⩽ rh(f)rh(g).

(iii ) If f, g ∈ Ch and g ∗ f ⩽ f ∗ g, then

rh(f + g) ⩽ rh(f) + rh(g).

7
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Proof: For the proof see [34, Proposition 2.4]. ■

Example 1.2.5 Let ϕ(u) =
∫
X
u(z)dz for u ∈ M(X,µ)+, then ∗ is convo-

lution, i. e.,

(f ∗ g)(x, y) =
∫
X

f(x, z)g(z, y) dz

for f, g ∈M(X ×X)+.

So, the spectral radius of a positive kernel operator is also a special case

of rh(f). See Example 1.2.10 below.

Next, we will use the Young's inequality

xαy1−α ⩽ αx+ (1− α)y

for x, y ≥ 0 and α ∈ (0, 1) and its sharpened version

xαy1−α = inf
t>0

{
α t

1
αx+ (1− α)t−

1
1−αy

}
. (1.5)

The use of the sharpened version of the Young's inequality was proposed by

Professor T. Ando to obtain alternative proof of some results from [10] in a

letter addressed to Professor R. Drnov�sek shortly after Positivity conference

in Dresden. A. Peperko applied that in [34] after R. Drnov�sek presented

him the content of the letter.

The following proposition has been known for years (see e.g. [15, Propo-

sition 1.1 and Remark 1.2.5]).

Proposition 1.2.6 Let h :M(X,µ)+ → [0,∞] be a function seminorm and

αi > 0, i = 1, . . . ,m, such that
∑m

i=1 αi = 1. If fi ∈ Ch for i = 1, . . . ,m,

then fα1
1 fα2

2 · · · fαm
m ∈ Ch and

h(fα1
1 fα2

2 · · · fαm
m ) ⩽ h(f1)

α1h(f2)
α2 · · ·h(fm)αm . (1.6)

If, in addition, h is a function norm, then (1.6) holds for arbitrary fi ∈
M(X,µ)+, i = 1, . . . ,m.

Proof: It is su�cient to prove (1.6) for m = 2. The rest of the proof follows

by induction.

8
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Let f, g ∈ Ch and α ∈ (0, 1). We must show that

h(fαg1−α) ⩽ h(f)αh(g)1−α. (1.7)

From Young's inequality, monotonicity and convexity of h we get

h(fαg1−α) ⩽ h(αf + (1− α)g) ⩽ αh(f) + (1− α)h(g). (1.8)

Replacing f by t
1
αf and g by t−

1
1−α g for t > 0 in (1.8) we have

h(fαg1−α) ⩽ αt
1
αh(f) + (1− α)t−

1
1−αh(g).

Taking the in�mum over all t > 0 we obtain the inequality (1.7). ■
Let L ⊂M(X,µ) be an ideal, equipped with a lattice seminorm ρ. Since

ρ(f) = ρ(|f |) for all f ∈ L, the following result follows from Proposition

1.2.6 and was also presented in [34].

Corollary 1.2.7 Let L ⊂M(X,µ) be an ideal, equipped with a lattice semi-

norm ρ. Then fα1
1 fα2

2 · · · fαm
m ∈ L and

ρ(fα1
1 fα2

2 · · · fαm
m ) ⩽ ρ(f1)

α1ρ(f2)
α2 · · · ρ(fm)αm (1.9)

for all fi ∈ L and αi > 0, i = 1, . . . ,m, such that
∑m

i=1 αi = 1.

The following Lemma, Theorem and Examples listed below were also part

of [34].

Lemma 1.2.8 Let fi, gi ∈M(X ×X)+ and αi > 0, i = 1, . . . ,m, such that∑m
i=1 αi = 1. Then

(fα1
1 fα2

2 · · · fαm
m ) ∗ (gα1

1 gα2
2 · · · gαm

m ) ⩽ (f1 ∗ g1)α1(f2 ∗ g2)α2 · · · (fm ∗ gm)αm

(1.10)

and

(fα1
1 fα2

2 · · · fαm
m )[j ] ⩽

(
f
[j ]
1

)α1
(
f
[j ]
2

)α2

· · ·
(
f [j ]
m

)αm
(1.11)

for all j ∈ N.

Proof: For almost all (x, y) ∈ X ×X we have by Proposition 1.2.6 used for

ϕ

((fα1
1 · · · fαm

m ) ∗ (gα1
1 · · · gαm

m )) (x, y)

9
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= ϕ (fα1
1 (x, ·) · · · fαm

m (x, ·)gα1
1 (·, y) · · · gαm

m (·, y))

= ϕ ((f1(x, ·)g1(·, y))α1 · · · (fm(x, ·)gm(·, y))αm)

⩽ ϕ (f1(x, ·)g1(·, y))α1 · · ·ϕ (fm(x, ·)gm(·, y))αm

= (f1 ∗ g1)α1(x, y) · · · (fm ∗ gm)αm(x, y),

which proves (1.10).

Since ϕ is monotone, (1.11) follows from (1.10) by induction. ■

Theorem 1.2.9 Let h :M(X ×X)+ → [0,∞] be a function seminorm and

αi > 0, i = 1, . . . ,m, such that
∑m

i=1 αi = 1. Then (fα1
1 fα2

2 · · · fαm
m )[j ] ∈ Ch

and

rh(f
α1
1 fα2

2 · · · fαm
m ) ⩽ rh(f1)

α1rh(f2)
α2 · · · rh(fm)αm (1.12)

for all fi ∈M(X ×X)+ such that f
[j ]
i ∈ Ch for all i = 1, . . . ,m and j ∈ N.

If, in addition, h is a function norm, then (1.12) holds for arbitrary

f1, . . . , fm ∈M(X ×X)+.

Proof: Let j ∈ N. From (1.11) we get

h
(
(fα1

1 fα2
2 · · · fαm

m )[j ]
)
⩽ h

((
f
[j ]
1

)α1
(
f
[j ]
2

)α2

· · ·
(
f [j ]
m

)αm
)

⩽ h
(
f
[j ]
1

)α1

h
(
f
[j ]
2

)α2

· · ·h
(
f [j ]
m

)αm

by monotonicity of h and (1.6). Taking the j-th root and upper limits now

gives (1.12). ■

Example 1.2.10 Let (X,µ) and (Y, ν) be σ-�nite measure spaces, L and N

normed K�othe spaces in M(Y, ν) and M(X,µ) respectively, such that Y is

the carrier of N . Assume that αi > 0, i = 1, . . . ,m, such that
∑m

i=1 αi = 1.

Let C be a cone of all a ∈ M(X × Y )+ such that a(x, y) is the kernel of a

bounded positive kernel operator A : L→ N . The cone C is a solid subcone

ofM(X×Y )+. If we de�ne h(a) = ∥A∥ for a ∈ C (where ∥A∥ is the operator
norm of operator A) and h(a) = ∞ for a /∈ C, then h :M(X×Y )+ → [0,∞]

is a function norm and C = Ch.

Let A1, . . . , Am be bounded positive kernel operators from L into N with

kernels a1, . . . , am respectively. Then we have by Proposition 1.2.6

∥A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ∥ ⩽ ∥A1∥α1 ∥A2∥α2 · · · ∥Am∥αm , (1.13)

10
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since ∥A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ∥ = h(aα1

1 a
α2
2 · · · aαm

m ).

Let (X,µ) = (Y, ν), L = N and let ϕ be as in Example 1.2.5. Then

(a1 ∗ a2)(x, y) =
∫
X
a1(x, z)a2(z, y) dz is the kernel of a bounded positive

kernel operator A1A2 on L. Therefore a[j ] is the kernel of Aj for all j ∈ N
and so rh(a) = r(A) (the spectral radius of the operator A). By Theorem

1.2.9 we have

r(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ⩽ r(A1)

α1 r(A2)
α2 · · · r(Am)

αm . (1.14)

Example 1.2.11 Let L be a Banach function space in M(X,µ), such that

X is the carrier of L and let L and L∗ have order continuous norms. Let ϕ be

as in Example 1.2.5 and αi > 0 for i = 1, . . . ,m such that
∑m

i=1 αi = 1 and

let C be as in Example 1.2.10. De�ne h(a) = γ(A) for a ∈ C and h(a) = ∞
for a /∈ C. Here γ(A) denotes Hausdor� measure of non-compactness. Then

h : M(X × X)+ → [0,∞] is a function seminorm (see e.g. [30, Corollary

4.3.7 and Corollary 3.7.3]) , C = Ch and for a ∈ C we have

rh(a) = lim
j→∞

γ(Aj)1/j = inf
j∈N

γ(Aj)1/j = ress(A)

(the essential spectral radius of K; see e.g. [30, Theorem 4.3.13]). By

Theorem 1.2.9 we have

ress(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
n ) ⩽ ress(A1)

α1 ress(A2)
α2 · · · ress(Am)

αm ,

where A1, A2, . . . , Am are positive kernel operators on L.

Now, we restrict our attention to the completely atomic case and consider

measure spaces (X,µ) where either X = N or X = {1, 2, . . . , N} for some

N ∈ N.

Proposition 1.2.12 Let h : M(X,µ)+ → [0,∞] be a function seminorm

satisfying the condition that h(χ{i}) ⩾ 1 for all i ∈ X. Let t ⩾ 1, f ∈
M(X,µ)+ and αk > 0, k = 1, . . . ,m, such that sm =

∑m
k=1 αk ⩾ 1. Then

the following properties hold:

(i) If f(i) <∞, then f(i) ≤ h(f).

(ii) h(f t) ≤ h(f)t.

11
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(iii) If f1, . . . , fm ∈ Ch, then f
α1
1 fα2

2 · · · fαm
m ∈ Ch and

h(fα1
1 fα2

2 · · · fαm
m ) ≤ h(f1)

α1h(f2)
α2 · · ·h(fm)αm . (1.15)

If, in addition h is a function norm, then (1.15) holds for any f1, . . . , fm ∈
M(X,µ)+.

Proof: Let f(i) < ∞. Since f(i)χ{i} ≤ f for all i ∈ X, we have h(f) ≥
h(f(i)χ{i}) = f(i)h(χ{i}) ≥ f(i). This establishes (i).

To prove (ii) we may assume that 0 < h(f) <∞ because of (i). Further-

more, we may assume that h(f) = 1, since h is positively homogeneous. If

f(i) < ∞, then f(i) ≤ h(f) = 1 by (i). It follows that f t ≤ f , since t ≥ 1.

Therefore h(f t) ≤ h(f) = 1, which proves (ii).

The property (iii) follows from (ii) and (1.6). ■

Lemma 1.2.13 Let t ⩾ 1, f1, . . . fn ∈ M(X ×X)+ and ϕ(χ{i}) ⩾ 1 for all

i ∈ X. Then

f t
1 ∗ · · · ∗ f t

n ⩽ (f1 ∗ · · · ∗ fn)t. (1.16)

Let h :M(X×X)+ → [0,∞] be a function seminorm satisfying the condition

that h(χ{(i,j)}) ⩾ 1 for all (i, j) ∈ X ×X. Then

h
(
f t
1 ∗ · · · ∗ f t

n

)
⩽ h(f1 ∗ · · · ∗ fn)t, (1.17)

and

rh
(
f t
1 ∗ · · · ∗ f t

n

)
⩽ rh(f1 ∗ · · · ∗ fn)t. (1.18)

Proof: First we prove (1.16) for n = 2. We need to show that

f t ∗ gt ⩽ (f ∗ g)t (1.19)

for all f, g ∈M(X ×X)+. Take (i, j) ∈ X ×X. Then we have

(f t ∗ gt)(i, j) = ϕ(f t(i, ·)gt(·, j)) = ϕ((f(i, ·)g(·, j))t)

⩽ ϕ(f(i, ·)g(·, j))t = (f ∗ g)t(i, j)

by Proposition 1.2.12(ii) used for ϕ, so we have proved (1.19).

12
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Now (1.16) follows from (1.19) by induction. The inequality (1.17) fol-

lows from (1.16), monotonicity of h and Proposition 1.2.12(ii).

For the proof of (1.18) we �rst show that

rh
(
f t
)
⩽ rh(f)

t. (1.20)

for f ∈M(X ×X)+. By (1.17) we have

h
((
f t
)[j])

⩽ h(f [j])t (1.21)

for all j ∈ N. Taking the j-th root and upper limits we obtain (1.20), while

(1.18) follows from (1.16) and (1.20), which completes the proof. ■

Theorem 1.2.14 Let h and ϕ be as in Lemma 1.2.13 and αk > 0, k =

1, . . . ,m, such that sm =
∑m

k=1 αk ⩾ 1. Then (fα1
1 fα2

2 · · · fαm
m )[j ] ∈ Ch and

rh(f
α1
1 fα2

2 · · · fαm
m ) ⩽ rh(f1)

α1rh(f2)
α2 · · · rh(fm)αm (1.22)

provided f
[j]
1 , . . . , f

[j]
m ∈ Ch for all j ∈ N.

If, in addition, h is a function norm, then (1.22) holds for arbitrary

f1, . . . , fm ∈M(X ×X)+.

Proof: Using (1.20) and (1.12) the proof of (1.22) is similar to the proof of

Proposition 1.2.12 (iii). ■
Now let αi > 0, i = 1, 2, . . . ,m, such that

∑m
i=1 αi = 1. From (1.10) we

can (applying induction by n) conclude that

(fα1
11 · · · fαm

1m ) ∗ · · · ∗ (fα1
n1 · · · fαm

nm ) ⩽ (f11 ∗ · · · ∗ fn1)α1 · · · (f1m ∗ · · · ∗ fnm)αm .

(1.23)

for all fji ∈M(X ×X)+, j = 1, . . . , n, i = 1, . . . ,m.

Theorem 1.2.15 Let h : M(X × X)+ → [0,∞] be a function seminorm

and fik ∈ M(X × X)+, i = 1, . . . , n, k = 1, . . . ,m and αk > 0, such that∑m
k=1 αk = 1.

If f1k ∗ · · · ∗ fnk ∈ Ch for all k = 1, . . . ,m, then (fα1
11 · · · fαm

1m )∗ · · · ∗
(fα1

n1 · · · fαm
nm ) ∈ Ch and

h((fα1
11 · · · fαm

1m)∗· · · ∗(fα1
n1· · · fαm

nm )) ⩽h(f11 ∗ · · · ∗ fn1)α1· · ·h(f1m ∗ · · · ∗ fnm)αm

(1.24)

13
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and if (f1k ∗ · · · ∗ fnk)[j ] ∈ Ch for all k = 1, . . . ,m and j ∈ N, then
((fα1

11 · · · fαm
1m ) ∗· · · ∗ (fα1

n1 · · · fαm
nm ))[j ] ∈ Ch and

rh ((f
α1
11 · · · fαm

1m ) ∗ · · · ∗ (fα1
n1 · · · fαm

nm ))

≤ rh(f11 ∗ · · · ∗ fn1)α1 · · · rh(f1m ∗ · · · ∗ fnm)αm . (1.25)

If, in addition, h is a function norm, then the inequalities (1.24) and (1.25)

hold for arbitrary fik ∈M(X ×X)+.

Proof: Inequalities (1.24) and (1.25) follow from (1.23), Proposition 1.2.6

and Theorem 1.2.9, since h are rh are monotone. ■

Theorem 1.2.16 Let {Aij}k,mi=1,j=1 be positive kernel operators on a Banach

function space L and let α1, α2,..., αm are positive numbers.

(i) If
∑m

j=1 αj = 1, then the positive kernel operator

A :=
(
A

(α1)
11 ◦ · · · ◦ A(αm)

1m

)
. . .

(
A

(α1)
k1 ◦ · · · ◦ A(αm)

km

)
(1.26)

satis�es the following inequalities

A ≤ (A11 · · ·Ak1)
(α1) ◦ · · · ◦ (A1m · · ·Akm)

(αm), (1.27)

∥A∥ ≤
∥∥(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)
(αm)

∥∥
≤ ∥A11 · · ·Ak1∥α1 · · · ∥A1m · · ·Akm∥αm (1.28)

ρ (A) ≤ ρ
(
(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)
(αm)

)
≤ ρ (A11 · · ·Ak1)

α1 · · · ρ (A1m · · ·Akm)
αm . (1.29)

If, in addition, L and L∗ have order continuous norms, then

γ(A) ≤ γ
(
(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)
(αm)

)
≤ γ(A11 · · ·Ak1)

α1 · · · γ(A1m · · ·Akm)
αm , (1.30)

ρess (A) ≤ ρess
(
(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)
(αm)

)
≤ ρess (A11 · · ·Ak1)

α1 · · · ρess (A1m · · ·Akm)
αm . (1.31)

14
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In special case when L = L2(X,µ) then

w(A) ⩽ w
(
(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)
(αm)

)
⩽ w(A11 · · ·Ak1)

α1 · · ·w(A1m · · ·Akm)
αm . (1.32)

(ii) If L ∈ L,
∑m

j=1 αj ≥ 1 and {Aij}k,mi=1,j=1 are nonnegative matrices that

de�ne positive operators on L, then A from (1.26) de�nes a positive operator

on L and the inequalities (1.27), (1.28) and (1.29) hold.

Proof: (i) The proof of (1.27), (1.28) and (1.29) follows from Theorem

1.2.15 and Example 1.2.10. To prove (1.32) notice that numerical radius w

on L2(X,µ) is monotone and that we can apply the proof of the Theorem

1.2.15.

(ii) The proof of the inequalities (1.27), (1.28) and (1.29) in that case is

based on Proposition 1.2.12(ii), Theorem 1.2.14 and Example 1.2.10. ■
The following theorem is a special case of Theorem 1.2.16.

Theorem 1.2.17 Let A1, . . . , Am be positive kernel operators on a Banach

function space L and α1, . . . , αm positive numbers. (i) If
∑m

j=1 αj = 1, then

∥A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ∥ ≤ ∥A1∥α1∥A2∥α2 · · · ∥Am∥αm (1.33)

and

ρ(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ ρ(A1)

α1 ρ(A2)
α2 · · · ρ(Am)

αm . (1.34)

If, in addition, L and L∗ have order continuous norms, then

γ(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ γ(A1)

α1γ(A2)
α2 · · · γ(Am)

αm (1.35)

and

ρess(A
(α1)
1 ◦A(α2)

2 ◦· · ·◦A(αm)
m ) ≤ ρess(A1)

α1 ρess(A2)
α2 · · · ρess(Am)

αm . (1.36)

If, in special case L = L2(X,µ) then

w(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ w(A1)

α1w(A2)
α2 · · ·w(Am)

αm (1.37)

(ii) If L ∈ L,
∑m

j=1 αj ≥ 1 and if A1, . . . , Am are nonnegative matrices that

de�ne positive operators on L, then A
(α1)
1 ◦A(α2)

2 ◦· · ·◦A(αm)
m de�nes a positive

operator on L and (1.33) and (1.34) hold.
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(iii) If L ∈ L, t ≥ 1 and if A,A1, . . . , Am are nonnegative matrices that

de�ne operators on L, then A(t) de�nes an operator on L and the following

inequalities hold

A
(t)
1 · · ·A(t)

m ≤ (A1 · · ·Am)
(t), (1.38)

ρ(A
(t)
1 · · ·A(t)

m ) ≤ ρ(A1 · · ·Am)
t, (1.39)

∥A(t)
1 · · ·A(t)

m ∥ ≤ ∥A1 · · ·Am∥t. (1.40)

1.3 Essential spectral radius of

Schur-Hadamard weighted geometric

means

In this section we present some results from [28], including the essential

versions of Theorems 1.2.16(ii), 1.2.17(ii)-(iii), under the assumption that L

and L∗ have order continuous norms.

We start with the following lemma, proved in [28].

Lemma 1.3.1 Let L ∈ L have order continuous norm. Then for each x ∈ L

it holds that x(i) → 0 as i→ ∞.

Proof: Suppose there exists x ∈ L such that the entries x(i) do not converge

to zero as i → ∞. Then there exists ε > 0 such that there are in�nitely

many positive entries of |x| that are greater than ε. For k ∈ N let xk(i) = 0

when i ≤ k and xk(i) = |x|(i) otherwise. Then 0 ≤ xk ↓ 0. However, ∥xk∥
does not converge to zero, since we have ∥xk∥ ≥ ∥|x|(i) · ei∥ = |x(i)| > ε for

in�nitely many i > k. ■
For the proof of the Theorem 1.3.3, given in [28] we need the following

result, proved in [39, Corollary 2.10].

Theorem 1.3.2

A(t) ≤ ∥A∥t−1
∞ A, (1.41)

∥A(t)∥ ≤ ∥A∥t−1
∞ ∥A∥, (1.42)

ρ(A(t)) ≤ ∥A∥t−1
∞ ρ(A). (1.43)
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If, in addition, L and L∗ have order continuous norms, then

γ(A(t)) ≤ ∥A∥t−1
∞ γ(A), (1.44)

ρess(A
(t)) ≤ ∥A∥t−1

∞ ρess(A). (1.45)

First we establish the essential version of Theorem 1.2.17(iii), that was

proved in [28].

Theorem 1.3.3 Let L ∈ L such that L and L∗ have order continuous

norms. Let t ≥ 1 and let A,A1, . . . , Am be nonnegative matrices that de-

�ne operators on L. Then

γ(A(t)) ≤ γ(A)t, (1.46)

ρess(A
(t)) ≤ ρess(A)

t, (1.47)

γ(A
(t)
1 · · ·A(t)

m ) ≤ γ(A1 · · ·Am)
t, (1.48)

ρess(A
(t)
1 · · ·A(t)

m ) ≤ ρess(A1 · · ·Am)
t. (1.49)

Proof: First we prove (1.46). If γ(A) = 0, then γ(A(t)) = 0 by (1.44). We

may assume that t > 1. We may also assume that γ(A) = 1 since γ(·)
is positively homogeneous. Having γ(A) = 1 means that for any δ > 1,

there is a �nite set U ⊂ L such that A(DL) ⊂
⋃

u∈U(u + δDL), where

A(DL) is the image of the closed unit ball DL. Since U is a �nite set in

L, then by Lemma 1.3.1 there are only �nitely many entries i such that

maxu∈U |ui| > δ2 − δ. Let I denote this set of indices. For all other indices

i /∈ I, we must have (Ax)i ≤ max |ui| + δ ≤ δ2 for all x ∈ DL, x ≥ 0. In

particular, Aij = (Aej)i ≤ δ2 for all j and all i /∈ I.

Then δ−2tAt
ij ≤ Aij for all i /∈ I, j ∈ N and t > 1. This means that

δ−2tA
(t)
i ≤ Ai for all rows Ai such that i /∈ I. Let PI be the orthogonal

projection onto span{ei : i ∈ I}. Then PIA
(t) is compact since it has �-

nite dimensional range, and if QI = id − PI , then δ−2tQIA
(t) ≤ A and

δ−2tγ(A(t)) = δ−2tγ(QIA
(t)) ≤ γ(A) = 1 (since γ(·) is invariant under com-

pact perturbations and since it is monotone). Then γ(A(t)) ≤ δ2t. Since
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δ > 1 can be chosen arbitrarily close to 1, we conclude that γ(A(t)) ≤ 1 for

all t > 1. This proves (1.46).

Inequality (1.48) follows from (1.38), monotonicity of γ(·) and (1.46).

Inequality (1.49) follows from (1.2) and (1.48) since

ρess(A)= lim
j→∞

γ((A
(t)
1 · · ·A(t)

m )j)1/j ⩽ lim
j→∞

γ((A1 · · ·Am)
j)t/j = ρess(A1 · · ·Am)

t.

Inequality (1.47) is a special case of (1.49). ■
The following essential versions of Theorems 1.2.16(ii) and 1.2.17(ii) were

established in [28] applying standard techniques used also in [10] and [34].

Theorem 1.3.4 Let L ∈ L such that L and L∗ have order continuous

norms. Assume A1, . . . , Am are nonnegative matrices that de�ne operators

on L and let α1, . . . , αm be positive numbers such that sm =
∑m

j=1 αj ⩾ 1.

Then inequalities (1.35) and (1.36) hold.

Proof: For j = 1, . . . ,m de�ne βj =
αj

sm
and so

∑m
j=1 βj = 1. Then by (1.46)

and Theorem 1.2.17(i) we have

γ(A
(α1)
1 ◦· · ·◦A(αm)

m )=γ

((
A

(β1)
1 ◦ · · · ◦ A(βm)

m

)(sm)
)
⩽γ

(
A

(β1)
1 ◦ · · · ◦ A(βm)

m

)sm

≤
(
γ(A1)

β1 · · · γ(Am)
βm

)sm
= γ(A1)

α1γ(A2)
α2 · · · γ(Am)

αm ,

which proves (1.35) under our assumptions. Similarly, (1.36) follows from

(1.47) and Theorem 1.2.17(i). ■

Theorem 1.3.5 Let L ∈ L such that L and L∗ have order continuous

norms. Assume {Aij}k,mi=1,j=1 are nonnegative matrices that de�ne operators

on L and let α1, . . . , αm be positive numbers such that sm =
∑m

j=1 αj ≥ 1.

Then for A from (1.26) inequalities (1.30) and (1.31) hold.

Proof: Inequalities (1.30) and (1.31) under our assumptions follow from

(1.27) in Theorem 1.2.16(ii), monotonicity of γ(·) and ρess(·) and from The-

orem 1.3.4. ■
Now we turn our attention to hyponormal operators. A bounded linear

operator on A on a Hilbert space H is called hyponormal if A∗A ⩾ AA∗,

that is ||Ax|| ⩾ ||A∗x|| for all x ∈ H, or equivalently if A∗A−AA∗ is positive
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semide�nite. In particular, every normal operator is hyponormal. Let B(H)

denote the Banach algebra of bounded linear operators onH and let π be the

canonical projection of B(H) onto the Calkin algebra B(H)/C∞(H), where

C∞(H) is the set of all compact operators on H. Since the set C∞(H) is a

closed two-sided ideal in B(H), the Calkin algebra is a C∗-algebra and the

canonical projection is a ∗-isomorphism. The essential norm of A ∈ B(H)

is by de�nition ||A||ess = ||π(A)|| and we have ρess(A) = ρ(π(A)).

The following proposition and the following lemma were proved in [28].

For more background information see e. g. [32] and [43].

Proposition 1.3.6 Let H be a Hilbert space. If A ∈ B(H) is hyponormal,

then

ρess(A) = γ(A) = ∥A∥ess.

Proof: For A ∈ B(H) and K ∈ C∞(H) it is clear that γ(A) = γ(A+K) ⩽
||A+K||. Therefore γ(A) ⩽ ||A||

ess
. By (1.2) [32, Theorem 1] and since

γ(An) ⩽ γ(A)n, it follows that

ρess(A) ⩽ γ(A) ⩽ ||A||
ess
.

It remains to show that ρess(A) = ||A||ess when A is hyponormal. Since the

spectrum of π(A∗A−AA∗) is a subset of the spectrum of A∗A−AA∗ (see e.g

[12, Theorem 2.3]), it follows that π(A∗A − AA∗) is positive and therefore

π(A) is hyponormal whenever A is hyponormal. In that case, [43, Theorem

1] says that ρ(π(A)) = ||π(A)|| and ρess(A) = ||A||ess . ■

Lemma 1.3.7 Let H be a Hilbert space and A ∈ B(H). Then ρess(A
∗A) =

γ(A∗A) = γ(A)2. Consequently Equalities below hold

ρess(A
∗A) = ρess(AA

∗) = γ(A∗A) = γ(AA∗) = γ(A)2 (1.50)

and γ(A) = γ(A∗).

Proof: By the polar decomposition theorem for bounded operators on a

Hilbert space, A = V D where V is a partial isometry and D =
√
A∗A.

It follows that ρess(A
∗A) = ρess(D

2) = ρess(D)2. By Proposition 1.3.6,

ρess(D) = γ(D). Since V is a partial isometry, γ(V ) ⩽ ||V || ⩽ 1 and we

have

γ(A)2 = γ(V D)2 ⩽ γ(D)2 = ρess(D)2 = ρess(A
∗A). (1.51)
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It remains to prove the reverse inequality. Since γ(V ∗) ⩽ ∥V ∗∥ = ∥V ∥ ⩽ 1,

we have

γ(A∗A) = γ(DV ∗A) ⩽ γ(D)γ(A).

Since ρess(A
∗A) = γ(A∗A) = γ(D)2, we conclude that ρess(A

∗A) ⩽ γ(A)2,

which together with (1.51) establishes ρess(A
∗A) = γ(A∗A) = γ(A)2. By

(1.62) and Proposition 1.3.6 also the remaining equalities in (1.50) follow.

The equality γ(T ) = γ(T ∗) follows from (1.50). ■
Let A1 = [a1(i, j)]i,j∈R, . . . , An = [an(i, j)]i,j∈R be nonnegative matrices

and let α1, . . . , αn be nonnegative numbers such that
∑n

i=1 αi = 1. The

nonnegative matrix C(A1, . . . , An, α1, . . . , αn) = [c(i, j)]i,j∈R is de�ned by

c(i, j) =

{
aα1
1 (i, j) · · · aαn

n (i, j) if i ̸= j

α1a1(i, i) + · · ·+ αnan(i, i) if i = j
.

The diagonal part of C(A1, . . . , An, α1, . . . , αn) is equal to the diagonal part

of α1A1+ · · ·+αnAn, while its nondiagonal part equals the nondiagonal part

of A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αn)
n .

By the inequality between weighted geometric and weighted arithmetic

means, we have

A
(α1)
1 ◦A(α2)

2 ◦ · · · ◦A(αn)
n ≤ C(A1, . . . , An, α1, . . . , αn) ≤ α1A1 + · · ·+ αnAn.

(1.52)

It follows that the matrix C(A1, . . . , An, α1, . . . , αn) de�nes an operator on L

provided the matrices A1, . . . , An de�ne operators on L ∈ L. The following
result was obtained in [11] and in [39].

Theorem 1.3.8 Given L in L, let A1, . . . , An be nonnegative matrices that

de�ne operators on L and α1, . . . , αn nonnegative numbers such that
∑n

i=1 αi =

1. Then for r = ρ we have

r (C(A1, . . . , An, α1, . . . , αn)) ≤ α1r(A1) + · · ·+ αnr(An). (1.53)

In particular, if A1, . . ., An have the same non-diagonal part, then

r(α1A1 + · · ·+ αnAn) ≤ α1r(A1) + · · ·+ αnr(An). (1.54)

In other words, if D1, . . . , Dn are diagonal matrices and A a matrix such

that A+D1, . . ., A+Dn are nonnegative matrices that de�ne operators on
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L, then we have

r (α1(A+D1) + · · ·+ αn(A+Dn)) ≤ α1r(A+D1) + · · ·+ αnr(A+Dn).

(1.55)

If, in addition, L and L∗ have order continuous norms then under the above

conditions inequalities (1.53), (1.54) and (1.55) hold also for r = ρess.

1.4 Inequalities for the joint and generalized

spectral radius

The following section contains basic notions of the joint and the generalized

spectral radius, as well as notion of Hadamard weighted geometric mean of

sets, and some results established in [36] and [38].

We start with the following inequalities. For the proof see [31].

For nonnegative measurable functions and for nonnegative numbers α

and β such that α + β ≥ 1 we have

fα
1 g

β
1 + · · ·+ fα

mg
β
m ≤ (f1 + · · ·+ fm)

α(g1 + · · ·+ gm)
β (1.56)

More generally, for nonnegative measurable functions {fij}n,mi=1,j=1 and for

nonnegative numbers αj, j = 1, . . . ,m, such that
∑m

j=1 αj ≥ 1 we have

(fα1
11 · · · fαm

1m )+ · · ·+(fα1
n1 · · · fαm

nm ) ≤ (f11+ · · ·+fn1)α1 · · · (f1m+ · · ·+fnm)αm

(1.57)

Let Σ be a bounded set of bounded operators on a complex Banach space

L. For m ≥ 1, let

Σm = {A1A2 · · ·Am : Ai ∈ Σ}.

The generalized spectral radius of Σ is de�ned by

ρ(Σ) = lim sup
m→∞

[ sup
A∈Σm

ρ(A)]1/m (1.58)

and is equal to

ρ(Σ) = sup
m∈N

[ sup
A∈Σm

ρ(A)]1/m.
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The joint spectral radius of Σ is de�ned by

ρ̂(Σ) = lim
m→∞

[ sup
A∈Σm

∥A∥]1/m. (1.59)

Similarly, the generalized essential spectral radius of Σ is de�ned by

ρess(Σ) = lim sup
m→∞

[ sup
A∈Σm

ρess(A)]
1/m (1.60)

and is equal to

ρess(Σ) = sup
m∈N

[ sup
A∈Σm

ρess(A)]
1/m.

The joint essential spectral radius of Σ is de�ned by

ρ̂ess(Σ) = lim
m→∞

[ sup
A∈Σm

γ(A)]1/m. (1.61)

We will use the following well known facts that hold for all r ∈ {ρ, ρ̂, ρess, ρ̂ess}:

r(Σm) = r(Σ)m and r(ΨΣ) = r(ΣΨ) (1.62)

where ΨΣ = {AB : A ∈ Ψ, B ∈ Σ} and m ∈ N. The sum of bounded sets

Ψ and Σ is a bounded set de�ned by Ψ + Σ = {A + B : A ∈ Ψ, B ∈ Σ}.
Let Ψ1, . . . ,Ψm be bounded sets of positive kernel operators on a Banach

function space L and let α1, . . . αm be positive numbers such that
∑m

i=1 αi =

1. Then the bounded set of positive kernel operators on L, de�ned by

Ψ
(α1)
1 ◦ · · · ◦Ψ(αm)

m = {A(α1)
1 ◦ · · · ◦ A(αm)

m : A1 ∈ Ψ1, . . . , Am ∈ Ψm},

is called the weighted Hadamard (Schur) geometric mean of sets Ψ1, . . . ,Ψm.

The set Ψ
( 1
m
)

1 ◦ · · · ◦ Ψ( 1
m
)

m is called the H adamard (Schur) geometric mean

of sets Ψ1, . . . ,Ψm.

The following result that follows from Theorem 1.2.16(i)was established

in [36, Theorem 3.3] and [38, Theorems 3.1 and 3.8].

Theorem 1.4.1 Let Ψ1, . . . ,Ψm be bounded sets of positive kernel operators

on a Banach function space L and let α1, . . . , αm be positive numbers such

that
∑m

i=1 αi = 1. If r ∈ {ρ, ρ̂} and n ∈ N, then

r(Ψ
(α1)
1 ◦ · · · ◦Ψ(αm)

m ) ≤ r((Ψn
1 )

(α1) ◦ · · · ◦ (Ψn
m)

(αm))
1
n ≤ r(Ψ1)

α1 · · · r(Ψm)
αm

(1.63)
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and

r

(
Ψ
( 1
m)

1 ◦ · · · ◦Ψ( 1
m)

m

)
≤ r(Ψ1Ψ2 · · ·Ψm)

1
m . (1.64)

If, in addition, L and L∗ have order continuous norms, then (1.63) and

(1.64) hold also for each r ∈ {ρess, ρ̂ess}.

The following result was established in [38, Theorem 3.5].

Theorem 1.4.2 Let Ψ and Σ be bounded sets of positive kernel operators

on a Banach function space L. If r ∈ {ρ, ρ̂} and β ∈ [0, 1], then we have

r
(
Ψ( 1

2) ◦ Σ(
1
2)
)
≤ r

(
(ΨΣ)(

1
2) ◦ (ΣΨ)(

1
2)
) 1

2

≤ r
(
(ΨΣ)(

1
2) ◦ (ΨΣ)(

1
2)
) 1

4
r
(
(ΣΨ)(

1
2) ◦ (ΣΨ)(

1
2)
) 1

4 ≤ r(ΨΣ)
1
2 , (1.65)

r
(
Ψ( 1

2) ◦ Σ(
1
2)
)
≤ r

((
Ψ( 1

2) ◦Ψ( 1
2)
)(

Σ(
1
2) ◦ Σ(

1
2)
)) 1

2

≤ r
(
(ΨΣ)(

1
2) ◦ (ΨΣ)(

1
2)
)β

2
r
(
(ΣΨ)(

1
2) ◦ (ΣΨ)(

1
2)
) 1−β

2 ≤ r(ΨΣ)
1
2 . (1.66)

If, in addition, L and L∗ have order continuous norms, then (1.65) and

(1.66) hold also for each r ∈ {ρess, ρ̂ess}.

Given L ∈ L, let Ψ1, . . . ,Ψm be bounded sets of nonnegative matrices that

de�ne operators on L and let α1, . . . , αm be positive numbers such that∑m
i=1 αi ≥ 1. Then the set

Ψ
(α1)
1 ◦ · · · ◦Ψ(αm)

m = {A(α1)
1 ◦ · · · ◦ A(αm)

m : A1 ∈ Ψ1, . . . , Am ∈ Ψm}

is a bounded set of nonnegative matrices that de�ne operators on L by

Theorem 1.2.17(ii).

By applying Theorem 1.2.16(ii) the following result can be also proved

in a similar way as in [38, Theorem 3.8].
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Theorem 1.4.3 Given L ∈ L, let Ψ,Ψ1, . . . ,Ψm be bounded sets of nonneg-

ative matrices that de�ne operators on L. Let α1, . . . , αm be positive numbers

such that
∑m

j=1 αj ≥ 1, n ∈ N and r ∈ {ρ, ρ̂}. Then Inequalities (1.63) hold.

In particular, if t ≥ 1, then

r(Ψ(t)) ≤ r((Ψn)(t))
1
n ≤ r(Ψ)t. (1.67)
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Chapter 2

Inequalities for Schur-Hadamard

weighted geometric mean

2.1 Geometric symmetrization

In this section we present some results from [5] regarding geometric sym-

metriyation.

Let A be a positive kernel operator on L2(X,µ) with kernel a. The geo-

metric symmetrization S(A) of A is the positive selfadjoint kernel operator

on L2(X,µ) with kernel equal to
√
a(x, y)a(y, x) at point (x, y) ∈ X × X.

S(A) = A(1/2) ◦ (A∗)(1/2), since the kernel of the adjoint operator A∗ is equal

to a(y, x) at point (x, y) ∈ X ×X.

Let A be a positive kernel operator on L2(X,µ) and α ∈ [0, 1]. Denote

Sα(A) = A(α) ◦ (A∗)(1−α), which is a kernel operator on L2(X,µ) with a

kernel aα(x, y)a1−α(y, x). We also have (Sα(A))
∗ = Sα(A

∗) = S1−α(A).

The following result generalizes and re�nes [39, Propositions 3.1 and 3.2]

and was proved in [5].

Proposition 2.1.1 Let A,A1, . . . , An be positive kernel operators on L
2(X,µ)

and α ∈ [0, 1]. Then we have

r(Sα(A1) · · ·Sα(An))
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≤ r
(
(A1 · · ·An)

(α) ◦ ((An · · ·A1)
∗)(1−α)

)
≤ r(A1 · · ·An)

α r(An · · ·A1)
1−α,

(2.1)

r(Sα(A1)+· · ·+Sα(Am)) ≤ r (Sα(A1 + · · ·+ Am)) ≤ r(A1+· · ·+Am) (2.2)

for all r ∈ {ρ, ρess, γ, ∥ · ∥, w}. In particular, for all r ∈ {ρ, ρess, γ, ∥ · ∥, w}
we have

r (Sα(A)) ≤ r(A). (2.3)

We also have

r (Sα(A1)Sα(A2)) ≤ r
(
(A1A2)

(α) ◦ ((A2A1)
∗)(1−α)

)
≤ r(A1A2). (2.4)

for r ∈ {ρ, ρess}.

Proof: We have by (1.28), (1.29), (1.30) and (1.31).

r (Sα(A1) · · ·Sα(An)) = r
(
(A

(α)
1 ◦ (A∗

1)
(1−α)) · · ·

(
A(α)

n ◦ (A∗
n)

(1−α)
))

≤ r
(
(A1 · · ·An)

(α) ◦ ((An · · ·A1)
∗)(1−α)

)
≤ r(A1 · · ·An)

α ρ((An · · ·A1)
∗)1−α = r(A1 · · ·An)

α ρ(An · · ·A1)
1−α.

This proves (2.1). In particular, the inequality (2.3) is a special case of

(2.1) and (2.4) follows from (2.1) and r(A1A2) = r(A2A1) for r ∈ {ρ, ρess}.
Inequalities (2.2) follow from (1.56) and (2.3). ■

If A is a nonnegative matrix that de�nes an operator on l2(R) and if α

and β are nonnegative numbers such that α + β ≥ 1, then a nonnegative

matrix Sα,β(A) = A(α)◦(A∗)(β) also de�nes an operator on l2(R) by Theorem

1.2.16 (ii).

The following result was established in [5] and generalizes [9, Lemma 2.1]

and [9, Theorem 2.2].

Lemma 2.1.2 (i) If A is a positive kernel operator on L2(X,µ) and α ∈
[0, 1], then

Sα(A
2) ≥ Sα(A)

2. (2.5)
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(ii) If A is a nonnegative matrix that de�nes an operator on l2(R) and if α

and β are nonnegative numbers such that α + β ≥ 1, then

Sα,β(A
2) ≥ Sα,β(A)

2. (2.6)

Proof: The kernel of Sα(A
2) at (x, y) ∈ X ×X is equal to(∫

X

a(x, z)a(z, y)dµ(z)

)α (∫
X

a(y, z)a(z, x)dµ(z)

)1−α

.

This is larger or equal to∫
X

(a(x, z)a(z, y))α(a(y, z)a(z, x))1−αdµ(z)

=

∫
X

a(x, z)αa(z, x)1−αa(z, y)αa(y, z)1−αdµ(z)

and this equals the kernel of Sα(A)
2 at (x, y), which proves (2.5).

Inequality (2.6) is proved in a similar way by [34, Proposition 4.1]. ■
The following result was proved in [5] and generalizes [39, Theorem 3.5]

and its method of proof.

Theorem 2.1.3 Let A be a positive kernel operator on L2(X,µ), α ∈ [0, 1]

and let rn = r(Sα(A
2n))2

−n
for n ∈ N∪{0} and r ∈ {ρ, ρess}. Then for each

n

r(Sα(A)) = r0 ≤ r1 ≤ · · · ≤ rn ≤ r(A).

Proof: By (2.5) we have

r(Sα(A
2)) ≥ r(Sα(A)

2) = r(Sα(A))
2. (2.7)

Using (2.3) we obtain r(Sα(A
2n)) ≤ r(A2n) = r(A)2

n
and so rn ≤ ρ(A).

Since rn−1 ≤ rn for all n ∈ N by (2.7) the proof is completed. ■
The following result from [5] generalizes and extends [41, Theorem 2.2

and Theorem 3.2(3)].

Proposition 2.1.4 Let A be a positive kernel operator on L2(X,µ) and

α ∈ [0, 1]. Then for all r ∈ {ρ, ρess, γ, ∥ · ∥, w} and n ∈ N we have

r (S(A)) ≤ r (Sα(A)) ≤ r(A) and (2.8)

r (S(An))
1
n ≤ r (Sα(A

n))
1
n ≤ r(A). (2.9)
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Proof: Since S(K) = S(Sα(K)) Inequalities (2.8) follow from (2.3). In-

equalities (2.9) follow from (2.8). ■
The following result which was established in [5] generalizes and extends

[41, Theorems 2.3 and 3.3] and it's proved in a more general context in [7,

Theorem 3]. The proof presented below uses that method.

Theorem 2.1.5 Let A be a positive kernel operator on L2(X,µ).

For r ∈ {ρ, ρess, γ, ∥ · ∥, w} and α ∈ [0, 1] de�ne fr(α) = r(Sα(A)). Then fr
is decreasing in [0, 0.5] and increasing in [0.5, 1].

Proof: Assume 0 ≤ α1 < α2 ≤ 1
2
and let α = α1+α2−1

2α1−1
. Then α ∈ (0, 1)

and for every positive kernel operator A on L2(X,µ) we have Sα2(A) =

Sα(Sα1(A)). Indeed, the kernel of the operator Sα(Sα1(A))is equal to

(sα1(a)(x, y))
α(sα1(a)(y, x))

1−α

= (a(x, y)α1a(y, x)1−α1)α(a(y, x)α1a(x, y)1−α1)1−α

= a(x, y)α1α+(1−α1)(1−α)a(y, x)α(1−α1)+α1(1−α) = a(x, y)α2a(y, x)1−α2 ,

which is a kernel of the operator Sα2(A) since

α1α + (1− α1)(1− α) = α(2α1 − 1) + 1− α1 = α1 + α2 − 1 + 1− α1 = α2

and

α(1− α1) + α1(1− α) = α(1− 2α1) + α1 = 1− α1 − α2 + α1 = 1− α2.

It follows from (2.3)

fr(α2) = r(Sα2(A)) = r(Sα(Sα1(A))) ⩽ r(Sα1(A)) = fr(α1).

Similarly, in the case 1
2
≤ α1 < α2 ≤ 1 let α = α1+α2−1

2α2−1
. It follows that

α ∈ (0, 1) and Sα1(A) = Sα(Sα2(A)) for every positive kernel operator on

L2(X,µ). This holds since the kernel of Sα(Sα2(A)) equals

(sα2(a)(x, y))
α(sα2(a)(y, x))

1−α

= (a(x, y)α2a(y, x)1−α2)α(a(y, x)α2a(x, y)1−α2)1−α

= a(x, y)α2α+(1−α2)(1−α)a(y, x)α(1−α2)+α2(1−α) = a(x, y)α1a(y, x)1−α1 ,
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which is a kernel of the operator Sα1(A) since α2α + (1 − α2)(1 − α) = α1

and α(1− α2) + α2(1− α) = 1− α1. From (2.3) we obtain in a similar way

fr(α1) = r(Sα1(A)) = r(Sα(Sα2(A))) ⩽ r(Sα2(A)) = fr(α2)

which completes the proof. ■

2.2 Some re�nements and generalizations of

known inequalities

This section contains main results from [5].

The following re�nement of inequalities (1.33) and (1.34) was proved in

[38, Corollary 3.10].

Theorem 2.2.1 Let A1, . . . , An be positive kernel operators on a Banach

function space L. If α1, . . . , αn are positive numbers such that
∑n

i=1 αi = 1

and if m ∈ N then

r(A
(α1)
1 ◦ · · · ◦ A(αn)

n ) ≤ r((Am
1 )

(α1) ◦ · · · ◦ (Am
n )

(αn))
1
m ≤ r(A1)

α1 · · · r(An)
αn

(2.10)

for r = ρ

If, in addition, L and L∗ have order continuous norms then Inequalities

(2.10) hold also for r = ρess.

The following re�nement is obtained by iterating (2.10).

Corollary 2.2.2 Let A1, . . . , An be positive kernel operators on a Banach

function space L. If α1, . . . , αn are positive numbers such that
∑n

i=1 αi = 1

and if m, l ∈ N then

r(A
(α1)
1 ◦ · · · ◦ A(αn)

n ) ≤ r((Am
1 )

(α1) ◦ · · · ◦ (Am
n )

(αn))
1
m

≤ r((Aml
1 )(α1) ◦ · · · ◦ (Aml

n )(αn))
1
ml ≤ r(A1)

α1 · · · r(An)
αn (2.11)

for r = ρ.

If, in addition, L and L∗ have order continuous norms then Inequalities

(2.11) hold also for r = ρess.
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In case of sequence spaces L ∈ L it was proved in [5] (using standard methods

from [10] and [34]) that inequalities (2.11) hold also under the condition∑n
i=1 αi ≥ 1. In this case additional re�nements of (2.10) are also proved.

Theorem 2.2.3 Given L ∈ L, let A1, . . . , An be nonnegative matrices that

de�ne operators on L. If α1, . . . , αn are nonnegative numbers such that

sn =
∑n

i=1 αi ≥ 1 and if m, l ∈ N and βi =
αi

sn
for all i = 1, . . . , n, then we

have

ρ(A
(α1)
1 ◦ · · · ◦ A(αn)

n ) ≤ ρ((Am
1 )

(α1) ◦ · · · ◦ (Am
n )

(αn))
1
m

≤ ρ((Aml
1 )(α1) ◦ · · · ◦ (Aml

n )(αn))
1
ml ≤ ρ((Aml

1 )(β1) ◦ · · · ◦ (Aml
n )(βn))

sn
ml

≤ ρ(A1)
α1 · · · ρ(An)

αn (2.12)

and

ρ(A
(α1)
1 ◦ · · · ◦ A(αn)

n ) ≤ ρ((Am
1 )

(α1) ◦ · · · ◦ (Am
n )

(αn))
1
m

≤ ρ((Am
1 )

(β1) ◦ · · · ◦ (Am
n )

(βn))
sn
m ≤ ρ((Aml

1 )(β1) ◦ · · · ◦ (Aml
n )(βn))

sn
ml

≤ ρ(A1)
α1 · · · ρ(An)

αn . (2.13)

Proof: To prove that inequalities (2.11) hold under above assumptions we

have by (1.27)(
A

(α1)
1 ◦ · · · ◦ A(αn)

n

)m

=
(
A

(α1)
1 ◦ · · · ◦ A(αn)

n

)
· · ·

(
A

(α1)
1 ◦ · · · ◦ A(αn)

n

)
≤ (Am

1 )
(α1) ◦ · · · ◦ (Am

n )
(αn). (2.14)

It follows from (2.14) and (1.34) that

ρ(A
(α1)
1 ◦ · · · ◦ A(αn)

n )m = ρ
((
A

(α1)
1 ◦ · · · ◦ A(αn)

n

)m)
≤ ρ((Am

1 )
(α1)◦· · ·◦(Am

n )
(αn)) ≤ ρ(Am

1 )
α1 · · · r(Am

n )
αn = (ρ(A1)

α1 · · · ρ(An)
αn)m

which proves (2.10) in this case. By iterating we obtain (2.11) under above

assumptions.
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To prove (2.13), since sn ≥ 1 and αi = βisn, it follows by the �rst

inequality in (2.11) in case sn ≥ 1 using (1.39) and (1.34) that

ρ(A
(α1)
1 ◦ · · · ◦ A(αn)

n ) ≤ ρ((Am
1 )

(α1) ◦ · · · ◦ (Am
n )

(αn))
1
m

= ρ
((

(Am
1 )

(β1) ◦ · · · ◦ (Am
n )

(βn)
)(sn)) 1

m ≤ ρ((Am
1 )

(β1) ◦ · · · ◦ (Am
n )

(βn))
sn
m

≤ ρ((Aml
1 )(β1) ◦ · · · ◦ (Aml

n )(βn))
sn
ml ≤ (ρ(Aml

1 )α1 · · · r(Aml
n )αn)

1
ml

= ρ(A1)
α1 · · · r(An)

αn ,

which proves (2.13). Now (2.12) follows from (2.11) in case sn ≥ 1 and

(2.13), which completes the proof. ■
The following result is a new variation of [37, Theorem 4.1] and was

established in [5]. By σm is denoted the group of permutations of the set

{1, . . . ,m}.

Theorem 2.2.4 Let m be even, {τ, ν} ⊂ σm and let H1, . . . , Hm be positive

kernel operators on L2(X,µ). For j = 1, . . . , m
2
denote Aj = H∗

τ(2j−1)Hτ(2j)

and Am
2
+j = A∗

j = H∗
τ(2j)Hτ(2j−1). Let Pi = Aν(i) · · ·Aν(m)Aν(1) · · ·Aν(i−1)

for i = 1, . . . ,m.

(i) Then

∥H( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ∥ ≤ ρ(A
( 1
m
)

1 ◦ · · · ◦ A( 1
m
)

m )
1
2

≤ ρ
(
P

( 1
m
)

1 ◦ P ( 1
m
)

2 ◦ · · · ◦ P ( 1
m
)

m

) 1
2m ≤ ρ

(
Aν(1) · · ·Aν(m)

) 1
2m . (2.15)

(ii) If H1, . . . , Hm are nonnegative matrices that de�ne operators on l2(R)

and if α ≥ 1
m
, then

∥H(α)
1 ◦ · · · ◦H(α)

m ∥ ≤ ρ(A
(α)
1 ◦ · · · ◦ A(α)

m )
1
2

≤ ρ
(
P

(α)
1 ◦ P (α)

2 ◦ · · · ◦ P (α)
m

) 1
2m ≤ ρ

(
Aν(1) · · ·Aν(m)

)α
2 . (2.16)

Proof: First to prove (2.15). By

∥H∥ = ρ(H∗H)
1
2 = ρ(HH∗)

1
2 , (2.17)
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(1.29) and commutativity of Hadamard product we have

∥H( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ∥ = ρ((H
( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m )∗(H
( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ))
1
2 =

ρ[((H∗
τ(1))

( 1
m
) ◦ · · · ◦ (H∗

τ(m−1))
( 1
m
) ◦ (H∗

τ(2))
( 1
m
) ◦ · · · ◦ (H∗

τ(m))
( 1
m
)))·

(H
( 1
m
)

τ(2) ◦ · · · ◦H
( 1
m
)

τ(m) ◦H
( 1
m
)

τ(1) ◦ · · · ◦H
( 1
m
)

τ(m−1)))]
1
2

≤ ρ((H∗
τ(1)Hτ(2))

( 1
m
) ◦ · · · ◦ (H∗

τ(m−1)Hτ(m))
( 1
m
) ◦ (H∗

τ(2)Hτ(1))
( 1
m
)

◦ · · · ◦ (H∗
τ(m)Hτ(m−1))

( 1
m
)))

1
2

= ρ(A
( 1
m
)

1 ◦ · · · ◦ A( 1
m
)

m )
1
2 = ρ(A

( 1
m
)

ν(1) ◦ · · · ◦ A
( 1
m
)

ν(m))
1
2 ,

which proves the �rst inequality in (2.2.4). The second and the third in-

equality in (2.15) follow from [37, Inequalities (4.2)]. Inequalities (2.16) are

proved in a similar way by applying Theorem 1.2.16(ii). ■
By interchanging Hi with H∗

i for all i in Theorem 2.2.4 we obtain the

following result, established in [5].

Corollary 2.2.5 Let m be even, τ ∈ σm, β ∈ [0, 1] and let H1, . . . , Hm be

positive kernel operators on L2(X,µ). Let Aj for j = 1, . . . ,m be as in The-

orem 2.2.4 and denote Bj = Hτ(2j−1)H
∗
τ(2j) and Bm

2
+j = B∗

j = Hτ(2j)H
∗
τ(2j−1)

for j = 1, . . . , m
2
.

(i) Then

∥H( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ∥ ≤ ρ(B
( 1
m
)

1 ◦ · · · ◦B( 1
m
)

m )
1
2

and

∥H( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ∥ ≤ ρ(A
( 1
m
)

1 ◦ · · · ◦ A( 1
m
)

m )
β
2 ρ(B

( 1
m
)

1 ◦ · · · ◦B( 1
m
)

m )
1−β
2 .

(ii) If H1, . . . , Hm are nonnegative matrices that de�ne operators on l2(R)

and if α ≥ 1
m
, then

∥H(α)
1 ◦ · · · ◦H(α)

m ∥ ≤ ρ(B
(α)
1 ◦ · · · ◦B(α)

m )
1
2

and

∥H(α)
1 ◦ · · · ◦H(α)

m ∥ ≤ ρ(A
(α)
1 ◦ · · · ◦ A(α)

m )
β
2 ρ(B

(α)
1 ◦ · · · ◦B(α)

m )
1−β
2 .
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The following two results extend, generalize and re�ne [46, Theorem 2.8]

and give an extension and a di�erent re�nement of [37, Inequality(4.16)] in

the case α ≥ 2
m
and were also established in [5].

Theorem 2.2.6 Let m be even, α ≥ 2
m
, τ ∈ σm and let H1, . . . , Hm be non-

negative matrices that de�ne operators on l2(R). Let Aj for j = 1, . . . ,m be

as in Theorem 2.2.4 and denote Si = Ai · · ·Am
2
A1 · · ·Ai−1 for i = 1, . . . , m

2
.

Then

∥H(α)
1 ◦ · · · ◦H(α)

m ∥ ≤ ρ(A
(α)
1 ◦ · · · ◦ A(α)

m )
1
2 ≤ ρ(A

(α)
1 ◦ · · · ◦ A(α)

m
2
)

= ρ((H∗
τ(1)Hτ(2))

(α) ◦ (H∗
τ(3)Hτ(4))

(α) ◦ · · · ◦ (H∗
τ(m−1)Hτ(m))

(α))

≤ ρ
(
S
(α)
1 ◦ S(α)

2 ◦ · · · ◦ S(α)
m
2

) 2
m ≤ ρ(H∗

τ(1)Hτ(2)H
∗
τ(3)Hτ(4) · · ·H∗

τ(m−1)Hτ(m))
α.

(2.18)

Proof: By the �rst inequality in (2.16) and Theorem 1.2.16(ii) we have

∥H(α)
1 ◦ · · · ◦H(α)

m ∥ ≤ ρ(A
(α)
1 ◦ · · · ◦ A(α)

m )
1
2

= ρ(A
(α)
1 ◦ · · · ◦ A(α)

m
2

◦ (A∗
1)

(α) ◦ · · · ◦ (A∗
m
2
)(α))

1
2

≤ (ρ(A
(α)
1 ◦ · · · ◦ A(α)

m
2
)ρ((A

(α)
1 ◦ · · · ◦ A(α)

m
2
)∗))

1
2 = ρ(A

(α)
1 ◦ · · · ◦ A(α)

m
2
)

= ρ((H∗
τ(1)Hτ(2))

(α) ◦ (H∗
τ(3)Hτ(4))

(α) ◦ · · · ◦ (H∗
τ(m−1)Hτ(m))

(α)).

Since

((H∗
τ(1)Hτ(2))

(α) ◦ (H∗
τ(3)Hτ(4))

(α) ◦ · · · ◦ (H∗
τ(m−1)Hτ(m))

(α))
m
2 =

((H∗
τ(1)Hτ(2))

(α)◦· · ·◦(H∗
τ(m−1)Hτ(m))

(α))((H∗
τ(3)Hτ(4))

(α)◦· · ·◦(H∗
τ(1)Hτ(2))

(α))

· · · ((H∗
τ(m−1)Hτ(m))

(α) ◦ · · · ◦ (H∗
τ(m−3)Hτ(m−2))

(α)),

we obtain by (1.29) that

ρ((H∗
τ(1)Hτ(2))

(α) ◦ (H∗
τ(3)Hτ(4))

(α) ◦ · · · ◦ (H∗
τ(m−1)Hτ(m))

(α)) ≤

ρ(S
(α)
1 ◦ S(α)

2 ◦ · · · ◦ S(α)
m
2
)

2
m ≤ (ρ(S1)

α · · · ρ(Sm
2
)α)

2
m

= ρ(H∗
τ(1)Hτ(2)H

∗
τ(3)Hτ(4) · · ·H∗

τ(m−1)Hτ(m))
α,

where the last equality follows from ρ(S1) = · · · = ρ(Sm
2
). ■
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Corollary 2.2.7 Let m be even, α ≥ 2
m
, τ ∈ σm, β ∈ [0, 1] and let

H1, . . . , Hm be nonnegative matrices that de�ne operators on l2(R). Let

Aj and Bj for j = 1, . . . ,m be as in Corollary 2.2.5 and denote Si =

Ai · · ·Am
2
A1 · · ·Ai−1 and Ti = Bi · · ·Bm

2
B1 · · ·Bi−1 for i = 1, . . . , m

2
. Then

∥H(α)
1 ◦ · · · ◦H(α)

m ∥ ≤ ρ(A
(α)
1 ◦ · · · ◦ A(α)

m )
β
2 ρ(B

(α)
1 ◦ · · · ◦B(α)

m )
1−β
2 (2.19)

≤ ρ((H∗
τ(1)Hτ(2))

(α) ◦ (H∗
τ(3)Hτ(4))

(α) ◦ · · · ◦ (H∗
τ(m−1)Hτ(m))

(α))β·

ρ((Hτ(1)H
∗
τ(2))

(α) ◦ (Hτ(3)H
∗
τ(4))

(α) ◦ · · · ◦ (Hτ(m−1)H
∗
τ(m))

(α))1−β

≤ ρ
(
S
(α)
1 ◦ S(α)

2 ◦ · · · ◦ S(α)
m
2

) 2β
m
ρ
(
T

(α)
1 ◦ T (α)

2 ◦ · · · ◦ T (α)
m
2

) 2(1−β)
m

≤ ρ(H∗
τ(1)Hτ(2)H

∗
τ(3)Hτ(4) · · ·H∗

τ(m−1)Hτ(m))
αβρ(Hτ(1)H

∗
τ(2)Hτ(3)H

∗
τ(4)

· · ·Hτ(m−1)H
∗
τ(m))

α(1−β).

The following result, established in [5], extends [46, Theorem 2.13] and [37,

Theorem 4.1].

Theorem 2.2.8 Let H1, . . . , Hm be positive kernel operators on L2(X,µ)

and {τ, ν} ⊂ σm.

Denote Qj = H∗
τ(j)Hν(j) · · ·H∗

τ(m)Hν(m)H
∗
τ(1)Hν(1) · · ·H∗

τ(j−1)Hν(j−1) for

j = 1, . . . ,m.

(i) Then

∥H( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ∥ ≤ ρ((H∗
τ(1)Hν(1))

( 1
m
) ◦ · · · ◦ (H∗

τ(m)Hν(m))
( 1
m
))

1
2

≤ ρ(Q
( 1
m
)

1 ◦ · · · ◦Q( 1
m
)

m )
1

2m ≤ ρ(H∗
τ(1)Hν(1) · · ·H∗

τ(m)Hν(m))
1

2m . (2.20)

(ii) If H1, . . . , Hm are nonnegative matrices that de�ne operators on l2(R)

and if α ≥ 1
m
, then

∥H(α)
1 ◦ · · · ◦H(α)

m ∥ ≤ ρ((H∗
τ(1)Hν(1))

(α) ◦ · · · ◦ (H∗
τ(m)Hν(m))

(α))
1
2

≤ ρ(Q
(α)
1 ◦ · · · ◦Q(α)

m )
1

2m ≤ ρ(H∗
τ(1)Hν(1) · · ·H∗

τ(m)Hν(m))
α
2 . (2.21)
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Proof: Let us �rst prove (2.20). By (2.17) and (1.29) if follows

∥H( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ∥ = ρ((H
( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m )∗(H
( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ))
1
2 =

ρ(((H∗
τ(1))

( 1
m
) ◦ · · · ◦ (H∗

τ(m))
( 1
m
))((Hν(1))

( 1
m
) ◦ · · · ◦ (Hν(m))

( 1
m
)))

1
2

≤ ρ((H∗
τ(1)Hν(1))

( 1
m
) ◦ · · · ◦ (H∗

τ(m)Hν(m))
( 1
m
))

1
2 .

Notice that

((H∗
τ(1)Hν(1))

( 1
m
) ◦ · · · ◦ (H∗

τ(m)Hν(m))
( 1
m
))m = ((H∗

τ(1)Hν(1))
( 1
m
)

◦ · · · ◦ (H∗
τ(m)Hν(m))

( 1
m
))

((H∗
τ(2)Hν(2))

( 1
m
) ◦ · · · ◦ (H∗

τ(1)Hν(1))
( 1
m
))

· · · ((H∗
τ(m)Hν(m))

( 1
m
) ◦ · · · ◦ (H∗

τ(m−1)Hν(m−1))
( 1
m
)).

It follows by (1.29) that

ρ((H∗
τ(1)Hν(1))

( 1
m
) ◦ · · · ◦ (H∗

τ(m)Hν(m))
( 1
m
))

1
2 ≤ ρ(Q

( 1
m
)

1 ◦ · · · ◦Q( 1
m
)

m )
1

2m

≤ (ρ(Q1) · · · r(Qm))
1

2m2 = ρ(H∗
τ(1)Hν(1) · · ·H∗

τ(m)Hν(m))
1

2m ,

where the last equality follows from ρ(Q1) = . . . = ρ(Qm). This completes

the proof of (2.20). The proof of (2.21) is similar by applying Theorem

1.2.16(ii). ■
The following corollary is a re�nement of [37, Inequality (4.11)], which

di�ers from re�nements in [37, Inequalities (4.15) and (4.17)]. It also extends

and generalizes [46, Corollary 2.15] and was obtained in [5].

Corollary 2.2.9 Let m be odd and let H1, . . . , Hm be positive kernel oper-

ators on L2(X,µ).

(i) Then

∥H( 1
m
)

1 ◦ · · · ◦H( 1
m
)

m ∥

≤ ρ((H∗
1H2)

( 1
m
) ◦ · · · ◦ (H∗

m−2Hm−1)
( 1
m
) ◦ (H∗

mH1)
( 1
m
) ◦ (H∗

2H3)
( 1
m
)◦

· · · ◦ (H∗
m−1Hm)

( 1
m
))

1
2

≤ ρ(H∗
1H2 · · ·H∗

m−2Hm−1H
∗
mH1H

∗
2H3 · · ·H∗

m−1Hm)
1

2m . (2.22)
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(ii) If H1, . . . , Hm are nonnegative matrices that de�ne operators on l2(R)

and if α ≥ 1
m
, then

∥H(α)
1 ◦ · · · ◦H(α)

m ∥

≤ ρ((H∗
1H2)

(α) ◦ · · · ◦ (H∗
m−2Hm−1)

(α) ◦ (H∗
mH1)

(α) ◦ (H∗
2H3)

(α)◦

· · · ◦ (H∗
m−1Hm)

(α))
1
2

≤ ρ(H∗
1H2 · · ·H∗

m−2Hm−1H
∗
mH1H

∗
2H3 · · ·H∗

m−1Hm)
α
2 . (2.23)

Proof: The result follows by taking the permutations τ(j) = 2j − 1 for

1 ≤ j ≤ m+1
2
; τ(j) = 2(j − m+1

2
) for m+3

2
≤ j ≤ m and ν(j) = 2j for

1 ≤ j ≤ m−1
2
; ν(j) = 2(j − m−1

2
)− 1 for m+1

2
≤ j ≤ m in Theorem 2.2.8. ■

The following corollary, obtained in [5], gives new lower bounds for the

operator norm of the Jordan triple product ABA which di�er from the one

obtained in [37, Corollary 4.10]. The result follows from Corollary 2.2.9 and

Theorem 2.2.8 by taking H1 = A, H2 = B∗ and H3 = A.

Corollary 2.2.10 Let A and B be positive kernel operators on L2(X,µ).

(i) Then

∥A(
1
3) ◦ (B∗)(

1
3) ◦ A(

1
3)∥

≤ ρ
1
2

(
(A∗B∗)(

1
3) ◦ (A∗A)(

1
3) ◦ (BA)(

1
3)
)

≤ ρ
1
6

(
(A∗B∗A∗ABA)(

1
3) ◦ (A∗ABAA∗B∗)(

1
3) ◦ (BAA∗B∗A∗A)(

1
3)
)

≤ ∥ABA∥
1
3 . (2.24)

(ii) If A and B are nonnegative matrices that de�ne operators on l2(R) and

if α ≥ 1
3
, then

∥A(α) ◦ (B∗)(α) ◦ A(α)∥
≤ ρ

1
2

(
(A∗B∗)(α) ◦ (A∗A)(α) ◦ (BA)(α)

)
≤ ρ

1
6

(
(A∗B∗A∗ABA)(α) ◦ (A∗ABAA∗B∗)(α) ◦ (BAA∗B∗A∗A)(α)

)
≤ ∥ABA∥α. (2.25)
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The following result, established in [5], generalizes [46, Inequality (2.12)].

Lemma 2.2.11 Let α ≥ 1
2
and let C be a nonnegative matrix that de�nes

an operator on l2(R). Then

ρ(C(α) ◦ (C∗)(α)) ≤ ρ(C(α) ◦ C(α)) ≤ ρ(C)2α.

Proof: By applying Theorem 1.2.16(ii) twice it follows

ρ(C(α) ◦ (C∗)(α)) = ρ((C(α) ◦ C(α))(
1
2
) ◦ ((C∗)(α) ◦ (C∗)(α))(

1
2
))

≤ ρ(C(α) ◦ C(α))
1
2 r((C∗)(α) ◦ (C∗)(α))

1
2 = ρ(C(α) ◦ C(α)) ≤ ρ(C)2α,

which completes the proof. ■
The following result, obtained in [5], generalizes [46, Theorem 2.17] and

re�nes [37, Inequalities (4.9)]. It follows from Theorem 2.2.8 (or [37, In-

equalities (4.9)]) and Lemma 2.2.11.

Corollary 2.2.12 Let α ≥ 1
2
and let A and B be nonnegative matrices that

de�ne operators on l2(R). Then

∥A(α) ◦B(α)∥ ≤ ρ
1
2

(
(A∗B)(α) ◦ (B∗A)(α)

)
≤ ρ

1
2

(
(A∗B)(α) ◦ (A∗B)(α)

)
≤ ρα(A∗B). (2.26)

2.3 Results on the joint and generalized

spectral radius and their essential

versions

In this section we present some results obtained in [6].

In [38] and later it remained unnoticed that several inequalities in The-

orem 1.4.2 are in fact equalities and this result was established in [6].
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Theorem 2.3.1 Let Ψ and Σ be bounded sets of positive kernel operators

on a Banach function space L and let α1, . . . , αm be positive numbers such

that
∑m

j=1 αj = 1.

(i) If r ∈ {ρ, ρ̂} and β ∈ [0, 1], then

r(Ψ) = r(Ψ(α1) ◦ · · · ◦Ψ(αm)) (2.27)

and

r(ΨΣ) = r((Ψ( 1
2
) ◦Ψ( 1

2
))(Σ( 1

2
) ◦ Σ( 1

2
)))

= r
(
(ΨΣ)(

1
2) ◦ (ΨΣ)(

1
2)
)β

r
(
(ΣΨ)(

1
2) ◦ (ΣΨ)(

1
2)
)1−β

.(2.28)

If, in addition, L and L∗ have order continuous norms, then (2.27) and

(2.28) hold also for each r ∈ {ρess, ρ̂ess}.

(ii) If L ∈ L, r ∈ {ρ, ρ̂}, m,n ∈ N, α ≥ 1 and if Ψ is a bounded set of

nonnegative matrices that de�ne operators on L, then

r(Ψ(m)) ≤ r(Ψ ◦ · · · ◦Ψ) ≤ r(Ψn ◦ · · · ◦Ψn)
1
n ≤ r(Ψ)m, (2.29)

where in (2.29) the Hadamard products in Ψ ◦ · · · ◦ Ψ and in Ψn ◦ · · · ◦ Ψn

are taken m times, and

r(Ψ(α)) ≤ r(Ψ(α−1) ◦Ψ) ≤ r((Ψn)(α−1) ◦Ψn)
1
n ≤ r(Ψ)α. (2.30)

Proof: (i) To prove (2.27) �rst observe that Ψ ⊂ Ψ(α1) ◦ · · · ◦ Ψ(αm), since

A = A(α1) ◦ · · · ◦ A(αm) for all A ∈ Ψ. It follows that

r(Ψ) ≤ r(Ψ(α1) ◦ · · · ◦Ψ(αm)) ≤ r(Ψ)α1 · · · r(Ψ)αm = r(Ψ)

by Theorem 1.4.1 and so r(Ψ) = r(Ψ(α1) ◦ · · · ◦Ψ(αm)).

Similary, to prove (2.28) observe that ΨΣ ⊂ (Ψ( 1
2
) ◦ Ψ( 1

2
))(Σ( 1

2
) ◦ Σ( 1

2
)),

since AB = (A( 1
2
) ◦ A( 1

2
))(B( 1

2
) ◦ B( 1

2
)) for all A ∈ Ψ and B ∈ Σ. It follows

that

r(ΨΣ) ≤ r((Ψ( 1
2
) ◦Ψ( 1

2
))(Σ( 1

2
) ◦ Σ( 1

2
)))

≤ r
(
(ΨΣ)(

1
2) ◦ (ΨΣ)(

1
2)
)β

r
(
(ΣΨ)(

1
2) ◦ (ΣΨ)(

1
2)
)1−β

≤ r(ΨΣ)
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by (1.66), which proves (2.28). It is proved similarly that (2.27) and (2.28)

hold also for each r ∈ {ρess, ρ̂ess} in the case when L and L∗ have order

continuous norms.

(ii) For the proof of (2.29) observe that Ψ(m) ⊂ Ψ ◦ · · · ◦Ψ, since A(m) =

A ◦ · · · ◦ A for all A ∈ Ψ. By Theorem 1.4.3, Inequalities (2.29) follow.

Inequalities (2.30) are proved in a similar way.

The following result was established in [6] and extends Inequalities (1.29)

and (1.63) and Theorem 1.4.3. ■

Theorem 2.3.2 Let {Ψij}k,mi=1,j=1 be bounded sets of positive kernel opera-

tors on a Banach function space L and let α1, . . . , αm be positive numbers.

(i) If r ∈ {ρ, ρ̂},
∑m

i=1 αi = 1 and n ∈ N, then

r
((

Ψ
(α1)
11 ◦ · · · ◦Ψ(αm)

1m

)
. . .

(
Ψ

(α1)
k1 ◦ · · · ◦Ψ(αm)

km

))
≤ r

(
(Ψ11 · · ·Ψk1)

(α1) ◦ · · · ◦ (Ψ1m · · ·Ψkm)
(αm)

)
≤ r

(
((Ψ11 · · ·Ψk1)

n)(α1) ◦ · · · ◦ ((Ψ1m · · ·Ψkm)
n)(αm)

) 1
n

≤ r (Ψ11 · · ·Ψk1)
α1 · · · r (Ψ1m · · ·Ψkm)

αm . (2.31)

If, in addition, L and L∗ have order continuous norms, then Inequalities

(2.31) hold also for each r ∈ {ρess, ρ̂ess}.
(ii) If L ∈ L, r ∈ {ρ, ρ̂},

∑m
j=1 αj ≥ 1 and {Ψij}k,mi=1,j=1 are bounded sets of

nonnegative matrices that de�ne positive operators on L, then Inequalities

(2.31) hold.

In particular, if Ψ1, . . . ,Ψk are bounded sets of nonnegative matrices that

de�ne positive operators on L and t ≥ 1, then

r(Ψ
(t)
1 · · ·Ψ(t)

k ) ≤ r((Ψ1 · · ·Ψk)
(t)) ≤ r(((Ψ1 · · ·Ψk)

n)(t))
1
n ≤ r(Ψ1 · · ·Ψk)

t.

(2.32)

Proof: (i) Let r ∈ {ρ, ρ̂},
∑m

i=1 αi = 1 and n ∈ N. To prove the �rst

inequality in (2.31) let l ∈ N and

A ∈
((

Ψ
(α1)
11 ◦ · · · ◦Ψ(αm)

1m

)
. . .

(
Ψ

(α1)
k1 ◦ · · · ◦Ψ(αm)

km

))l

.

Then A = A1 · · ·Al, where for each i = 1, . . . , l we have

Ai =
(
A

(α1)
i11 ◦ · · · ◦ A(αm)

i1m

)
. . .

(
A

(α1)
ik1 ◦ · · · ◦ A(αm)

ikm

)
,
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where Ai11 ∈ Ψ11, . . . , Ai1m ∈ Ψ1m, . . . , Aik1 ∈ Ψk1, . . . , Aikm ∈ Ψkm. Then

by (1.27) for each i = 1, . . . , l we have

Ai ≤ Ci := (Ai11Ai21 · · ·Aik1)
(α1) ◦ · · · ◦ (Ai1mAi2m · · ·Aikm)

(αm),

where Ci ∈ (Ψ11 · · ·Ψk1)
(α1) ◦ · · · ◦ (Ψ1m · · ·Ψkm)

(αm). Therefore

A ≤ C := C1 · · ·Cl ∈
(
(Ψ11 · · ·Ψk1)

(α1) ◦ · · · ◦ (Ψ1m · · ·Ψkm)
(αm)

)l
,

ρ(A)1/l ≤ ρ(C)1/l and ∥A∥1/l ≤ ∥C∥1/l, which implies the �rst inequality in

(2.31). The second and third inequality in (2.31) follow from (1.63).

If, in addition, L and L∗ have order continuous norms and r ∈ {ρess, ρ̂ess},
then Inequalities (2.31) are proved similarly. Under the assumptions of

(ii) Inequalities (2.31) are proved in a similar way by applying Theorems

1.2.16(ii) and 1.4.3. ■
Next it follows an extension of Theorem 1.4.2 by re�ning (1.64), obtained

in [6].

Theorem 2.3.3 Let Ψ1, . . . ,Ψm be bounded sets of positive kernel operators

on a Banach function space L and let Φj = Ψj . . .ΨmΨ1 . . .Ψj−1 for j =

1, . . . ,m. If r ∈ {ρ, ρ̂}, then

r

(
Ψ
( 1
m)

1 ◦Ψ( 1
m)

2 ◦ · · · ◦Ψ( 1
m)

m

)
≤ r

(
Φ
( 1
m)

1 ◦ Φ(
1
m)

2 ◦ · · · ◦ Φ(
1
m)

m

) 1
m

≤ r
(
(Φn

1 )
( 1
m
) ◦ (Φn

2 )
( 1
m
) ◦ · · · ◦ (Φn

m)
( 1
m
)
) 1

nm ≤ r(Ψ1Ψ2 · · ·Ψm)
1
m . (2.33)

If, in addition, L and L∗ have order continuous norms, then Inequalities

(2.33) are valid also for all r ∈ {ρess, ρ̂ess}.

Proof: Let r ∈ {ρ, ρ̂}. Denote

Σ1 = Ψ
( 1
m)

1 ◦ · · · ◦Ψ( 1
m)

m , Σ2 = Ψ
( 1
m)

2 ◦ · · · ◦Ψ( 1
m)

m ◦Ψ( 1
m)

1 , . . . ,

Σm = Ψ
( 1
m)

m ◦Ψ( 1
m)

1 ◦ · · · ◦Ψ( 1
m)

m−1.

Then by (1.62), (2.31) and commutativity of Hadamard product we have
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r

(
Ψ
( 1
m)

1 ◦Ψ( 1
m)

2 ◦ · · · ◦Ψ( 1
m)

m

)m

= r

((
Ψ
( 1
m)

1 ◦Ψ( 1
m)

2 ◦ · · · ◦Ψ( 1
m)

m

)m)
= r(Σ1Σ2 · · ·Σm) ≤ r

(
Φ
( 1
m)

1 ◦ Φ(
1
m)

2 ◦ · · · ◦ Φ(
1
m)

m

)
,

which proves the �rst inequality in (2.33). The second and the third in-

equality in (2.33) follow from (1.63) (or from (2.31)), since r(Φ1) = r(Φ2) =

· · · r(Φm) = r(Ψ1Ψ2 · · ·Ψm) by (1.62). If, in addition, L and L∗ have order

continuous norms, then (2.33) for r ∈ {ρess, ρ̂ess} is proved in a similar way.

■
The following result extends (2.28) and was obtained in [6].

Theorem 2.3.4 Let Ψ1, . . . ,Ψm be bounded sets of positive kernel operators

on a Banach function space L and let α1, . . . , αm be nonnegative numbers

such that
∑m

j=1 αj = 1. If Φj = Ψj . . .ΨmΨ1 . . .Ψj−1 for j = 1, . . . ,m,

β ∈ [0, 1], then for all r ∈ {ρ, ρ̂} we have

r (Ψ1Ψ2 · · ·Ψm) = r
((

Ψ
(β)
1 ◦Ψ(1−β)

1

)
· · ·

(
Ψ(β)

m ◦Ψ(1−β)
m

))
= r

(
Φ

(β)
1 ◦ Φ(1−β)

1

)α1

· · · r
(
Φ(β)

m ◦ Φ(1−β)
m

)αm
.(2.34)

If, in addition, L and L∗ have order continuous norms, then Equalities

(2.34) are valid for r ∈ {ρess, ρ̂ess}.

Proof: Let r ∈ {ρ, ρ̂}. To prove Equalities (2.34) we use the �rst inequality
in (2.31) and (1.62) to obtain that

r
((

Ψ
(β)
1 ◦Ψ(1−β)

1

)
· · ·

(
Ψ(β)

m ◦Ψ(1−β)
m

))
≤ r

(
Φ

(β)
i ◦ Φ(1−β)

i

)
(2.35)

for all i = 1, . . . ,m. Indeed, by (1.62) and the �rst inequality in (2.31) we

have

r((Ψ
(β)
1 ◦Ψ(1−β)

1 ) · · · (Ψ(β)
m ◦Ψ(1−β)

m ))

= r((Ψ
(β)
i ◦Ψ(1−β)

i ) · · · (Ψ(β)
m ◦Ψ(1−β)

m )(Ψ
(β)
1 ◦Ψ(1−β)

1 ) · · · (Ψ(β)
i−1 ◦Ψ

(1−β)
i−1 ))

≤ r(Φ
(β)
i ◦ Φ(1−β)

i ),
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which proves (2.35). Since
∑m

j=1 αj = 1, Inequality (2.35) implies

r((Ψ
(β)
1 ◦Ψ(1−β)

1 ) · · · (Ψ(β)
m ◦Ψ(1−β)

m )) ≤ r(Φ
(β)
1 ◦Φ(1−β)

1 )α1 · · · r(Φ(β)
m ◦Φ(1−β)

m )αm

≤ r(Ψ1 · · ·Ψm). (2.36)

The second inequality in (2.36) follows from (1.63) and the fact that r(Φ1) =

· · · = r(Φm) = r(Ψ1 · · ·Ψm). Since Ψi ⊂ Ψ
(β)
i ◦ Ψ

(1−β)
i for all i = 1, . . . ,m

and β ∈ [0, 1], we obtain

r(Ψ1 · · ·Ψm) ≤ r((Ψ
(β)
1 ◦Ψ(1−β)

1 ) · · · (Ψ(β)
m ◦Ψ(1−β)

m )),

which together with (2.36) proves Equalities (2.34). If, in addition, L and L∗

have order continuous norms, then Equalities (2.34) are proved in a similar

way for r ∈ {ρess, ρ̂ess}. ■
The following result, established in [6] that extends main result from [35],

is proved in a similar way as Theorem 2.3.3 by applying Theorems 1.4.3 and

2.3.2(ii) instead of Theorems 1.4.1 and 2.3.2(i) in the proofs above.

Theorem 2.3.5 Given L ∈ L, let Ψ1, . . . ,Ψm be bounded sets of nonnega-

tive matrices that de�ne operators on L and Φj = Ψj . . .ΨmΨ1 . . .Ψj−1 for

j = 1, . . . ,m. Assume that α ≥ 1
m
, αj ≥ 0, j = 1, . . . ,m,

∑m
j=1 αj ≥ 1

and n ∈ N. If r ∈ {ρ, ρ̂} and Σj = Ψ
(αm)
j . . .Ψ

(αm)
m Ψ

(αm)
1 . . .Ψ

(αm)
j−1 for

j = 1, . . . ,m, then we have

r
(
Ψ

(α)
1 ◦ · · · ◦Ψ(α)

m

)
≤ r

(
Φ

(α)
1 ◦ · · · ◦ Φ(α)

m

) 1
m

≤ r
(
(Φn

1 )
(α) ◦ · · · ◦ (Φn

m)
(α)

) 1
mn ≤ r (Ψ1 · · ·Ψm)

α , (2.37)

r
(
Ψ

(α)
1 ◦ · · · ◦Ψ(α)

m

)
≤ r

(
Ψ

(αm)
1 · · ·Ψ(αm)

m

) 1
m ≤

r
(
(Ψ1 · · ·Ψm)

(αm)
) 1

m ≤r
(
((Ψ1 · · ·Ψm)

n)(αm)
) 1

nm≤r(Ψ1 · · ·Ψm)
α . (2.38)

If, in addition, α ≥ 1 then

r
(
Ψ

(α)
1 ◦ · · · ◦Ψ(α)

m

)
≤ r

(
Φ

(α)
1 ◦ · · · ◦ Φ(α)

m

) 1
m ≤ r

(
(Φn

1 )
(α) ◦ · · · ◦ (Φn

m)
(α)

) 1
mn

≤
(
r
(
(Φn

1 )
(m)

)
· · · r

(
(Φn

m)
(m)

)) α
m2n ≤ r (Ψ1 · · ·Ψm)

α , (2.39)

42



CHAPTER 2. INEQUALITIES FOR SCHUR-HADAMARD
WEIGHTED GEOMETRIC MEAN

r
(
Ψ

(α)
1 ◦ · · · ◦Ψ(α)

m

)
≤ r

(
Σ

( 1
m
)

1 ◦ · · · ◦ Σ( 1
m
)

m

) 1
m

≤ r
(
(Σn

1 )
( 1
m
) ◦ · · · ◦ (Σn

m)
( 1
m
)
) 1

mn ≤ r
(
Ψ

(αm)
1 · · ·Ψ(αm)

m

) 1
m

≤ r
(
(Ψ1 · · ·Ψm)

(αm)
) 1

m≤ r
(
((Ψ1 · · ·Ψm)

n)(αm)
) 1

nm ≤ r (Ψ1 · · ·Ψm)
α .(2.40)

Proof: Inequalities (2.37) are proved in a similar way as Theorem 2.3.3 by

applying Theorems 1.4.3 and 2.3.2(ii) instead of Theorems 1.4.1 and 2.3.2(i).

For the proof of (2.38) observe that

Ψ
(α)
1 ◦ · · · ◦Ψ(α)

m = (Ψ
(αm)
1 )(

1
m
) ◦ · · · ◦ (Ψ(αm)

m )(
1
m
)

for i = 1, . . . ,m. Now the �rst inequality in (2.38) follows from (1.64) (or

from (2.39)):

r
(
Ψ

(α)
1 ◦ · · · ◦Ψ(α)

m

)
= r

(
(Ψ

(αm)
1 )(

1
m
) ◦ · · · ◦ (Ψ(αm)

m )(
1
m
)
)

≤ r
(
Ψ

(αm)
1 · · ·Ψ(αm)

m

) 1
m
.

Other inequalities in (2.38) follow from Theorem 2.3.2(ii).

Assume α ≥ 1. The �rst and second inequality in (2.39) follow from

(2.37). To prove the third inequality in (2.39) notice that (Φn
i )

(α) = ((Φn
i )

(m))(
α
m
),

α
m

≥ 1
m
and apply Theorem 1.4.3. The last inequality in (2.39) follows again

from Theorem 1.4.3 and the fact that r(Φ1) = · · · = r(Φm) = r(Ψ1 · · ·Ψm).

To prove the �rst three inequalities in (2.40) observe thatΨ
(α)
i = (Ψ

(mα)
i )(

1
m
),

α
m

≥ 1
m
and apply Theorem 2.3.3. The remaining three inequalities in (2.40)

follow from (2.38), which completes the proof. ■
The following result was established in [6].

Theorem 2.3.6 Let {Ψij}k,mi=1,j=1 be bounded sets of positive kernel opera-

tors on a Banach function space L and let α1, . . . , αm be positive numbers.

(i) If r ∈ {ρ, ρ̂},
∑m

j=1 αj = 1 and n ∈ N, then

r
((

Ψ
(α1)
11 ◦ · · · ◦Ψ(αm)

1m

)
+ . . .+

(
Ψ

(α1)
k1 ◦ · · · ◦Ψ(αm)

km

))
≤ r

(
(Ψ11 + · · ·+Ψk1)

(α1) ◦ · · · ◦ (Ψ1m + · · ·+Ψkm)
(αm)

)
≤ r

(
((Ψ11 + · · ·+Ψk1)

n)(α1) ◦ · · · ◦ ((Ψ1m + · · ·+Ψkm)
n)(αm)

) 1
n

≤ r (Ψ11 + · · ·+Ψk1)
α1 · · · r (Ψ1m + · · ·+Ψkm)

αm . (2.41)
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If, in addition, L and L∗ have order continuous norms, then Inequalities

(2.41) hold also for each r ∈ {ρess, ρ̂ess}.
(ii) If L ∈ L, r ∈ {ρ, ρ̂},

∑m
j=1 αj ≥ 1 and {Ψij}k,mi=1,j=1 are bounded sets of

nonnegative matrices that de�ne positive operators on L, then Inequalities

(2.41) hold.

Proof: (i) Let r ∈ {ρ, ρ̂},
∑m

i=1 αi = 1 and n ∈ N. To prove the �rst

inequality in (2.41) let l ∈ N and

A ∈
((

Ψ
(α1)
11 ◦ · · · ◦Ψ(αm)

1m

)
+ . . .+

(
Ψ

(α1)
k1 ◦ · · · ◦Ψ(αm)

km

))l

.

Then A = A1 · · ·Al, where for each i = 1, . . . , l we have

Ai =
(
A

(α1)
i11 ◦ · · · ◦ A(αm)

i1m

)
+ . . .+

(
A

(α1)
ik1 ◦ · · · ◦ A(αm)

ikm

)
,

where Ai11 ∈ Ψ11, . . . , Ai1m ∈ Ψ1m, . . . , Aik1 ∈ Ψk1, . . . , Aikm ∈ Ψkm. Then

by (1.57) for each i = 1, . . . , l we have

Ai ≤ Ci := (Ai11+Ai21+ · · ·+Aik1)
(α1) ◦ · · · ◦ (Ai1m+Ai2m+ · · ·+Aikm)

(αm),

where Ci ∈ (Ψ11 + · · ·+Ψk1)
(α1) ◦ · · · ◦ (Ψ1m + · · ·+Ψkm)

(αm). Therefore

A ≤ C := C1 · · ·Cl ∈
(
(Ψ11 + · · ·+Ψk1)

(α1) ◦ · · · ◦ (Ψ1m + · · ·+Ψkm)
(αm)

)l
,

r(A)1/l ≤ r(C)1/l and ∥A∥1/l ≤ ∥C∥1/l, which implies the �rst inequality in

(2.41). The second and third inequality in (2.41) follow from (1.63).

If, in addition, L and L∗ have order continuous norms and r ∈ {ρess, ρ̂ess},
then Inequalities (2.41) are proved similarly. Under the assumptions of

(ii) Inequalities (2.41) are proved in a similar way by applying Theorems

1.2.16(ii) and 1.4.3. ■
Let Ψ and Σ be bounded sets of positive kernel operators on L2(X,µ)

and α ∈ [0, 1]. Denote by Ψ∗ and Sα(Ψ) bounded sets of positive kernel

operators on L2(X,µ) de�ned by Ψ∗ = {A∗ : A ∈ Ψ} and

Sα(Ψ) = Ψ(α) ◦ (Ψ∗)(1−α) = {A(α) ◦ (B∗)(1−α) : A,B ∈ Ψ}.

We denote simply S(Ψ) = S 1
2
(Ψ), the geometric symmetrization of Ψ. Ob-

serve that (ΨΣ)∗ = Σ∗Ψ∗ and (Ψm)∗ = (Ψ∗)m for all m ∈ N. By (1.63) it

follows that

r(Sα(Ψ)) ≤ r(Sα(Ψ
m))

1
m ≤ r(Ψ) (2.42)
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for all m ∈ N and r ∈ {ρ, ρ̂, ρess, ρ̂ess}, since r(Ψ) = r(Ψ∗). In particular,

for all r ∈ {ρ, ρ̂, ρess, ρ̂ess} and n ∈ N ∪ {0} we have

r(Sα(Ψ)) ≤ r(Sα(Ψ
2n))2

−n ≤ r(Ψ). (2.43)

Consequently,

r(Sα(Ψ))2 ≤ r(Sα(Ψ
2)) ≤ r(Ψ)2 (2.44)

holds for all r ∈ {ρ, ρ̂, ρess, ρ̂ess}.
The following result that follows from (2.43) was established in [6], is an

extension of Theorem 2.1.3 and extends [9, Theorem 2.2], [39, Theorem 3.5]

and [5, Theorem 3.5(ii)].

Theorem 2.3.7 Let Ψ be a bounded set of positive kernel operators on

L2(X,µ), α ∈ [0, 1] and let rn = r(Sα(Ψ
2n))2

−n
for n ∈ N ∪ {0} and

r ∈ {ρ, ρ̂, ρess, ρ̂ess}. Then for each n

r(Sα(Ψ)) = r0 ≤ r1 ≤ · · · ≤ rn ≤ r(Ψ).

Proof: By (2.43) we have rn ≤ r(Ψ). Since rn−1 ≤ rn for all n ∈ N by the

�rst inequality in (2.44), the proof is completed. ■
The following result, established in [6], extends Proposition 2.1.1.

Proposition 2.3.8 Let Ψ1, . . . ,Ψm be bounded sets of positive kernel op-

erators on L2(X,µ), α ∈ [0, 1], n ∈ N and r ∈ {ρ, ρ̂, ρess, ρ̂ess}. Then we

have

r(Sα(Ψ1) · · ·Sα(Ψm)) ≤ r
(
(Ψ1 · · ·Ψm)

(α) ◦ ((Ψm · · ·Ψ1)
∗)(1−α)

)
≤ r

(
((Ψ1 · · ·Ψm)

n)(α) ◦ (((Ψm · · ·Ψ1)
∗)n)(1−α)

) 1
n

≤ r(Ψ1 · · ·Ψm)
α r(Ψm · · ·Ψ1)

1−α, (2.45)

r(Sα(Ψ1) + · · ·+ Sα(Ψm)) ≤ r (Sα(Ψ1 + · · ·+Ψm))

≤ r (Sα((Ψ1 + · · ·+Ψm)
n))

1
n ≤ r(Ψ1 + · · ·+Ψm). (2.46)

In particular, we have

r (Sα(Ψ1)Sα(Ψ2)) ≤ r
(
(Ψ1Ψ2)

(α) ◦ ((Ψ2Ψ1)
∗)(1−α)

)
≤ r

(
((Ψ1Ψ2)

n)(α) ◦ (((Ψ2Ψ1)
∗)n)(1−α)

) 1
n ≤ r(Ψ1Ψ2). (2.47)
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Proof: By Theorem 2.3.2(i) we have

r (Sα(Ψ1) · · ·Sα(Ψm)) = r
(
(Ψ

(α)
1 ◦ (Ψ∗

1)
(1−α)) · · ·

(
Ψ(α)

m ◦ (Ψ∗
m)

(1−α)
))

≤ r
(
(Ψ1 · · ·Ψm)

(α) ◦ ((Ψm · · ·Ψ1)
∗)(1−α)

)
≤ r

(
((Ψ1 · · ·Ψm)

n)(α) ◦ (((Ψm · · ·Ψ1)
∗)n)(1−α)

) 1
n

≤ r(Ψ1 · · ·Ψm)
α r((Ψm · · ·Ψ1)

∗)1−α = r(Ψ1 · · ·Ψm)
α r(Ψm · · ·Ψ1)

1−α,

where the last equality follows from the fact that r(Ψ) = r(Ψ∗). The in-

equalities in (2.46) are proved in similar way by applying Theorem 2.3.6

and (2.43). The �rst and second inequalities in (2.47) are special cases

of (2.45), while the third inequality follows from (2.45) and the fact that

r(Ψ1Ψ2) = r(Ψ2Ψ1). ■
Let Ψ be a bounded set of nonnegative matrices that de�ne operators on

l2(R) and let α and β be nonnegative numbers such that α+β ≥ 1. The set

Sα,β(Ψ) = Ψ(α) ◦ (Ψ∗)(β) = {A(α) ◦ (B∗)(β) : A,B ∈ Ψ} is a bounded set of

nonnegative matrices that de�ne operators on l2(R) by Theorem 1.2.16(ii).

For r ∈ {ρ, ρ̂} the following result extends Theorem 2.3.7 in the case of

bounded set of nonnegative matrices that de�ne operators on l2(R). It also

extends a part of [5, Theorem 3.5(ii)] and was established in [6].

Theorem 2.3.9 Let Ψ be a bounded set of nonnegative matrices that de�ne

operators on l2(R) and r ∈ {ρ, ρ̂}. Assume α and β are nonnegative numbers

such that α+β ≥ 1 and denote rn = r(Sα,β(Ψ
2n))2

−n
for n ∈ N∪{0}. Then

we have

r(Sα,β(Ψ)) = r0 ≤ r1 ≤ · · · ≤ rn ≤ r(Ψ)α+β. (2.48)

Proof: By Theorem 1.4.3 we have

r(Sα,β(Ψ)) = r(Ψ(α)◦(Ψ∗)(β)) ≤ r
(
(Ψ2n)(α) ◦ ((Ψ∗)2

n

)(β)
)2−n

= rn ≤ r(Ψ)α+β.

(2.49)

In particular, for n = 1 we have

r(Sα,β(Ψ))2 ≤ r(Sα,β(Ψ
2)) ≤ r(Ψ)2(α+β). (2.50)

Since rn−1 ≤ rn for all n ∈ N∪{0} by the �rst inequality in (2.50), the proof
of (2.48) is completed. ■

The following result, established in [6], is proved in similar way as Propo-

sition 2.3.8 using Theorem 2.3.2(ii) instead of Theorem 2.3.2(i).
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Proposition 2.3.10 Let Ψ, Ψ1, . . . ,Ψm be bounded sets of nonnegative ma-

trices that de�ne operators on l2(R), n ∈ N and let α and β be nonnegative

numbers such that α + β ≥ 1. Then we have

r(Sα,β(Ψ1) · · ·Sα,β(Ψm)) ≤ r
(
(Ψ1 · · ·Ψm)

(α) ◦ ((Ψm · · ·Ψ1)
∗)(β)

)
≤ r

(
((Ψ1 · · ·Ψm)

n)(α) ◦ (((Ψm · · ·Ψ1)
∗)n)(β)

) 1
n

≤ r(Ψ1 · · ·Ψm)
α r(Ψm · · ·Ψ1)

β, (2.51)

r(Sα,β(Ψ)) ≤ r(Sα,β(Ψ
n))

1
n ≤ r(Ψ)α+β, (2.52)

r(Sα,β(Ψ1) + · · ·+ Sα,β(Ψm)) ≤ r (Sα,β(Ψ1 + · · ·+Ψm))

≤ r (Sα,β((Ψ1 + · · ·+Ψm)
n))

1
n ≤ r(Ψ1 + · · ·+Ψm)

α+β, (2.53)

r(Sα,β(Ψ1) + · · ·+ Sα,β(Ψm)) ≤ r (Sα,β(Ψ1 + · · ·+Ψm))

≤ r (Sα,β((Ψ1 + · · ·+Ψm)
n))

1
n ≤ r(Ψ1 + · · ·+Ψm)

α+β, (2.54)

r(Sα,β(Ψ1)Sα,β(Ψ2)) ≤ r
(
(Ψ1Ψ2)

(α) ◦ ((Ψ2Ψ1)
∗)(β)

)
≤ r

(
((Ψ1Ψ2)

n)(α) ◦ (((Ψ2Ψ1)
∗)n)(β)

) 1
n ≤ r(Ψ1Ψ2)

α+β (2.55)

for r ∈ {ρ, ρ̂}.

Proof: Inequalities (2.51) and (2.54) are proved in a similar way as inequal-

ities (2.45) and (2.46) by using Theorems 2.3.2(ii) and 2.3.6(ii). Inequalities

(2.52) and (2.55) are special cases of (2.51). ■

Remark 2.3.11 The obtained results remain valid when spectral radius ρ is

replaced by the essential spectral radius ρess and the operator norm ||.|| by the
Hausdor� measure of non-compactness γ. To be more precise, the essential

versions of results Theorem 2.2.4(i), Corollary 2.2.5(i), Theorem 2.2.8(i),

Corollary 2.2.9(i), Corollary 2.2.10(i) hold on L2(X,µ) and the essential

versions of results Theorem 2.2.4(ii), Corollary 2.2.5(ii), Theorem 2.2.6,

Corollary 2.2.7, Theorem 2.2.8(ii), Corollary 2.2.9(ii), Corollary 2.2.10(ii),

Lemma 2.2.11, Corollary 2.2.12, Theorem 2.3.9 and Proposition 2.3.10 hold
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on l2(R), while the essential versions of the results Theorem 2.2.3, Theorem

2.3.2(ii), Theorem 2.3.5 and Theorem 2.3.6(ii) hold when L and L∗ have

order continuous norms. These facts were proved in [28] by applying Lemma

1.3.7 and Theorem 1.3.3 in the setting of bounded sets of positive kernel

operators.
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Chapter 3

Relations of Schur-multipliers to

derivation's inequalities of

operators

3.1 Symmetricaly norming functions and

associated ideals of compact operators

Let B(H) and C∞(H) denote respectively spaces of all bounded and all

compact linear operators acting on a separable, complex space H.

De�nition 3.1.1 Let c0 be the space of all sequences ξ = {ξn}∞n=1 of real

numbers which tend to zero. We denote by ĉ the lineal of c0, consisting

of all sequences with a �nite number of nonzero terms. A real function

Φ(ξ) = Φ(ξ1, ξ2, . . .) de�ned on the lineal ĉ is called a symmetrically norming

(s.n) function if the following properties are satis�ed:

i) Φ(ξ) > 0 (ξ ∈ ĉ, ξ ̸= 0),

ii) for any real α Φ(αξ) = |α|Φ(ξ) (ξ ∈ ĉ),

iii) Φ(ξ + η) ⩽ Φ(ξ) + Φ(η) (ξ, η ∈ ĉ),

iv) Φ(1, 0, . . .) = 1

v) Φ(ξ1, ξ2, . . . , ξn, 0, 0, . . .) = Φ(|ξj1 |, |ξj2|, . . . , |ξjn|, 0, 0, . . .),
where ξ = {ξn}∞n=1 is any vector from ĉ and j1, j2, . . . , jn is any permuta-

tion of integers 1, 2, . . . , n.
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We can extend the domain of the function Φ(ξ) on cΦ, where

cΦ
def
=

{
ξ ∈ c0| supn⩾1Φ(ξ1, . . . , ξn, 0, 0, . . .) < +∞

}
and de�ne Φ(ξ)

def
= limn→∞Φ(ξ1, . . . , ξn, 0, 0, . . .) for any ξ ∈ cΦ. The limes

on cΦ is well de�ned since the sequence {Φ(ξ1, . . . , ξn, 0, 0, . . .)n}∞n=1 is non-

decreasing.

So, each ½symmetrically norming� (s.n.) function, or also called ½sym-

metric gauge� function Φ on sequences of complex numbers, gives rise to a

symmetric or unitarily invariant (u.i.) norm on compact operators de�ned

by ||A||Φ
def
= Φ

(
{sn(A)}∞n=1

)
, where s1(A) ⩾ s2(A) ⩾ · · · are the singular val-

ues of A, i.e., the eigenvalues of |A| def
= (A∗A)1/2. Any such norm is de�ned

on the naturally associated norm ideal CΦ(H) of C∞(H), de�ned as a set of

all operators A ∈ CΦ(H) for which s(A) = {sn(A)n}n∈N ∈ cΦ and it satis�es

the invariance property ||UAV ||Φ = ||A||Φ for all A ∈ CΦ(H) and for all uni-

tary operators U, V ∈ B(H) (see [14] and [42] for more details). Examples

of u.i. norms are Schatten p-norms de�ned by ||A||p
def
=

(∑∞
n=1 s

p
n(A)

)1/p
, for

1 ⩽ p <+∞, while ||A||∞
def
= s1(A) coincides with the operator norm ||A||.

For p := 1 the corresponding s.n. function is the trace s.n. function (also

denoted by ℓ1 or ℓ1), de�ned by ℓ ((λn)
∞
n=1) =

∑∞
n=1 |λn|, while for p=∞ the

s.n. function ℓ∞ is de�ned by ℓ∞ ((λn)
∞
n=1) = supn∈N |λn|.The C1(H) class

is known as the trace class or the class of nuclear operators, while C2(H) is

known as the Hilbert-Schmidt class. Ideals of compact operators associated

to these norms will be denoted by Cp(H). Schatten p-norms represent basic

examples of ( by the degree) p modi�ed norms. Namely, for any p > 0, a

u.i. norm ||·||Φ can be p-modi�ed by setting ||A||Φ(p)
def
= || |A|p||1/pΦ , for all

A ∈ C∞(H) such that |A|p ∈ CΦ(H).We refer to a s.n. function Φ
(p)

as to

a p-modi�ed function. For the simple proof of the triangle inequality (for

p ⩾ 1) and other properties of these norms, including H�older's inequality,

see the preliminary section in [19], as well as Corollary IV.2.6 and Exercises

IV.2.7-8 in [2]. If p := 2, then ||·||Φ(2) are also known as Q-norms. Hence,

as Φ(p) = (Φ( p
2
))(2), then Φ(p) are also Q-norms for all p ⩾ 2, while its dual

norms ||·||Φ(p)∗ are commonly known as Q∗-norms. Each norm ||·||Φ is lower

semi-continuous, i.e., ||w−limn→∞An||Φ ⩽ lim infn→∞||An||Φ. This follows

from the uniform boundedness principle and the well known representation
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formula

||A||Φ = sup

{
|tr(AB)|
||B||Φ∗

: B is a �nite rank operator,

}
where Φ∗ stands for the s.n. function dual to Φ (see [42, Th. 2.7 (d)]).

Monotonicity is another useful property of all u.i. norms, saying that

sn(A) ⩽ sn(B), for all n ∈ N implies ||A||Φ ⩽ ||B||Φ. This may be combined
with the monotonicity of singular numbers, which states that sn(A) ⩽ sn(B),

for all n ∈ N, whenever 0 ⩽ A ⩽ B. Moreover, we have the following double

monotonicity property for u.i. norms, saying that

||AXB||Φ ⩽ ||CXD||Φ (3.1)

whenever A∗A ⩽ C∗C and BB∗ ⩽ DD∗. For the proof of (3.1) see [22,

p.62].

An operator A ∈ B(H) is called hyponormal if and only i� A∗A ⩾ AA∗,

and similarly, A is cohyponormal i� A∗ is hyponormal, i.e., i� AA∗ ⩾ A∗A.

Also A ∈ B(H) is called accretive i� Aℜ
def
= A+A∗

2
⩾ 0 and strictly accretive

i� Aℜ ⩾ cI for some c > 0.

For a more complete account of the theory of norm ideals, the reader is

referred to [2], [14], [13], [40] and [42].

3.2 Gel'fand or weak∗-integral

If (Ω,M, µ) is a space Ω with a measure µ on σ-algebra M, then we will

refer to a function A : Ω 7→ B(H) : t 7→ At as to a weakly∗-measurable if

t 7→
〈
Atg, h

〉
is measurable for all g, h ∈ H. If, in addition, those functions

are integrable, then there is the unique (known as Gel'fand or weak∗-integral

and denoted by
∫
Ω
At dµ(t)) operator in B(H), satisfying〈∫

Ω

At dµ(t)h, k

〉
=

∫
Ω

〈
Ath, k

〉
dµ(t) for all h, k ∈ H. (3.2)

Thus, it also complies with the de�nition of Pettis integral. For a more

complete account about weak∗-integrals the reader is referred to [8, p.53],

[18, p.320] and [21, Lemma 1.2]. For every h ∈ H, the function t 7→
||Ath|| is also measurable, and, if additionally

∫
Ω
||Ath||2dµ(t) < +∞ for
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all h ∈ H, then there exists weak∗-integral
∫
Ω
A∗

tAtdµ(t) ∈ B(H), satisfying〈∫
Ω
A∗

tAt dµ(t)h, h
〉
=

∫
Ω
||Ath||2dµ(t) for all h ∈ H, as shown in [18, ex.2].

Such families {At}t∈Ω will be simple called [µ] square integrable ([µ] s.i.).

We use the notation L2(Ω, µ,H) for the space of all (weakly) measur-

able functions f : Ω 7→ H such that
∫
Ω
||f(t)|| dµ(t) < +∞ and notation

L2
G(Ω, µ,B(H)) for the space of all weak∗-measurable functions A : Ω 7→

B(H) such that
∫
Ω
||Ath|| dµ(t) < +∞ for all h ∈ H, i.e. for [µ] s.i. families.

Thus A ∈ L2
G(Ω, µ,B(H)) if and only if Af ∈ L2(Ω, µ,H) for all f ∈ H.

3.3 Operator monotone functions

De�nition 3.3.1 A real function φ de�ned on an interval J ⊂ R is said to

be matrix monotone of order n if for every pair of n×n hermitian matrices

A,B with σ(A), σ(B) ⊂ J we have A ⩽ B ⇒ φ(A) ⩽ φ(B). If φ is a matrix

monotone function of order n for all n ∈ N (or the above property holds for

every A,B ∈ B(H) with arbitrary Hilbert space H), then φ is said to be

operator monotone.

We are going to consider a more general setting, when H is a complex,

separabile, Hilbert space and A,B ∈ B(H).

Example 3.3.2 (1) When a ⩾ 0 the function t 7→ at+ b is operator mono-

tone on R.
(2) When c /∈ (a, b) the function t 7→ (c − t)−1 is operator monotone on

(a, b).

(3) When 0 ⩽ p ⩽ 1 the function t 7→ tp is operator monotone on [0,+∞).

(4) t 7→ t
t+1

is operator monotone on [0,+∞).

(5) t 7→ log t is operator monotone on (0,+∞).

(6) f(t):= t−1
log t

is operator monotone on [0,+∞), where f(0)=0 and f(1)=1.

The study of operator monotone functions was introduced by L�owner. His

classical theorem states that operator monotone functions on real intervals

are described by holomor�c functions on the upper half plane. K. L�owner in

[29] gave a de�nite characterization of operator monotone functions in 1934.

His well known theorem states that function φ : (a, b) 7→ R is operator
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monotone if and only if φ has analytic continuation to (C\R∪ (a, b)) which

maps the upper half-plane C+ := {z ∈ C : ℑz > 0} into itself and the

extension to the lower half plane C− := {z ∈ C : ℑz < 0} is obtained by

re�ection across (a, b), that is φ(z̄) = φ(z) for all z ∈ C+.

The following theorem gives the integral representation of an operator

monotone function on (−1, 1). See [16, Theorem 2.5.7] for the proof.

Theorem 3.3.3 Let f be a non-constant operator monotone function on

(−1, 1). Then, there exists a unique probability Borel measure µ on [−1, 1]

such that

f(x) = f(0) + f ′(0)

∫ 1

−1

x

1− λx
dµ(λ), x ∈ (−1, 1). (3.3)

The previous result can be transferred to an arbitrary �nite interval (a, b)

since an arbitrary function f on is operator monotone on (a, b) if and only

if f
( (b−a)t

2
+ a+b

2

)
is operator monotone on (−1, 1).

For continuous positive functions de�ned on [0,+∞) we have the follow-

ing integral representation. For the proof see e. g. [16].

Theorem 3.3.4 Let f be a continuous non-negative function on [0,+∞).

Then f is operator monotone if and only if there exists a positive �nite Borel

measure m on [0,+∞] such that

f(t) =

∫
[0,∞]

t(1 + λ)

t+ λ
dm(λ), t ∈ [0,∞).

The measure m is unique, and if a := m({0}) and b := m({∞}) then

f(t) = a+ bt+

∫
(0,∞)

t(1 + λ)

t+ λ
dm(λ), t ∈ [0,∞). (3.4)

Also, a = f(0) and b = limt→∞
f(t)
t
. Moreover, a continuous real-valued

function f on [0,∞) is operator monotone if and only if there exist a b ⩾ 0

and a positive Borel measure m on (0,∞) such that (3.4) is valid.

Proof: From t(1+λ)
t+λ

= 1+λ− λ(1+λ)
t+λ

for every λ ∈ [0,∞) it follows that t(1+λ)
t+λ

is operator monotone on [0,∞) and therefore f is also an operator monotone
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function if the above integral representation holds. Conversely, assume that

f ⩾ 0 is continuous and operator monotone on [0,∞). Consider the function

ψ(x) = 1+x
1−x

on (−1, 1). It is a bijective mapping between intervals (−1, 1)

and (0,∞) and since t = ψ(x) = 1+x
1−x

= −1+ 2
1−x

, ψ is an operator monotone

function on (−1, 1). It follows that g(x) := f(ψ(x)) is also an operator

monotone function on (−1, 1). Therefore, Theorem 3.3.3 implies that there

exists a probability Borel measure µ on [−1, 1] such that

g(x) = g(0) + g′(0)

∫
[−1,1]

x

1− λx
dµ(λ), x ∈ (−1, 1).

Since g(−1) = limx→−1+ g(x) = f(0) ⩾ 0 it follows that
∫
[−1,1]

1
1+λ

dµ(λ) <

∞ and in particular µ({−1}) = 0. Hence,

g(x)− g(−1) = g′(0)

∫
(−1,1]

1 + x

(1 + λx)(1 + λ)
dµ(λ).

Transforming this by x = ψ−1(t) and λ = ψ−1(ζ) and introducing the mea-

sure m on (0,∞] by m
def
= µ̃ ◦ ψ−1, where dµ̃(λ):=g′(0)

1+λ
dµ(λ) we obtain

f(t)− f(0) =

∫
(0,∞]

t(ζ + 1)

ζ + t
dm(ζ), t ∈ [0,∞).

Adding the mass f(0)δ0({0}) to m, where δ0 is Dirac measure we have

f(t) =

∫
[0,∞]

t(ζ + 1)

ζ + t
dm(ζ), t ∈ [0,∞].

The uniqueness of the measure m follows from the Theorem 3.3.3. The last

statement follows by applying the above to the case f − f(0). ■
For J := [0,+∞), transforming the measure in Theorem 3.3.4 we obtain

the following integral representation theorem, which we will use in the sequel.

Theorem 3.3.5 A function f : [0,+∞) 7→ R is operator monotone if and

only if there is a ∈ R, b ⩾ 0 and a positive Borel measure µ on (0,+∞)

satisfying
∫∞
0

λ
1+λ

dµ(λ) < +∞, such that

f(t) = a+ bt+

∫ ∞

0

tλ

t+ λ
dµ(λ) (3.5)

Note also that φ(0) = a.

For some more details about operator monotone functions see [2, p.p. 144-

145] and [16, Theorem 2.7.11].
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3.4 Spectral measure, integration and

functional calculus

In this section we provide an overview of projection valued or spectral mea-

sure, integrals with respect of such measures and functional calculus for

selfadjoint and normal operators. For more details see e.g. [3].

Denote by P(H) the family of all orthogonal projections on H and let

(Ω,M) be an arbitrary measurable space.

De�nition 3.4.1 A mapping E : M 7→ P(H) is called a spectral measure

on H if the following conditions are satis�ed:

i) E(
∞⋃
n=1

δn) = s −
∞∑
n=1

E(δn), where {δn}∞n=1 is countable or �nite set of

disjoint sets δn ∈ M (countable additivity).

ii) E(Ω) = I (completeness).

(Ω,M,H, E) is referred to a spectral measure space.

Basic properties of spectral measures follow from �nite additivity.

Theorem 3.4.2 Let δ1 and δ2 be arbitrary measurable subsets of Ω, i. e.

(δ1, δ2 ∈ M). Then

i) E(δ1)E(δ2) = E(δ2)E(δ1) = E(δ1 ∩ δ2) (commutativity).

ii) E(δ1 ∩ δ2) = 0 if δ1 ∩ δ2 = ∅ (orthogonality).

iii) E(δ1) ⩽ E(δ2) if δ1 ⊂ δ2 (monotonicity).

With any spectral measure we consider the family of complex measures

de�ned on M with µf,g(δ)
def
=

〈
E(δ)f, g

〉
for δ ∈ M. A spectral measure

generates a family of �nite scalar measures on M. Namely, for f = g

we denote the measure µf,g simply as µf and since µf (δ) =
〈
E(δ)f, f

〉
=

||E(δ)f ||2 ⩾ 0 µf is a positive measure and µf (Ω) = ||E(Ω)f ||2 = ||f ||2.
We have 4µf,g(δ) = µf+g(δ) + µf−g(δ) + iµf+ig(δ)− iµf−ig(δ).

µg,f (δ) =
〈
E(δ)g, f

〉
=

〈
g, E(δ)f

〉
=

〈
E(δ)f, g

〉
= µf,g(δ),

|µf,g(δ)|2 ⩽ µf (δ)µg(δ).

The last inequality follows from∣∣〈E(δ)f, g〉∣∣ = ∣∣〈E(δ)f, E(δ)g〉∣∣ ⩽ ∣∣∣∣E(δ)f ∣∣∣∣∣∣∣∣E(δ)g∣∣∣∣.
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If δn ∈ M for n ∈ N are disjoint sets and δ =
⋃
n

δn

∑
n

|µf,g(δn)| ⩽
∑
n

√
µf (δ)

√
µg(δ) ⩽

(∑
n

µf (δn)
)1/2(∑

n

µg(δn)
)1/2

=
√
µf (δ)

√
µg(δ).

The varaiation |µf,g| of µf,g satis�es

|µf,g|(δ) ⩽
√
µf (δ)

√
µg(δ) (f, g ∈ H, δ ∈ M).

In particular, for δ = Ω we have |µf,g|(Ω) ⩽ ||f || ||g|| .
If φ is a real measurable function on Ω then

E−supφ = {a ∈ R : φ(y) ⩽ a E − a.e}

A function φ is called simple if there exists a partition δ1, . . . , δN of Ω

into disjoint measurable subsets such that φ is constant on each δn i.e.

φ|δn = cn for n = 1, . . . , N . If χδ is the characteristic function of the

set δ then φ =
N∑

n=1

cnχδn . The set Π(Ω,M) of all simple functions is a

dense subalgebra of L∞(Ω, E), where by L∞(Ω,M) is denoted the set of

E-bounded E-measurable functions on Ω. L∞(Ω, E) is endowed with the

norm ||φ||E = E − sup|φ|.

De�nition 3.4.3 The integral of φ ∈ Π(Ω,M) φ =
N∑

n=1

cnχδn with respect

to E is the operator

I(φ) =
∫
φdE

def
=

N∑
n=1

cnE(δn)

The de�nition is independant of the choice of representation. This follows

from the �nite additivity of spectral measure. Indeed, let φ =
N∑

n=1

cnχδn =

M∑
m=1

dmχγm . Then φ(x) = cn = dm for all x ∈ δn∩γm ̸= ∅ and cnE(δn∩γm) =

dmE(δn ∩ γm) for all 1 ⩽ n ⩽ N and 1 ⩽ m ⩽M . In case when δn ∩ γm = ∅
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then E(δn ∩ γm) = 0 and the previous equation is valid. It follows that
N∑

n=1

cnE(δn) =
N∑

n=1

M∑
m=1

cnE(δn∩γm) =
M∑

m=1

N∑
n=1

dmE(δn∩γm) =
M∑

m=1

dmE(γm).

The basic properties of the integral de�ned on Π(Ω,M) are listed below.

Proposition 3.4.4 If φ, ψ ∈ Π(Ω,M), α, β∈ C and f, g ∈ H then

1) I(αφ+ βψ) = αI(φ) + βI(ψ),
2) I(φψ) = I(φ)I(ψ),
3) I(φ)∗ = I(φ̄),
4) I(1) = I,

5) ⟨I(φ)f, g⟩ =
∫
φdµf,g,

6) ⟨I(φ)f, f⟩ =
∫
φdµf ,

7) ||I(φ)f ||2 =
∫
|φ|2dµf ,

8) ||I(φ)|| = E − sup |φ| = ||φ||E .

Now, the de�nition of the integral extends to L∞(Ω, E) by passing to the

limit, i.e. for φ ∈ L∞(Ω, E) we put I(φ) def
= limn→∞ ||φn|| where {φn}n∈N

is an arbitrary sequence of simple function such that ||φn − φ||E = 0. Since

in B(H) the linear operations, the multiplication, the norm and the invo-

lution T 7→ T ∗ are continuous with respect to the convergence in B(H), it

follows thet 4) − 6), 7) 11) hold for arbitrary functions in L∞(Ω, E). The

above properties establish the central result of the theory of integration with

respect to a spectral measure.

Theorem 3.4.5 The mapping I : φ 7→ I(φ) is an isometric isomorphism

of the Banach algebra L∞(Ω, E) with unit 1 and involution φ 7→ φ̄ onto a

commutative subalgebra of B(H) with unit I and involution T 7→ T ∗.

Self-adjoint, normal and unitary oprators admit representations in the form

of integrals taken with respect to suitable spectral measures. Such repre-

sentations are called spectral resolutions (see [3]).

Theorem 3.4.6 Let A be a self-adjoint operator on H. Then, there exists

a unique spectral measure E de�ned on the σ-algebra of Borel subsets of

[− ||A|| , ||A||] such that

A =

∫
σ(A)

λdE(λ).
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Theorem 3.4.7 Let A be an arbitrary unitary operator. Then, there exists

a unique spectral measure on the Borel subsets of the unit circle T such that

A =

∫
T
λdE(λ).

Theorem 3.4.8 For any normal operator A there exists a unique spectral

measure E de�ned on Borel subsets of σ(A) such that

A =

∫
σ(A)

λdE(λ).

In other words, the spectral theorem for normal operators says that every

normal operator is a spectral integral of independent variable taken with

respect to its associated spectral measure. If we denote by j the identical

mapping, the spectral theorem actually says that I(j) = A. From the

Proposition 3.4.4 4) we have I(1) = I and from the properties 1) and 2)

of the same Proposition 3.4.4 it follows that I(jn) = An and I(p) = p(A)

for any polynomial p. For every λ ̸∈ σ(A) the function φλ(z) = 1
z−λ

is

continuous and therefore bounded on the compact σ(A). From 2) of the

Proposition 3.4.4 we obtain

(A− λI)I(φλ) =

∫
σ(A)

(z − λ)dE

∫
σ(A)

1

z − λ
dE =

∫
σ(A)

(z − λ)
1

z − λ
dE = I

which means that it is in fact I(φλ) = (A − λI)−1. From the Proposition

3.4.4 1) and 2) it follows that for any other rational function r with poles

outside the σ(A) the operator r(A) can be identi�ed with I(r). Thus, for a
wider class of functions, a (normal) operator variable can be allowed, more

precisely:

De�nition 3.4.9 Let A ∈ B(H) be a normal operator. For an arbitrary

Borel-measurable bounded function φ on σ(A) we de�ne

φ(A)
def
=

∫
σ(A)

φdE.

The following proposition gives rules for this type of functional calculus.
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Proposition 3.4.10 Let φ, ψ ∈ L∞(Ω, E), α, β∈ C and f, g ∈ H. Then

1) (αφ+ βψ)(A) = αφ(A) + βψ(A),

2) (φψ)(A) = φ(A)ψ(A),

3) φ(A)∗ = φ(A),

4) 1(A) = I,

5) ⟨φ(A)f, g⟩ =
∫
φdµf,g,

6) ⟨φ(A)f, f⟩ =
∫
φdµf ,

7) ||φ(A)f ||2 =
∫
|φ|2dµf ,

8) ||φ(A)|| = E − sup |φ| = ||φ||E .

3.5 Cauchy-Schwarz norm inequalities in

norm ideals of compact operators

We present Cauchy-Schwarz norm inequalities needed to derive inequali-

ties for operator monotone functions and hyponormal operators in the next

chapter.

If family
{
Ct
}
t∈Ω in B(H) consists of mutually commuting normal oper-

ators, i. e. C∗
sCt = CtC∗

s for all t, s ∈ Ω we will refer to it as a m. c. n. o.

family.

Furthermore, if one of the families {At}t∈Ω and {Bt}t∈Ω consists of mu-

tually commuting normal operators, then we have appropriate Cauchy-

Schwarz inequalities for ideals of compact operators CΦ(p)(H) and CΦ(p)∗ (H)

when p ⩾ 2.

The following result was proved in [20].

Theorem 3.5.1 Let p ⩾ 2, X ∈ B(H) and Φ be an arbitrary s. n. function.

Let A,B ∈ L2
G(Ω, µ,B(H)). If {At}t∈Ω is a m. c. n. o. family and

X ∈ CΦ(p)(H), then∣∣∣∣∣∣∣∣∫
Ω

AtXBtdµ(t)

∣∣∣∣∣∣∣∣
Φ(p)

⩽

∣∣∣∣∣∣∣∣(∫
Ω

A∗
tAtdµ(t)

)1/2

X

∣∣∣∣∣∣∣∣
Φ(p)

∣∣∣∣∣∣∣∣∫
Ω

B∗
tBtdµ(t)

∣∣∣∣∣∣∣∣1/2. (3.6)
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Alternatively, if A∗, B∗ ∈ L2
G(Ω, µ,B(H)), {Bt}t∈Ω is a m. c. n. o. family

and X ∈ CΦ(p)(H), then∣∣∣∣∣∣∣∣∫
Ω

AtXBtdµ(t)

∣∣∣∣∣∣∣∣
Φ(p)

⩽

∣∣∣∣∣∣∣∣∫
Ω

AtA∗
tdµ(t)

∣∣∣∣∣∣∣∣1/2∣∣∣∣∣∣∣∣X(∫
Ω

BtB∗
t dµ(t)

)1/2∣∣∣∣∣∣∣∣
Φ(p)

. (3.7)

Proof: For the proof see [20, Theorem 3.1(a)]. ■

Remark 3.5.2 The inequality (3.6) in Theorem 3.5.1 is exactly the inequal-

ity (33) in [24, Lemma 3.4] in special case Ct = A∗
t and Dt = Bt for all t ∈ Ω,

while the inequality (3.7) is exactly the inequality (34) in [24, Lemma 3.4]

in special case Ct = A∗
t and Dt = Bt for all t ∈ Ω.

In [20, Theorem 3.1 b)] it was shown that the commutativity and nor-

mality for any of families {At}t∈Ω and {Bt}t∈Ω is not required for the validity

of (3.6) if A,B ∈ L2
G(Ω, µ,B(H)) and for (3.7) if A∗, B∗ ∈ L2

G(Ω, µ,B(H))

if ||.||Φ(p) is a Hilbert-Schmidt norm ||.||2, i.e. the following inequalities hold.

Theorem 3.5.3 Let A,B ∈ L2
G(Ω, µ,B(H)), X ∈ B(H). If X ∈ C2(H)

then∣∣∣∣∣∣∣∣∫
Ω

AtXBtdµ(t)

∣∣∣∣∣∣∣∣
2

⩽

∣∣∣∣∣∣∣∣(∫
Ω

A∗
tAtdµ(t)

)1/2

X

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∫
Ω

B∗
tBtdµ(t)

∣∣∣∣∣∣∣∣1/2. (3.8)

while if A∗, B∗ ∈ L2
G(Ω, µ,B(H)) and X ∈ C2(H)∣∣∣∣∣∣∣∣∫

Ω

AtXBtdµ(t)

∣∣∣∣∣∣∣∣
2

⩽

∣∣∣∣∣∣∣∣∫
Ω

AtA∗
tdµ(t)

∣∣∣∣∣∣∣∣1/2∣∣∣∣∣∣∣∣X(∫
Ω

BtB∗
t dµ(t)

)1/2∣∣∣∣∣∣∣∣
2

. (3.9)

Proof: For the proof see [20, Theorem 3.1 b)]. ■
The following result was proved in [20] and points out Cauchy-Schwarz

norm inequality for the nuclear norm.

Theorem 3.5.4 If A,B∗ ∈ L2
G(Ω, µ,B(H)) and X ∈ C1(H) then∣∣∣∣∣∣∣∣∫

Ω

AtXBtdµ(t)

∣∣∣∣∣∣∣∣
1

⩽

∣∣∣∣∣∣∣∣(∫
Ω

A∗
tAtdµ(t)

)1/2

X

(∫
Ω

BtB∗
t dµ(t)

)1/2∣∣∣∣∣∣∣∣
1

. (3.10)

The next theorem considers ideals CΦ(p)∗ (H) and was established in [20].
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Theorem 3.5.5 Let p ⩾ 2, Φ be an arbitrary s. n. function and at least

one of families {At}t∈Ω and {Bt}t∈Ω is a m. c. n. o. family. If
∫
Ω
||Atf ||

2 +

||B∗
t f ||

2 dµ(t) < +∞ for all f ∈ H, then for all X ∈ CΦ(p)∗ (H)∣∣∣∣∣∣∣∣∫
Ω

AtXBtdµ(t)

∣∣∣∣∣∣∣∣
Φ(p)∗

⩽

∣∣∣∣∣∣∣∣(∫
Ω

A∗
tAtdµ(t)

)1/2

X

(∫
Ω

BtB∗
t dµ(t)

)1/2∣∣∣∣∣∣∣∣
Φ(p)∗

. (3.11)

Proof: For the proof see [20, Theorem 3.1 d)]. ■
The following result was established in [18].

Theorem 3.5.6 Let Φ be s. n. function and let {At}t∈Ω and {Bt}t∈Ω be

weakly∗-measurable m. c. n. o. families such that
∫
Ω
||Atf ||2+||Btf ||2 dµ(t) <

+∞ for all f ∈ H. Then for X ∈ CΦ(H)∣∣∣∣∣∣∣∣∫
Ω

AtXBtdµ(t)

∣∣∣∣∣∣∣∣
Φ

⩽

∣∣∣∣∣∣∣∣(∫
Ω

A∗
tAtdµ(t)

)1/2

X

(∫
Ω

BtB∗
t dµ(t)

)1/2∣∣∣∣∣∣∣∣
Φ

. (3.12)

Proof: For the proof see [18, Theorem 3.2]. ■
We present now di�erent types of operator Cauchy-Schwarz inequalities

which are established in [20].

Theorem 3.5.7 Let A∗, B ∈ L2
G(Ω, µ,B(H)) and X ∈ B(H).

a1) Then t 7→ AtXBt acting on Ω is weak∗-integrable and∣∣∣∣∫
Ω

AtXBtdµ(t)

∣∣∣∣2 ⩽ ∣∣∣∣∣∣∣∣∫
Ω

AtA∗
tdµ(t)

∣∣∣∣∣∣∣∣ ∫
Ω

B∗
tX

∗XBtdµ(t). (3.13)

a2) For every ε > 0∣∣∣∣(εI +∫
Ω

AtA∗
tdµ(t)

)−1/2∫
Ω

AtXBtdµ(t)

∣∣∣∣2⩽ ∫
Ω

B∗
tX

∗XBtdµ(t). (3.14)

a3) If
∫
Ω
AtA∗

tdµ(t) is additionally invertible, then εI could be omitted in

the inequality (3.14).

a4) If, in addition {At}t∈Ω is a m. c. n. o. family, then∣∣∣∣∫
Ω

AtXBtdµ(t)

∣∣∣∣2 ⩽ ∫
Ω

B∗
tX

∗
(∫

Ω

A∗
tAtdµ(t)

)
XBtdµ(t). (3.15)

Proof: Inequalities (3.13), (3.14) and (a3) are proved in [20, Lemma 2.1],

while the inequality (3.15) is proved in [20, Corollary 2.3]. ■
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3.6 Operator monotone functions and

hyponormal operators

The following results present new norm inequalities for operator monotone

functions, as well as to complement those presented in [18] and [23]. They

were proved in [4].

According to [16, Theorem 2.7.7], an operator increasingly monotone

function φ on (0,+∞) admits its unique extension to the Pick class function,

also denoted by φ, which is analitic in C\(−∞, 0] and satis�es ℑφ(z) > 0 for

all ℑz > 0. Moreover, φ(z) = φ(0) + bz+
∫∞
0

zt
z+t
dµ(t), where

∫∞
0

t
1+t
dµ(t) <

+∞ for all z in the open right half plane IΠ
+ def
=

{
z ∈ C : z+z̄

2
> 0

}
. Thus

φ(A) = bA+
∫∞
0
tA(tI +A)−1dµ(t) for an operator monotone function φ on

[0,+∞) satisfying φ(0) = 0 and for all strictly accretive operator A ∈ B(H).

Lemma 3.6.1 Let φ be an operator monotone function on [0,+∞), given

with the integral representation (3.5), satisfying φ(0) = 0. Then φ′(x) =

b+
∫∞
0

t2

(x+t)2
dµ(t) for all x ∈ (0,+∞).

Proof: We start from the integral representation of an operator monotone

function φ on [0,+∞) given by (3.5). Since φ(0) = 0, it follows that a =

0 and φ(x)−φ(x0)
x−x0

= b +
∫∞
0

t2

(x+t)(x0+t)
dµ(t) for any given x0 ∈ (0,+∞).

Therefore,∣∣∣∣φ(x)− φ(x0)

x− x0
−

(
b+

∫ ∞

0

t2

(x0 + t)2
dµ(t)

)∣∣∣∣ = ∣∣∣∣∫ ∞

0

t2(x0−x)
(x0+t)2(x+t)

dµ(t)

∣∣∣∣
⩽ |x− x0|

∫ ∞

0

t2

|x0+t|2|x+t| dµ(t) ⩽ |x− x0|
∫ ∞

0

t
1+t

t(t+1)

|x0+t|2(t+x0

2
)
dµ(t)

⩽ |x− x0|
∫ ∞

0

(
1 +

∣∣1− 1
x0

∣∣) 2
x0

t
1+t

dµ(t) < ε (3.16)

for |x−x0|< x0

2
and |x−x0|< ε

C
∫∞
0

t
1+t

dµ(t)
, where C :=Cx0 :=

(
1 +

∣∣1− 1
x0

∣∣) 2
x0

is a constant and 0 <
∫∞
0

t
1+t
dµ(t) < +∞. The second inequality in (3.16)

follows because |x−x0| < x0

2
implies x0

2
< x < 3x0

2
and 1

x+t
< 1

t+
x0

2

.We obtain

the last inequality in (3.16) by the following estimates t+1
|x0+t| =

∣∣1 + 1−x0

x0+t

∣∣ ⩽
1+ |1−x0|

x0+t
⩽ 1+ |1−x0|

x0
= 1+

∣∣1− 1
x0

∣∣, 1

t+
x0

2

⩽ 2
x0

and t
x0+t

⩽ 1. The case when∫∞
0

t
1+t
dµ(t) = 0 is trivial. ■
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Lemma 3.6.2 If φ : [0,+∞) 7→ R is operator monotone function satisfying

φ(0) = 0 and operators A,B,X ∈ B(H) are such that A and B are accretive,

then

AXφ(B)− φ(A)XB =

∫ ∞

0

t(tI + A)−1A(AX −XB)B(tI +B)−1dµ(t).

(3.17)

Moreover, if A is also cohyponormal, then

(tI + A∗)−1(tI + A)−1 ⩽
(
tI + A+A∗

2

)−2
. (3.18)

Proof: The condition φ(0) = 0 is equivalent to the fact that a = 0 in the

formula (3.5), so φ(x) = bx +
∫∞
0

tx
x+t

dµ(t) for all x satisfying x ∈ [0,+∞),

where
∫∞
0

t
t+1
dµ(t) < +∞. This implies

AXφ(B)− φ(A)XB = AX
(
bB +

∫ ∞

0

tB(tI +B)−1dµ(t)
)

−
(
bA+

∫ ∞

0

tA(tI + A)−1dµ(t)
)
XB

=

∫ ∞

0

t
(
AXB(tI +B)−1 − A(tI + A)−1XB

)
dµ(t)

=

∫ ∞

0

t(tI + A)−1A(AX −XB)B(tI +B)−1dµ(t). (3.19)

The last equality in (3.19) follows from the following calculus

AXB(tI +B)−1 − A(tI + A)−1XB

= (tI + A)−1((tI + A)AXB − AXB(tI +B))(tI +B)−1

= (tI + A)−1(A2XB − AXB2)(tI +B)−1

= (tI + A)−1A(AX −XB)B(tI +B)−1

If A is additionally cohyponormal, then

(tI + A)(tI + A∗) = t2I + t(A+ A∗) + AA∗

⩾ t2I + 2tA+A∗

2
+ AA∗+A∗A

2
= t2I + 2tA+A∗

2
+
(
A+A∗

2

)2
+
(
A−A∗

2i

)2
=

(
tI + A+A∗

2

)2
+
(
A−A∗

2i

)2
⩾

(
tI + A+A∗

2

)2
,
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which proves the inequality (3.18) since the mapping (0,∞)→ (0,∞): t 7→
t−1 is operator monotone decreasing, due to [16, Lemma 2.5.5]. ■

The previous lemma 3.6.2 implies

Lemma 3.6.3 Let A ∈ B(H) be a strictly accretive operator, satisfying

Aℜ ⩾ cI for some c > 0 and let φ be an operator monotone function on

[0,+∞), such that φ(0) = 0. Then φ(c)− cφ′(c) > 0 and

φ
(
A+A∗

2

)
− A+A∗

2
φ′
(
A+A∗

2

)
⩾

(
φ(c)− cφ′(c)

)
I, (3.20)

so that φ
(

A+A∗

2

)
− A+A∗

2
φ′
(

A+A∗

2

)
is strictly positively de�nite and invert-

ible.

Proof: Consider the function g(x) = φ(x) − xφ′(x) on [0,+∞). Since

g′(x) ⩾ 0 according to the properties of operator monotone functions (see

[16, Corollary 2.5.4]), if follows that g is an increasing real function on

[0,+∞). Therefore if Aℜ ⩾ cI for some positive scalar c > 0 it follows

g(Aℜ) ⩾ g(c)I > 0. Indeed from the spectral calculus we have g(Aℜ − cI) =∫
σ(Aℜ)

g((λ)− g(c))dE(λ) and
〈
(g(Aℜ)− cg(I))h, h

〉
=
∫
σ(Aℜ)

(g(t)− g(c))dµh(t)

is strictly positive where E is the spectral measure associated to Aℜ and

µh is the associated (scalar) measure for an arbitrary h ∈ H, given by

dµh(δ) = ⟨E(δ)h, h⟩ for every Borel set δ ⊂ R. ■

Theorem 3.6.4 Let Ψ, Φ be s.n. functions, let p ⩾ 2, and let φ be an op-

erator monotone function on [0,+∞), such that φ(0) = 0 and let A,B,X ∈
B(H). If A and B are strictely accretive, such that AX−XB∈CΨ(H), then

AXφ(B)− φ(A)XB ∈ CΨ(H) as well, satisfying

||AXφ(B)− φ(A)XB||Ψ ⩽

∣∣∣∣∣∣∣∣√φ
(

A+A∗

2

)
− A+A∗

2
φ′
(

A+A∗

2

)(
A+A∗

2

)−1

A(AX −XB)B
(

B+B∗

2

)−1
√
φ
(

B+B∗

2

)
− B+B∗

2
φ′
(

B+B∗

2

)∣∣∣∣∣∣∣∣
Ψ

(3.21)

a1) if both A and B are normal,

a2)if A is cohyponormal,B is hyponormal and at least one of them is normal,

while Ψ:= Φ(p)∗,

a3) if A is cohyponormal, B is hyponormal and Ψ:= ℓ1;
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2

(
φ
(

B+B∗

2

)
− B+B∗

2
φ′
(

B+B∗

2

))−1/2∣∣∣∣∣∣
Ψ

⩽
∣∣∣∣∣∣√φ

(
A+A∗

2

)
− A+A∗

2
φ′
(

A+A∗

2

)(
A+A∗

2

)−1

A(AX −XB)B
∣∣∣∣∣∣
Ψ
, (3.22)

b1) if A is normal, B cohyponormal and Ψ = Φ(p),

b2) if A and B are both cohyponormal and ||.||Ψ = ||.||2 ,∣∣∣∣(φ(A+A∗

2

)
− A+A∗

2
φ′
(

A+A∗

2

))−1/2
A+A∗

2
(AXφ(B)− φ(A)XB)

∣∣∣∣
Ψ

⩽
∣∣∣∣∣∣A(AX −XB)B

(
B+B∗

2

)−1
√
φ
(

B+B∗

2

)
− B+B∗

2
φ′
(

B+B∗

2

)∣∣∣∣∣∣
Ψ
, (3.23)

c1) if A is hyponormal, B is normal and Ψ = Φ(p),

c2) if A and B are both hyponormal and ||.||Ψ = ||.||2 ,∣∣∣∣∣∣A+A∗

2
(AXφ(B)− φ(A)XB)B+B∗

2

(
φ
(

B+B∗

2

)
− B+B∗

2
φ′
(

B+B∗

2

))−1/2∣∣∣∣∣∣
Ψ

⩽
∣∣∣∣∣∣√φ

(
A+A∗

2

)
− A+A∗

2
φ′
(

A+A∗

2

)
A(AX −XB)B

∣∣∣∣∣∣
Ψ
, (3.24)

d1) if A is normal, B is cohyponormal and Ψ:= Φ(p),

∣∣∣∣(φ(A+A∗

2

)
− A+A∗

2
φ′
(

A+A∗

2

))−1/2
A+A∗

2
(AXφ(B)− φ(A)XB)B+B∗

2

∣∣∣∣
Ψ

⩽
∣∣∣∣∣∣A(AX −XB)B

√
φ
(

B+B∗

2

)
− B+B∗

2
φ′
(

B+B∗

2

)∣∣∣∣∣∣
Ψ
, (3.25)

e1) if A is hyponormal, B is normal and Ψ:= Φ(p).

Proof: To prove a1), let us �rst note that
{
At

}
t⩾0

given by At :=
√
t(tI +

A)−1A+A∗

2
is the [µ] s.i. family, satisfying∫ ∞

0

A∗
tAtdµ(t) ⩽ φ

(
A+A∗

2

)
− A+A∗

2
φ′(A+A∗

2

)
. (3.26)

Indeed, the estimate (3.26) is based on

0 ⩽
∫∞
0
A∗

tAtdµ(t) =
∫∞
0
tA+A∗

2

(
(tI + A)(tI + A∗)

)−1A+A∗

2
dµ(t)

⩽
∫∞
0
tA+A∗

2

(
tI + A+A∗

2

)−2A+A∗

2
dµ(t)

=
∫∞
0
t
(
tI + A+A∗

2
− tI

)(
tI + A+A∗

2

)−2A+A∗

2
dµ(t)

=
∫∞
0
tA+A∗

2

(
tI + A+A∗

2

)−1
dµ(t)− A+A∗

2

∫∞
0
t2
(
tI + A+A∗

2

)−2
dµ(t)

= φ
(
A+A∗

2

)
− A+A∗

2
φ′(A+A∗

2

)
. (3.27)
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The second inequality in (3.27) follows from (3.18) since A is normal and

therefore cohyponormal as well. By analogy, denoting
{
Bt

}
t⩾0

the family

given by Bt :=
√
tB+B∗

2
(tI + B)−1, we see that

{
B∗
t

}
t⩾0

is another [µ] s.i.

family, which satis�es

0 ⩽
∫∞
0

BtB∗
t dµ(t) ⩽ φ

(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

)
. (3.28)

Starting from the formula (3.17), an application of Cauchy-Schwarz norm

inequality (3.12) in Theorem 3.5.6 to [µ] s.i. families
{
At

}
t⩾0
,
{
B∗
t

}
t⩾0

and

Y :=
(
A+A∗

2

)−1
A(AX − XB)B

(
B+B∗

2

)−1
(instead of X) we get the next

inequality in (3.29),

||AXφ(B)− φ(A)XB||Ψ =

∣∣∣∣∣∣∣∣∫ ∞

0

AtY Bt dµ(t)

∣∣∣∣∣∣∣∣
Ψ

⩽

∣∣∣∣∣∣∣∣(∫ ∞

0

A∗
tAt dµ(t)

)1/2

Y

(∫ ∞

0

BtB∗
t dµ(t)

)1/2∣∣∣∣∣∣∣∣
Ψ

(3.29)

⩽

∣∣∣∣∣∣∣∣√φ
(
A+A∗

2

)
− A+A∗

2
φ′

(
A+A∗

2

) (
A+A∗

2

)−1
A(AX −XB)B

(
B+B∗

2

)−1
√
φ
(
B+B∗

2

)
− B+B∗

2
φ′

(
B+B∗

2

)∣∣∣∣∣∣∣∣
Ψ

, (3.30)

while the double monotonicity property (3.1), combined by (3.26) and (3.28)

justi�es the inequality in (3.30).

To prove the inequality (3.21) in the case a2), we apply Cauchy-Schwarz

norm inequality (3.11) in Theorem 3.5.5 instead of (3.12) in Theorem 3.5.6

to the same families
{
At

}
t⩾0

and
{
Bt

}
t⩾0

and for the same Y appearing in

the proof of a1).

The case a3) of the formula (3.21) is proved by analogy to the proofs

already given, but this time by applying Cauchy-Schwarz norm inequality

3.10 for the trace ideals in Theorem 3.5.4. to the same families
{
At

}
t⩾0

and{
Bt

}
t⩾0

and Y as above.

b1) To prove the inequality (3.22) in the case b1), let us note that φ
(

B+B∗

2

)
−

B+B∗

2
φ′
(

B+B∗

2

)
according to Lemma 3.6.3. It follows that

(AXφ(B)− φ(A)XB)B+B∗

2

(
φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2

=
(∫∞

0
t(tI + A)−1A(AX −XB)B(tI +B)−1dµ(t)

)
B+B∗

2(
φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2
=
∫∞
0

AtY Btdµ(t),
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At :=
√
t(tI+A)−1A+A∗

2
, Bt :=

√
t(tI+B)−1B+B∗

2

(
φ
(
B+B∗

2

)
−B+B∗

2
φ′(B+B∗

2

))−1
2

and Y :=
(

A+A∗

2

)−1

A(AX−XB)B. By applying Cauchy-Schwarz inequality

version for Q-norms (3.6) in Theorem 3.5.1 it follows that∣∣∣∣∣∣∣∣∫ ∞

0

AtY Btdµ(t)

∣∣∣∣∣∣∣∣
Φ(p)

⩽

∣∣∣∣∣∣∣∣(∫ ∞

0

A∗
tAtdµ(t)

)1/2

Y

∣∣∣∣∣∣∣∣
Φ(p)

∣∣∣∣∣∣∣∣∫ ∞

0

B∗
tBtdµ(t)

∣∣∣∣∣∣∣∣1/2 =∣∣∣∣∣∣∣∣
√∫ ∞

0

tA+A∗

2
(tI + A∗)−1(tI + A)−1A+A∗

2
dµ(t)

(
A+A∗

2

)−1

A(AX −XB)B

∣∣∣∣∣∣∣∣
Φ(p)

×∣∣∣∣∣∣∣∣(φ (
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2
∫ ∞

0

tB+B∗

2
(tI +B∗)−1(tI +B)−1B+B∗

2
dµ(t)

(
φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2

∣∣∣∣∣∣∣∣1/2
⩽

∣∣∣∣∣∣∣∣√φ
(
A+A∗

2

)
− A+A∗

2
φ′

(
A+A∗

2

)(
A+A∗

2

)−1

A(AX −XB)B

∣∣∣∣∣∣∣∣
Φ(p)

. (3.31)

The inequality (3.31) is obtained analogously as in Theorem 3.6.4 a) accord-

ing to the normality of operator A and the cohyponormality of B, combined

with the fact that (0,+∞) → (0,+∞) : t 7→ t−1 is operator monotone de-

creasing function, as well as the double monotonicity property (3.1) for u.i.

norms.

b2) For the proof of the inequality (3.22) in this case we replace ||·||Φ(p)

by ||·||2 and apply Cauchy-Schwarz norm inequality (3.8) in Theorem 3.5.3

on the same families At and Bt and the same Y instead of Cauchy-Schwarz

inequality (3.6) in Theorem 3.5.1 on those families and Y .

c1) In this case the inequality (3.23) proves in a similar way as the

inequality (3.22) by applying Lemma 3.6.3 and Cauchy-Schwarz norm in-

equality (3.7) in Theorem 3.5.1 on the families

At :=
√
t
(
φ
(
A+A∗

2

)
− A+A∗

2
φ′ (A+A∗

2

))−1/2 A+A∗

2
(tI + A)−1, (3.32)

Bt :=
√
tB+B∗

2
(tI+B)−1, where Bt consists of commuting normal operators,

operator Y := A(AX −XB)B
(

B+B∗

2

)−1

and by using the hypomormality

for the operator A.

c2) Similarly, the proof of the inequality (3.23) in this case requires to

replace ||·||Φ(p) by ||·||2 and to apply the Cauchy-Schwarz norm inequality
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(3.9) in Theorem 3.5.3 instead of Cauchy-Schwarz norm inequality (3.7) in

Theorem 3.5.1 to the same families At and Bt and the same Y.

d1) To prove the inequality (3.24) in this case, we note that φ
(

B+B∗

2

)
−

B+B∗

2
φ′
(

B+B∗

2

)
is invertible due to Lemma 3.6.3. It follows that

A+A∗

2
(AXφ(B)− φ(A)XB)B+B∗

2

(
φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2

= A+A∗

2

(∫∞
0
t(tI + A)−1A(AX −XB)B(tI +B)−1dµ(t)

)
B+B∗

2(
φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2
=
∫∞
0

AtY Btdµ(t),

At :=
√
tA+A∗

2
(tI+A)−1, Bt :=

√
t(tI+B)−1B+B∗

2

(
φ
(
B+B∗

2

)
−B+B∗

2
φ′(B+B∗

2

))−1
2

and Y := A(AX −XB)B. By applying Cauchy-Schwarz inequality version

for Q-norms (3.6) in Theorem 3.5.1 it follows that∣∣∣∣∣∣∣∣∫ ∞

0

AtY Btdµ(t)

∣∣∣∣∣∣∣∣
Φ(p)

⩽

∣∣∣∣∣∣∣∣(∫ ∞

0

A∗
tAtdµ(t)

)1/2

Y

∣∣∣∣∣∣∣∣
Φ(p)

∣∣∣∣∣∣∣∣∫ ∞

0

B∗
tBtdµ(t)

∣∣∣∣∣∣∣∣1/2
=

∣∣∣∣∣∣∣∣√∫∞
0

A+A∗

2
t(tI + A)−1(tI + A∗)−1A+A∗

2
dµ(t)A(AX −XB)B

∣∣∣∣∣∣∣∣
Φ(p)

×∣∣∣∣∣∣∣∣(φ (
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2
∫ ∞

0

tB+B∗

2
(tI +B∗)−1(tI +B)−1B+B∗

2
dµ(t)

(
φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2

∣∣∣∣∣∣∣∣1/2
⩽

∣∣∣∣∣∣∣∣√φ
(
A+A∗

2

)
− A+A∗

2
φ′

(
A+A∗

2

)
A(AX −XB)B

∣∣∣∣∣∣∣∣
Φ(p)

. (3.33)

The inequality (3.33) is obtained similarly as in previous cases using normal-

ity of operator A and the cohyponormality of B, combined with the fact that

(0,+∞) → (0,+∞) : t 7→ t−1 is an operator monotone decreasing function,

and the double monotonicity property (3.1) for u.i. norms.

e1) The inequality in (3.25) proves in a similar way as the inequality (3.24) by

applying Lemma 3.6.3 and Cauchy-Schwarz norm inequlity (3.7) in Theorem

3.5.1 for the families

At :=
√
t
(
φ
(
A+A∗

2

)
− A+A∗

2
φ′ (A+A∗

2

))−1/2 A+A∗

2
(tI + A)−1, (3.34)

Bt :=
√
t(tI+B)−1B+B∗

2
, where Bt consists of commuting normal operators,

operator Y := A(AX − XB)B and by using the hypomormality for the

operator A.
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■

Theorem 3.6.5 Let Ψ be s.n. function, let φ be an operator monotone

function on [0,+∞) such that φ(0) = 0 and let A,B ∈ B(H). If A and

B are strictly accretive normal operators, then for all X ∈ B(H) such that

AX−XB∈CΨ(H), we have AXφ(B)−φ(A)XB ∈ CΨ(H) as well, satisfying

∣∣∣∣∣∣∣∣(φ (
A+A∗

2

)
− A+A∗

2
φ′ (A+A∗

2

))−1/2
(AXφ(B)− φ(A)XB)

(
φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2

∣∣∣∣∣∣∣∣
Ψ

⩽
∣∣∣∣∣∣(A+A∗

2

)−1
A(AX −XB)B

(
B+B∗

2

)−1
∣∣∣∣∣∣
Ψ
, (3.35)∣∣∣∣A+A∗

2
(AXφ(B)− φ(A)XB)B+B∗

2

∣∣∣∣
Ψ
⩽

∣∣∣∣∣∣∣∣√φ
(
A+A∗

2

)
− A+A∗

2
φ′

(
A+A∗

2

)
A(AX −XB)B

√
φ
(
B+B∗

2

)
− B+B∗

2
φ′

(
B+B∗

2

)∣∣∣∣∣∣∣∣
Ψ

, (3.36)∣∣∣∣∣∣∣∣A+A∗

2

(
φ
(
A+A∗

2

)
− A+A∗

2
φ′ (A+A∗

2

))−1/2
(AXφ(B)− φ(A)XB)

(
φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2 B+B∗

2

∣∣∣∣∣∣∣∣
Ψ

⩽ ||A(AX −XB)B||Ψ. (3.37)

Proof: The proof goes by analogy to the proof of Theorem 3.6.4a). φ
(
A+A∗

2

)
−

A+A∗

2
φ′ (A+A∗

2

)
and φ

(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

)
are strictly positively de�-

nite and invertible according to Lemma 3.6.3. To prove (3.35) we just apply

(3.29) to
(
φ
(
A+A∗

2

)
− A+A∗

2
φ′(A+A∗

2

))−1/2
Y
(
φ
(
B+B∗

2

)
− B+B∗

2
φ′(B+B∗

2

))−1/2

instead of Y , where Y is the same as in Theorem 3.6.4. Similarly, (3.36) fol-

lows by direct application of (3.29) to A+A∗

2
Y B+B∗

2
instead of Y , and to prove

(3.37) we apply (3.29) to the operator A+A∗

2

(
φ
(
A+A∗

2

)
− A+A∗

2
φ′(A+A∗

2

))−1/2
Y(

φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))−1/2B+B∗

2
instead of Y. ■

Similarly as in the proof of Lemma 3.6.2, by applying Lemma 3.6.3 the

following can be obtained.

Corollary 3.6.6 If A,B ∈ B(H), where A is strictly accretive and cohy-

ponormal and B is strictly accretive and hyponormal, and if φ is an operator

monotone function on [0,+∞) such that φ(0) = 0, then
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φ
(
A+A∗

2

)
− A+A∗

2
φ′ (A+A∗

2

))− 1
2

∫ ∞

0

tA+A∗

2
(tI + A∗)−1(tI + A)−1A+A∗

2
dµ(t)(

φ
(
A+A∗

2

)
− A+A∗

2
φ′ (A+A∗

2

))− 1
2 ⩽ I.(

φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))− 1
2

∫ ∞

0

tB+B∗

2
(tI +B)−1(tI +B∗)−1B+B∗

2
dµ(t)(

φ
(
B+B∗

2

)
− B+B∗

2
φ′ (B+B∗

2

))− 1
2 ⩽ I.

Theorem 3.6.7 Let Ψ be s.n. function, let A,B ∈ B(H) be strictly accre-

tive normal operators, X ∈ B(H) and θ ∈ (0, 1). If AX − XB ∈ CΨ(H)

then AX log(I +B)− log(I +A)XB, AXBθ −AθXB ∈ CΨ(H) as well and∣∣∣∣A+A∗

2
(AX log(I +B)− log(I + A)XB)B+B∗

2

∣∣∣∣
Ψ

⩽

∣∣∣∣∣∣∣∣√log
(
I + A+A∗

2

)
− A+A∗

2

(
I + A+A∗

2

)−1
A(AX −XB)B√

log
(
I + B+B∗

2

)
− B+B∗

2

(
I + B+B∗

2

)−1

∣∣∣∣∣∣∣∣
Ψ

, (3.38)

∣∣∣∣AXBθ − AθXB
∣∣∣∣
Ψ
⩽ (1− θ)

∣∣∣∣∣∣∣∣(A+A∗

2

) θ
2
−1
A(AX −XB)B

(
B+B∗

2

) θ
2
−1

∣∣∣∣∣∣∣∣
Ψ

,

(3.39)∣∣∣∣∣∣(A+A∗

2

)− θ
2 (AXBθ − AθXB)

(
B+B∗

2

)− θ
2

∣∣∣∣∣∣
Ψ

⩽ (1− θ)
∣∣∣∣∣∣(A+A∗

2

)−1
A(AX −XB)B

(
B+B∗

2

)−1
∣∣∣∣∣∣
Ψ
, (3.40)∣∣∣∣A+A∗

2
(AXBθ − AθXB)B+B∗

2

∣∣∣∣
Ψ

⩽(1− θ)
∣∣∣∣∣∣(A+A∗

2

) θ
2A(AX −XB)B

(
B+B∗

2

) θ
2

∣∣∣∣∣∣
Ψ
, (3.41)∣∣∣∣∣∣(A+A∗

2

)1− θ
2 (AXBθ − AθXB)

(
B+B∗

2

)1− θ
2

∣∣∣∣∣∣
Ψ
⩽ (1− θ)||A(AX −XB)B||Ψ.

(3.42)

Proof: The application of the inequality (3.36) on the operator monotone

function φ(t) := log (1 + t) gives (3.38), while the applicatin of the inequal-

ities (3.21), (3.35), (3.36) and (3.37) on the operator monotone function

φ(t) := tθ for θ ∈ (0, 1) gives (3.39), (3.40), (3.41) and (3.42), respectively.

■
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Theorem 3.6.8 Let A,B ∈ B(H) be strictly accretive operators, X ∈
B(H) such that AX − XB ∈ CΦ(p)(H), p ⩾ 2 and let θ ∈ (0, 1) . Then

AX log(I +B)− log(I + A)XB, AXBθ − AθXB ∈ CΨ(H) as well and

a) If A is hyponormal and B is normal then∣∣∣∣∣∣∣∣(log (I + A+A∗

2
)− A+A∗

2
(I + A+A∗

2
)−1

)−1/2 A+A∗

2
(AX log (I +B)

− log (I + A)XB)B+B∗

2

∣∣∣∣∣∣∣∣
Φ(p)

⩽
∣∣∣∣A(AX −XB)B

√
log (I + B+B∗

2
)− B+B∗

2
(I + B+B∗

2
)−1

∣∣∣∣
Φ(p) , (3.43)∣∣∣∣(A+A∗

2
)1−

θ
2 (AXBθ − AθXB)B+B∗

2

∣∣∣∣
Φ(p)

⩽ (1− θ)
∣∣∣∣A(AX −XB)B(B+B∗

2
)
θ
2
∣∣∣∣
Φ(p) . (3.44)

b) If A is normal and B cohyponormal then∣∣∣∣∣∣∣∣A+A∗

2
(AX log (I +B)− log (I + A)XB)B+B∗

2
(log (I + B+B∗

2
)

−B+B∗

2
(I + B+B∗

2
)−1)−1/2

∣∣∣∣∣∣∣∣
Φ(p)

⩽
∣∣∣∣√log (I + A+A∗

2
)− A+A∗

2
(I + A+A∗

2
)−1A(AX −XB)B

∣∣∣∣
Φ(p) , (3.45)∣∣∣∣A+A∗

2
(AXBθ − AθXB)(B+B∗

2
)1−

θ
2
∣∣∣∣
Φ(p)

⩽ (1− θ)
∣∣∣∣(A+A∗

2
)
θ
2A(AX −XB)B

∣∣∣∣
Φ(p) . (3.46)

Proof: The inequalities (3.43) and (3.45) are direct consequences of the ap-

plication of inequalities (3.25) and (3.24) to the operator monotone function

[0,+∞)→ [0,+∞) : t 7→ log(1 + t), while the inequalities (3.44) and (3.46)

are proved by applying the inequalities (3.25) and (3.24) to the operator

monotone function [0,+∞)→ [0,+∞) : t 7→ tθ for 0 < θ < 1.

■
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