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Dissertation title: U- and V-statistics for incomplete data and their application to model
specification testing

Abstract: This dissertation addresses the problem of model specification testing in situa-
tions where data are incomplete, utilizing the existing theory of non-degenerate and weakly
degenerate U- and V-statistics. The first two chapters lay the theoretical groundwork by pre-
senting essential concepts related to U- and V-statistics and the general mathematical frame-
work of missing data analysis, which serve as the foundation for the new results developed in
subsequent chapters.

In Chapter [, a novel test for assessing the missing completely at random (MCAR) assump-
tion is introduced. This test demonstrates improved control of the type I error rate and supe-
rior power performance compared to the main competitor across the majority of the simulated
scenarios examined.

Chapter @ explores the application of Kendall's test for independence in the presence of
MCAR data. It provides both theoretical insights and simulation-based comparisons of the
complete-case analysis and median imputation, pointing out their individual advantages and
drawbacks.

Chapter [ focuses on testing for multivariate normality when data are incomplete. It rig-
orously establishes the validity of the complete-case approach under MCAR and proposes a
bootstrap method to approximate p-values when imputation is employed. Additionally, vari-
ous imputation techniques are evaluated with respect to their impact on the type I error and
the power of the test.

Finally, Chapter [f adapts the energy-based two-sample test to handle missing data by intro-
ducing a weighted framework that makes full use of all available observations. Alongside some
theoretical developments, the chapter presents two distinct bootstrap algorithms for p-value
estimation under this approach. Additionally, the performance of several imputation methods
is examined in this context, and appropriate bootstrap algorithm is proposed for that setting.

Keywords: missing data, model specification testing, tests of MCAR, independence testing,
goodness-of-fit testing, two-sample testing, bootstrap.

Scientific Area: Mathematics
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HacnoB mokropcke guceprauuje: U- U V-cTaTUCTHKe 3a HEKOMIUIETHE MOAAaTKe U BUX0Ba
NpPUMEHA y TeCTUPAaky CarIaCHOCTH Ca MOJEJIOM

Caxxetak: OBa guceptauuja 0aBu ce mMpodIEeMOM TeCTUpPamwa CaraaCHOCTH Ca MOIEIOM Yy
MPUCYCTBY HelocTajyhux nmojaaTtaka, ociaawajyhu ce Ha nocrtojehy Teopujy HejlereHepucaHux 1
cnabo perenepucanux U- u V-cratuctuka. [IpBe [Be Iy1aBe MOCTaB/bajy TEOPHjCKE OCHOBE TaKO
IITO MPUKA3yjy OCHOBHE KOHLeMNTe Y Be3u ca U- U V-CTaTUCTHKaMa, Kao ¥ OMLITH MaTeMAaTUUKH
OKBHD 3a aHJIM3y He#ocTajyhux mogaTtaka, WITO CJIYXKH Kao MOJa3Ha Tauka 3a HOBE pe3ysTaTe
W3 HapeJHUX I71aBa.

[;maBa [ yBOAM HOBM TECT 3a TECTUPAWE MPETIOCTAaBKE [a MOAAly HENOCTajy Ha MOTIYHO
cnyvajad HauuH (MCAR). McniocTasma ce ja HOBU TeCT y BehHMHM NpOy4YaBaHUX CLieHapHja UMa
00/by KOHTPOJTY IPELLKe MTPBE BPCTe Y OAHOCY Ha IVIaBHOT KOHKYPEHTA, a Takohe uma dosbe nep-
dbopmance u 'y cMmuciay mohu TecTa.

Y I'masu [ ananusupa ce npumeHa KeHjanoBOr TecTa HE3aBUCHOCTH Ha MOJATKE KOjU He-
[0CTajy Ha MOTIYHO CilydajaH HauuH. [IpuUCTynu ykiamama CBUX HEKOMIUIETHUX €JIEMEHaTa
y30pKa ¥ NOMy’kaBamba y30paykoM MEIUjaHOM MOpeLe Ce KaKO TEOPHUjCKH, TAKO U EMIIUPHjCKH,
yKasyjyhu Ha IpegHOCTH U HeJoCTaTKe CBAKOT MPHUCTYIA.

ITusb [1aBe [{ jecTe TecTHpame NPETIOCTaBKe BUIIESUMEH3HOHAIHE HOPMaIHOCTH NT0JlaTakKa
OHJIa KaJla OHY AEeTMMUYHO HeloCcTajy. Teopujcku ce moTBphyje BaTUAHOCT IPUCTYTIA YKIambamba
HEKOMIUJIETHUX €JIEMEHaTa y3opKa npu npernocrtaBuu MCAR Hepocrajama, a dyTcTpen anro-
pUTaM ce mpeiaxe 3a alpOKCUMalHjy p-BpPeIHOCTH Kaja Ce MOJalM NOMyHaBajy HEKUM O]
mertona. Takohe, pasHM METOOU MONywaBawa MOpPENe CE y CMUCIY yTHUILdja HAa TPEUIKy MpBe
BpCTE U MOh TecTa.

Konauno, ['maBa [ 5aBu ce TeCTOM jefHAKOCTH Y paCIIOfENIX 3aCHOBAHOM Ha energy pacTojamy
Y BErOBOM NpWIarohasamy yCJIOBMMa HENOCTajyhHX MojaTaka. YBOOM CE€ TEXWUHCKH MPUCTYI
KOjH je y CTamy ia UICKOPUCTH CBE JOCTynHe nopaTtke. [lopen Teopujckux pesynTara, Hyfe Ce IBa
pas3nuumuTa OyTCTpEeNn aJrOpUTMa 3a alPOKCUMaLHN]jy pP-BpeJHOCTH ITPU TOM NpHUCTymy. Takobe,
MpoyYyaBajy ce U nepdopMaHce HEKOJULMHE METOJa MOoMywaBawa HeAoCTajyhux mogaraka y
KOHTEKCTY OBOT TeCTa U MpeJjiaXe ce ogroapajyhu dyTcTpen aaropuTam.

KibyuHe peun: HenocTajyhu nojamnu, TeCTUpame Car’aaCHOCTH Ca MOJE/IOM, TECTUPAKE MOT-
MYHO CJIy4ajHOT HEJOCTajama, TECTUPAKE HE3aBUCHOCTH, TECTUPAKE CArJIaCHOCTU Ca pacrnoje-
JIOM, TECTUPame JeTHAKOCTH y PACIIONeNH, OyTCTPeIl.

HayuHa odnacT: MaTemMaTuka

Yxa Hay4yHa oDiact: BepoBaTtHOha U cTaTUCTHKA
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Table 1: Abbreviations used throughout the dissertation and their meanings

Abbreviation Meaning
BHEP Baringhaus—Henze—Epps—Pulley
CDF Cumulative distribution function
ECDF Empirical CDF
EMAR Everywhere MAR
EMCAR Everywhere MCAR
GOF Goodness-of-fit
IID Independent and identically distributed
MAAR Missing always at random
MAR Missing at random
MACAR Missing always completely at random
MCAR Missing completely at random
MLE Maximum likelihood estimate
MNAAR Missing not always at random
MNAR Missing not at random
MVN Multivariate normality
RMAR Realized missing at random

RMCAR Realized missing completely at random

Table 2: Mathematical notation used throughout the dissertation

Symbol Meaning
N={1,2,...} The set of natural numbers
R The set of real numbers
I, Identity d x d matrix (subscript omitted when clear)
Ja d x d matrix with all elements equal to 1
E Expected value
Var Variance
Cov Covariance (or covariance matrix)
Cor Pearson’s correlation (coefficient or matrix)
P Probability
D . . . .
— Convergence in distribution
P . [
— Convergence in probability
AT The transpose of the matrix A
Tr The trace of a matrix/operator
a=b a is identically equal to b
=, Or =: Equality by definition
f=0s(g) f=h-g and h is bounded in probability
f=o0p(g) f=h-g and h has zero limit in probability
sgnx —1ifx<0,0if x=0,1if x>0
N (u,0?%) Univariate normal distribution with mean u and variance o
E(A) Exponential distribution with rate parameter A
Na(u,X) d-variate normal distribution with mean y and variance mat. X
@ CDF of the standard normal distribution

xi
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Preface

You are the handicap you must face.

You are the one who must choose your place.
You must say where you want to go,

How much you will study the truth to know.
God has equipped you for life, but He

Lets you decide what you want to be.

Edgar A. Guest, Equipment

One of the key assumptions in most statistical analyses is that the chosen model adequately
reflects the data-generating process. Whether one is building a regression model, estimating
parameters of a probability distribution, or examining the relationship between variables, an
implicit assumption is always made: the model must be correctly specified. The existence of
model specification testing plays an important role for the validity of any analysis. It asks, in
a mathematically rigorous way, whether the assumptions we make about the data are justified
enough by the data themselves.

Specification testing is a broad area, as it encompasses a wide range of fundamental prob-
lems in statistics. When assessing whether a particular distribution adequately describes the
observed data, we enter the domain of goodness-of-fit testing. Determining whether two vari-
ables are independent, or whether a hidden dependence structure exists, falls under indepen-
dence testing. Evaluating whether two samples are drawn from the same probability distribu-
tion leads us to two-sample testing. Additionally, problems such as testing whether data are
missing according to a specific missingness mechanism are, at their core, tests of whether an
assumed model is consistent with the observed data.

In many applied fields, model misspecification is not just an academic inconvenience, but
can lead to serious problems. A notable example is the analysis of medical data. A model
that underestimates risk, overlooks dependence, or assumes a normal distribution when none
exists may yield results that are dangerously misleading. It is therefore no surprise that the
development of specification tests has become a growing area of both theoretical and applied
statistics.

However, real data are often subject to various forms of imperfection. Missing values,
whether arising from nonresponse, measurement issues, or data corruption, are a challenge
that not only fails to disappear over time, but becomes increasingly prominent nowadays as
more and more data are becoming available. Classical specification tests, although elegant in
theory, are often not applicable in the presence of missing data. This gap between the theoret-
ical aspects of model specification testing and the practical obstacles of incomplete data has
led to many new research efforts.

This thesis contributes to that work by developing a new testing procedure for assessing,
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under a specified framework, whether data are missing completely at random (MCAR), a com-
mon assumption in many statistical analyses involving missing data. In addition to that, it pro-
poses the adaptations of several popular specification tests, such as those for independence,
goodness-of-fit, and equality of distributions, to remain applicable in the presence of missing
data.

This work lies at the intersection of theory and practice, guided by the idea that formal
statistical tools should still be useful even when the data are not perfect. Real-world data are
often subject to missingness and other data imperfections, and if statistical methods are to
be trusted, they need to work well in such settings. Although there is still much to explore
and understand, the results in this thesis aim to take a step in that direction. They reflect an
effort to make model specification testing more reliable and practical, and to connect classical
statistical ideas with the real challenges encountered in modern data analysis.



Chapter 1

U- and V-statistics

This chapter introduces two important and fundamental classes of statistics, known as U- and
V-statistics, which are natural generalizations of sample averages. V-statistics were first in-
troduced by von Mises (1947), although not under that name, and U-statistics by Hoeffding
(1948).

The literature on U- and V-statistics is extensive, and a comprehensive overview is beyond
the scope of this thesis. In the remainder of this chapter, we present the definitions of U-
and V-statistics, along with their asymptotic properties which are directly related or closely
connected to the results discussed in Chapters B of this thesis. For further details, we refer
the reader to Lehmann (1999) and Koroljuk and Borovskich (2010), as well as the references
cited therein.

As we will see shortly, U- and V-statistics are defined very similarly to each other, which
leads to asymptotic results that are often similar and, in some cases, identical.

1.1 Definitions

Let Xj,..., X, be a sample of IID random vectors that take values in R?, and let ¢(x,,..., x,,)
be a measurable function symmetric with respect to its arguments. Then, a U-statistic with
kernel ¢ is defined as

UnzL Z (X, X

Im

). (1.1)

n
(m) 1< <ip<<ipyp<n
If we assume that E(¢ (X, ..., X,,)°) < 00, we define o? as

Ui :(COV(¢(X1)X2»XS)---)Xm)) ¢(X1,X2/,X;,---,X/ ));

m
and
o2 =Cov((X,, X0, X3, .., Xon), @(X1, X5, Xy, X)),

m

where X ]’ is an independent copy of X;. We say that U, (or ¢) is non-degenerate if o> >0, and
weakly degenerate if o5 >0 and o2 = 0. If we define the first projection of a kernel ¢ as

¢1(JC) :E(¢(X1’X2>---)Xm) | Xl = X)—g,
where 0 =E(¢ (X, ..., X,,)), it can be shown (Hoetfding, 1948) that

ot =Var(¢,(X))).
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It is evident that U-statistic is an unbiased estimator of 0. Additionally, the Law of large
numbers holds: under some very weak conditions, e.g. E(¢ (X, ..., X,,)?) < oo (see e.g. Hoeftd-

ing, 1948), it holds that U, is a consistent estimator of @, i.e. U, L 0, n— oo.
Similarly to a U-statistic, we can define a V-statistic with kernel ¢ as

1 n
Vo= Z O(Xi,..., X; ). (1.2)

il,i2,...,im=1

U- and V-statistics often arise unexpectedly as either parameter estimates or test statistics,
so it is of a great importance to have insights into their asymptotic properties, especially for
non-degenerate and weakly degenerate case, as those are the most commonly encountered in
practice.

Two-sample U- and V-statistics

It is common to consider settings in which two IID samples X;,..., X, and Y¥,...,Y,, of d-
variate random vectors are observed. Analogously to ([I.7)), we can define the two-sample U-
statistic with the kernel ¢(xy,..., X, %1,--+» Yim,) @S

1
Unlngzm Z ¢(Xi1’---)Ximl;leyu-)ijz))

myJ\my l<i1<i2<--~im1<n1
I<h <j2<'“jmg <y

where the kernel is symmetric with respect to permutations of xy,..., x,, and y,..., Y,,. Two-
sample V-statistic is defined in the same manner.

The degeneracy of the kernel ¢, as well as all of the other technical aspects, are defined
analogously to the one-sample case. Moreover, the analogous asymptotic results in both cases
hold.

Chapter f is devoted to the study of the energy test statistic, which is itself a two-sample
V-statistic. However, since it is examined from a very specific perspective in that chapter,
including the general asymptotic results for the two-sample case here would be redundant.
Instead, in Section [I.4 we present only the results relevant to our work in Chapter [, namely
those by Neuhaus (1977) concerning two-sample U- and V-statistics.

For a general overview of the results in the field, the reader is referred to the books by
Lehmann (1999), Koroljuk and Borovskich (2010), and Henz€ (2024), among others.

1.2 Asymptotic behavior of non-degenerate U- and V- statis-
tics

Asymptotic properties of non-degenerate U-statistics will be an essential part of derivation of
our results in Chapters B and f, so it is useful to have the necessary results restated in this
dissertation.

The following theorems, which we will refer to later, are famous results proved by Hoeffding
(1948). Theorem 1.7 states the asymptotic distribution of a single non-degenerate U -statistic,
and Theorem [T.Z2 provides the joint asymptotic distribution of two non-degenerate U-statistics
calculated on the same sample. We also note that Theorem [I.7 also holds for non-degenerate
V-statistic V,,, but that result will not be relevant for our further research.

THEOREM 1.1 [HOEFFDING (1948)]. Let X,..., X,, be a sample of IID d-variate random vectors
and let ¢(xy, ..., x,,) be a symmetric kernel such that E¢(X,,...,X,,)= 0 and E¢?*(X;,..., X,,) < 0.
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Suppose that 03> 0. Then, as n — oo,

VAU, —0) > (0, m*a?).

THEOREM 1.2 [HOEFFDING (1948)]. Let

1 1
U= _— PpM(X,.. X))
(a) 1<i1<ip<<iz<n
and
1
2 2
U}’E):T ¢( )(Xll”le)
(b) 1< <ip<-<ip<n

be two non-degenerate U-statistics with kernels ¢V and ¢, respectively. Let E¢W(X,,..., X,)? <
+00 and E¢P(X;,...,X,)? <+oo. Then, as n — oo,

(Va(UV-6,),vi(U?-6,)) > .4(0,%),

n n

where X is a limit value of the covariance matrix of v (U"V—0,) and +/n(U® — 6,), which is equal
to

2 52
X= [a 7L 6121902'11 ],
abo,, b o1 )

where
o1 =E(¢"(X)pP (X)) =Cov(pM(X), Xy, ..., X,), 92X, X5, ..., X)),

where X is an independent copy of X;, for every j. Furthermore,
o, =Var(¢{(X),

and o o) 1S defined in a similar manner.

1.3 Asymptotic behavior of weakly degenerate U- and V-sta-
tistics

Since Chapter [ is devoted to gaining insight into the asymptotic distribution of a specific
weakly degenerate V-statistic, this section presents several theoretical preliminaries and asymp-
totic results that are closely related to that topic.

Consider a sample X;, X,,..., X,, of IID d-variate random vectors with common CDF F. Let
P(Xy,X,,...,X,,) be a symmetric kernel with expected value 8, and assume that it is weakly
degenerate.

Consider the weakly degenerate U-statistic with the kernel ¢, as in (I.7)). Define, for any
x,y €R?, the second projection

Po(x, Y)=E(d(X}, X, X)) | X1 = %, X, = y) — 6. (1.3)

Next, define the integral operator A: L2(R?, dF) — L?(R¢, dF) as

Ag(X)=f ¢a(x, y)g(y)dF(y). (1.4)
Rd
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It is a well-known result (e.g. Henze, 2024, pp. 119) that, under the assumption of finite
second moment of the kernel, this operator is compact and self-adjoint, so its eigenvalues
form a decreasing sequence of positive real numbers, that we will denote by {A;, j > 1}, with
zero limit.

The following result was discovered independently by Gregory (1977) and Serfling (1980).
For detailed explanation and complete proofs, see, e.g. Henz¢ (2024), Ch. 8.

THEOREM 1.3 [GREGORY (1977), SERFLING (1980)]. Let U, be a weakly degenerate U-statistic
with the kernel ¢ as in (1), and let E¢*(X,,X,,...,X,,) < 0o. Let ¢, be as in (1.3), and let
{A;,] = 1} be the sequence of the eigenvalues of the associated integral operator (1.4). Then, it
holds that

n(Un—H)g(’:)ZAj()(ﬁj—l), n— oo, (1.5)
j=1

where { )(1 . j = 1} are IID random variables with y? distribution.

The corresponding result for V-statistics was discussed by both Gregory| (1977) and Sertling
(1980), with the main focus on the case of m =2, and a kernel with zero mean. This scenario
frequently arises in applications where the value of the test statistic being close to zero is in-
dicative of the null hypothesis being true. In that case, which will also be the primary focus of
Chapter [f, we consider the statistic

- _Zz(p X, X;), (1.6)
i=1 j=1
which can be decomposed as

:_Z¢(X1’X)+_ZZ¢ XZ’X

i=1 j=1

J#i
1 < n—
=— D 9K X)+— Z (X, X;).
n i=1 1<l<]<n
So, it follows that
1 n
nV,=—> (X, X))+ nU,—U,. (1.7)

n i=1

Having this, we immediately obtain the following theorem.

THEOREM 1.4. Let V,, be a weakly degenerate V-statistic as in ([[.§), and let E|¢(X;, X;)| < 00,
E¢?(X,, X,) < 00, and E¢(X,, X,)=0. Then, as n — oo, it holds that

nv, B’E¢(X1,X1)+ZAJ(112,]'_1)’
j=1

where { )(1 » j = 1} are IID random variables with y? distribution, and {2 ;, j > 1} are eigenvelues of
the mtegml operator defined in (1.4).

We say that an operator is trace-class if its singular values are summable. In the case of
compact and self-adjoint operator this condition is equivalent to Z’;:I |A;| < o0, where A; are
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its eigenvalues. If we additionally assume that the operator A defined in ([.4) is trace-class,
then it follows (see e.g. Brislawn, 1991) that

E¢(X;, X;)=Tr(A) =f ¢(x, x)dx = ZAJ.
Rd
As a direct consequence, ([I.7) becomes

o0
D
nv, — E Ajxy; m—oo.
j=1

Determining whether integral operator ({.4) is trace-class is not a trivial task, and characte-
rization-based criteria tend to be very abstract. Notable results in this area include the criteria
established by Brislawn (1988, 1991). Additionally, Simon (2005 provides valuable insights
and further references on this topic.

1.4 Results of Neuhaus (1977) for weakly degenerate two-
sample U- and V-statistics

In this section, we present some of the results obtained by Neuhaug (1977) which are related
to our work in Chapter . We note that this is only part of those results, and that they are
slightly more general than those presented here. Moreover, we heavily modified the notation
from the original paper to best suit our needs.

Consider two independent samples X;, X,,...,X, and ¥, Y;,...Y,, of IID d-variate random
vectors with common CDF F, and let h(x;, x,; 1, }») be a measurable kernel symmetric with
respect to the mutual permutations of x; and x,, or y; and y,, and let ]E(hz(Xl,Xz; Y, 1/2)) < 00.
Additionally, assume that & is degenerate kernel in a way that

hl,l(x’y) = E(h(XI’XZ; Y, Yz)|X1 =x, %= J’) =0

for almost every pair (x, y), under the distribution of (X;, V).
According to the Spectral Theorem (for a modern reference see, e.g. Henze, 2024, Th.
8.14), there exists an orthonormal sequence f;, f;,...€L?(R??,dF(x)dF(y)) of functions such

that ffj(x,y)dF(x)dF(y) =0 for j > 1, and a diminishing sequence A, A,,... of positive real
numbers such that Z;’Zl 2= E(h%(Xy, Xp; Y1, ¥3)) < 00, so that, if

h* (X1, X5 1, o) = lefj(xp mfi(x2, »),

j=1
then
lim E[(h(Xy, X;; ¥i, ¥,)— h*(X1, Xo Yi, K))°] =0.
Moreover, A, A,,... are eigenvalues of the integral operator
A:L*(R*,dF(x)dF(y)) — LA (R*,dF(x)dF(y))

defined as

Ag(x;, n)= f k(x1, %25 11, 12)8 (%2, 12)AF (x,)dAF (35),
R2d
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with orthonormal eigenfunctions f, f;,... and
k(x1, X5 1, y2) = h(x1, X5 11, 1) —E[R (X, X35 11, Vo))

Let Wy;, Wy;, j 21, be independent Brownian motions on [0,1]. Forany 0< #;,1, <1, let

3

[nt][nnl[mpl[mit,]

Unm(tl)tz)_ m(n+m) Z h Xi)Xj;Y;c)Yl)» (1.8)

i=1 1 k=1 I=
i #

NN
-

i

~L S~

where [] is the ceiling function, and let

U(t, r2)=2/1j[(ajt2mj(tl)+ b; tlvvzj(tz))z—(af.t2+ lo]?tl)lr1 t|, (1.9)
=1

where

a’=p f (Ef(x, %)) dF(x), b?= af (Efi(Xy, ) dF(x), j=>1, (1.10)

and a and g such that n/(n+m)— a and m/(n+m)— p. We observe U,,,, as arandom element
in the space D, := D([0,1]?) of all real functions on [0, 1]* with no discontinuities of the second
kind, equipped with the Skorohod metric (see e.g. Billingsley, 1968, Sec. 14.2).

The following result is due to Neuhaug (1977).

THEOREM 1.5 [NEUHAUS (1977)]. As n,m — oo, n/(n+m)— a, m/(n+ m)— f, it holds that

U,,>U, inD, (1.11)

1.5 Results of De Wet and Randles for parameter-dependent
kernels

Sections and .3 provided an overview of the possible asymptotic distributions of U- and
V-statistics in the non-degenerate and weakly degenerate cases, respectively. However, it is
common in the hypothesis testing literature for the kernel of a statistic to depend on unknown
parameters of the underlying distribution. In such cases, the statistic cannot be directly com-
puted, as the true parameter values are not available. A standard approach is to estimate the
unknown parameters and then proceed with the computation using these estimates. This natu-
rally raises the question of whether, and in what way, parameter estimation affects the asymp-
totic distribution of the statistic. More specifically, it is of special interest to identify which
estimators, when substituted for the true parameters, leave the asymptotic distribution un-
changed. First results addressing this question in the non-degenerate case were provided by
Randled (1982), and were later followed by those for weakly degenerate case by De Wet and
Randlegd (1987). The latter were generalized by Cuparic¢ et al] (2022).

1.5.1 Non-degenerate case

The conditions under which the asymptotic distribution of a non-degenerate U-statistic with
estimated parameters remains unchanged were first established by Randles (1982). Randles
also presented analogous results for V-statistics. Due to not being directly related to our results
in Chapter [, they are omitted here. For details, we refer to the original paper.
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Consider a random sample X;,...,X,, of d-variate random vectors and let h(X,...,X,,;7)
be a symmetric kernel with expected value 6(y)=E,h(Xj,..., X,,;7), where A denotes the true
value of the parameter, and the expectation is taken with respect to this value. To estimate the
expected value of the kernel, consider the U-statistic

1
UN=mr D, *Xie Xi57) (1.12)

n
(m) 1< <ip<<ip<n

and assume that it is non-degenerate for every y. Since the true parameter value A is commonly
unknown, it is usually estimated from the data by some estimator A. Consequently, the statistic
U,(A) is replaced by the plug-in version U, (A).

For any fixed value of the parameter, Theorem [I.7] establishes that the statistic is asymp-
totically normally distributed. Randles (1982) provided the set of conditions, presented below,
under which the asymptotic distributions of v/7(U,(A)— (1)) and v/7(U,(A)—0(A)) coincide.

1. [Orig. Condition 2.2] Suppose that

Vr(A=2)=0s(1), n— oo, (1.13)

2. [Orig. Condition 2.3] Let D(y,d) be a ball centered at y with radius d. Suppose there
exists a neighborhood K(A) around A and a positive constant K; such that if y € K(A) and
D(y,d) < K(A), then

E( sup \h(Xl,...,Xm;y’)—h(Xl,...,Xm;y)|)<Kld (1.14)
y'€D(y,d)
and
limIE( sup |h(X1,...,Xm;y’)—h(Xl,...,Xm;y)|2):0. (1.15)
d=0 \yeD(y,d)

REMARK 1.1. Under the condition that |h(x,,..., x,,;7")— h(x,,..., X,,; A)| < M, for some
positive M, every xi,...,X,, and every vy in a neighborhood of A, it holds that ([1.14)
implies (I.T5) (Randles, 1982, Lemma 2.6).

3. [Orig. Condition 2.9A] Let (T.T3) hold, and let 7 (U,(1)—6(A)) 2 A0, m*0?), where 0%
is the covariance seen in Theorem [I.7. Assume that 6(y) has zero differential at y = A.

4. [Orig. Condition 2.9B] Assume that 8(y) has nonzero differential at y = A, and additionally
assume that

V(U (A)—0(A), A=) 2 A47,,(0,%).

Having the conditions stated, we can now formulate the result by Randles (1982).

THEOREM 1.6 [RANDLES (1982)]. If Condition 2.3 holds alongside with one of the Conditions
2.9A and 2.9B, then

Vi (U,(A)—0(0) > H(0,m?*0?), n— oo,

T
where o is as in Theorem 1.
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1.5.2 Weakly degenerate case

Since Chapter [ is devoted to gaining insight into the asymptotic distribution of weakly-de-
generate V-statistics with estimated parameters under certain missing data scenarios, we first
present the necessary results for the complete-sample setting. Given the scope of our work,
we focus exclusively on the key results for V-statistics. For a more detailed analysis, including
the analogous results for U-statistics, we refer to the original paper by De Wet and Randles
(1987).

Note that the notation used in this section differs slightly from that of the original paper,
mostly for cosmetic reasons, and has been adjusted to align with the notation from Baringhaus
and Henze (1988), which we build upon in Chapter [f.

Let Xj,...,X,, be IID d-variate random vectors, and let us consider the weakly degenerate

V-statistic
ZZh (X;, X} 2),

i=1 j=1

whose symmetric kernel depends on the unknown parameter A, and has zero mean for every
value of the parameter. Let A be a consistent estimator of A based on X;,...,X,,. Then it is
natural to use

Additionally, we assume that the kernel h admits the representation
h(xl,xz;l)=f g(xy, t;A)g(xp, t; A)dM (1),
Rd

for some function g and a finite positive measure M on R¢.
The conditions of De Wet and Randles (1987) are as follows.
1. [Orig. Condition 2.9] Suppose
e(t;7)=E,[g(X, £;7)]

exists and e(¢;A) = 0 for every ¢t and every y in some neighborhood of A. Additionally,
assume &(t;7) is L*>-differentiable at y = A, and let €,(¢; A) be the differential.

2. [Orig. Condition 2.10] Suppose

)

where E[a(X;),] = 0 and E[a(X;),a(X;),.] is finite for all 1 < r < r’ < d (here subscript
denotes the component of the vector).

R 1 <& 1
A /1+n ;_1 o ,)+oﬂ>(

3. [Orig. Condition 2.11] Suppose that there exists M* > 0 and a neighborhood K(A) of A
such that

(a) if y e K(A) and D(y, r) is a ball centered in y with radius r such that D(y, r) € K(A),
then

0 2
f (]E[ sup |g(X,-,t;7f’)—g(Xi,t;y)|D dM (1)< M*r?,
- Y

1) ’eD(y,r)

and
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(b) for any £ > 0 there exists a r*> 0 such that 0 < r < r*,y € K(A) and D(y,r) c K(A)
imply

f ]E[ sup |g(Xi,t;y’)—g(X,~,t;y)|4] dM(t)<e.
r

—00 'eD(y,r)

Let

where

h(x,y) =f [g(x, )+ €4(5;0) a(x)]- [8(y, £ )+ €4(2; 1) a(y) ] dM(¢).

(o]

THEOREM 1.7 [DE WET, RANDLES (1987)]. Let X, ..., X,, be IID d-variate random vectors with
CDF F(x). Suppose Conditions 2.9, 2.10 and 2.11 hold, and that

E[h? (X}, X;)]<oo  and E[h,(X;,X,)] < oo.

Let {0} denote the eigenvalues of the integral operator A defined by

Aq(x)=J h(x,y)q(y)dF(y).

oo

Then, as n — oo,

and
AN ES I
k=1

where y? ,k=1,2,..., are independent y* variates.

The theorem states that the effect of the estimation of A is entirely captured by €,. It
establishes that nV,(A) and 7V, have the same asymptotic distribution. However, if €, is equal
to zero, as in the case studied by Baringhaus and Henz¢ (1988), then V,, = V,(A). In other words,
in that scenario nV,(A) has the same asymptotic distribution as 7V, (A).
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Chapter 2

Mathematical framework for missing data

Handling missing data is a critical aspect of statistical analysis, as its presence can significantly
affect the validity and reliability of the conclusions. Failure to properly manage missing data
may lead to biased estimates, distorted results, and reduced accuracy of statistical inference.
However, many applied research studies either insufficiently describe their treatment of miss-
ing data or do not acknowledge its presence entirely. A useful overview of this issue for survey
data is provided by Mirzaei et al] (2022).

The main goal of this chapter is to present the key definitions and theoretical concepts of
missing data analysis that are essential for understanding the subsequent chapters. It is not
intended as a comprehensive monograph on the topic, that is, we do not attempt to provide
an exhaustive overview of the theoretical foundations or detailed guidelines on the practical
application of various methods. These topics are thoroughly addressed in the existing liter-
ature. For readers interested in the theoretical aspects, we recommend the monograph by
McKnight et all (2007) as a gentle introduction, particularly suitable for those with a more
elementary background in mathematics and statistics. For a more advanced and comprehen-
sive treatment, the well-known monograph by Little and Rubin (2019) provides deeper insight
and greater mathematical rigor. For readers interested in the practical application of missing
data handling methods, we recommend the monograph by Enders (2022) as a general resource,
and the monograph by Van Buuren (2018) for a focused treatment of imputation techniques.
The latter also includes many sections that delve into the theoretical and mathematical foun-
dations of the methods, but it is structured in a way that allows readers to skip these parts
without losing the ability to follow the rest of the text. For a more concise summary of recent
developments in the field, see the paper by Enders (2023).

Section 2.1 provides a brief overview of the development of missing data analysis as a dis-
tinct statistical discipline. In Section 2.2, we introduce the definitions of the three main types
of missingness mechanisms, MCAR, MAR, and MNAR, along with the underlying rationale.
Given that these definitions were not always clear throughout the historical evolution of the
field, Section 2.3 is dedicated to addressing and clarifying that ambiguity. Finally, since Chap-
ter B introduces a novel test for MCAR, Section [Z.4 presents a historical overview of the devel-
opment of various MCAR testing procedures.

2.1 Origins

The development of missing data analysis as a distinct statistical discipline coincided with
the increasing complexity of real-world datasets and the growing difficulty of collecting high-
quality complete data. Although researchers in the early to mid-20th century frequently en-
countered incomplete datasets, they often relied on relatively simple methods to address the
issue. The most commonly used approach was complete-case analysis, which involves discard-

13
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ing all observations with at least one missing value. An alternative strategy involved filling in
the missing values using straightforward methods, a practice now known as imputation. The
most commonly used imputation techniques included replacing missing values with the sam-
ple mean or median. However, as is now well understood, such naive techniques can lead to
severely biased estimates and undermine the validity of statistical inference, particularly when
the missingness mechanism is strongly dependent on the data, or when missingness rates are
high (see e.g. [Aleksi¢ and MiloSevid, 2025a, for a recent reference). Nevertheless, when the
missingness is random and occurs at moderate rates, these simplistic techniques often per-
form adequately in practice. This observation underscored the importance of formally defin-
ing the concepts of random missingness and mild or moderate missingness rates, as a foundation
for justifying the use of such methods.

A major turning point in the development of missing data analysis was the publication of
the seminal paper Inference and Missing Data by Rubin (1976). In this work, Rubin introduced
a formal probabilistic framework for handling missing data, therefore laying the foundation
for the modern theory of missing data analysis. One of the key contributions of the paper was
the formal definition of the concept of missing at random (MAR), which will be discussed in
detail in Section Z.7. Rubin’s primary focus was on parametric inference, both frequentist and
Bayesian, and he investigated the conditions under which the missingness mechanism could
be ignored in the analysis.

The Expectation—Maximization Algorithm (EM Algorithm), proposed shortly thereafter by
Dempster et al! (1977), provided a practical method for computing maximum likelihood esti-
mates (MLEs) from incomplete datasets, and it remains widely used today.

A very common approach when working with missing data is to impute the missing values
using some imputation method. In practice, after the imputation, the analysis is conducted
as if the data were complete. However, the imputation clearly changes the distribution of the
data; a clear example will be presented in Chapter @.

Another important contribution by Rubin is the development of multiple imputation (Ru-
bin, 1987), a method in which missing values are imputed multiple times to create several
complete datasets. Each dataset is analyzed separately, and the resulting estimates are then
combined in a certain way, allowing for the incorporation of uncertainty due to missingness.

The book Statistical Analysis with Missing Data by Little and Rubin (1987) quickly became
one of the most influential references in the field. It continues to serve as a foundational text,
now in its third edition(Little and Rubin, 2019), and remains widely used by both researchers
and practitioners. We highly recommend it as a comprehensive resource on both the theoret-
ical and applied aspects of missing data analysis.

2.2 Missingness mechanisms

Suppose that we have a sample Xj, ..., X,, of I[ID d-variate random vectors, i.e. each X;, for j =
1,2,...,n, can be represented as X; = (X](.”, ) X](.d)), where we mainly consider the components
of X; to be real-valued random variables, although, as we will see, the definitions also hold

for more general spaces. Some of the components of X; may be missing. For every X;, we

introduce the response indicator vector R; = (R}”, oo Rﬁ-‘”), where

k=1,2,...,d.

RO _ {1, if X](.k) is observed,
=

0, if Xj(.k) 1s missing,
The term response indicator originated in Rubin’s early work on survey analysis and has since

been adopted in various other data analysis contexts, including settings such as measurement
data, where no actual respondents are involved. We also note that the notation in which the
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index of a sample element appears as a subscript and the index of a vector component as a
bracketed superscript is convenient when first introducing the concept. However, alternative
notational conventions are commonly used throughout this thesis and in the broader litera-
ture, including forms such Rik, Rjk, R]’F, RJX , and many others. Additionally, missingness indi-
cators are sometimes used instead, which are equal to 1 if the value is missing, and zero if it is
observed.

In any real-world data analysis, the analyst works with the realized sample x;,..., x,,, and
the corresponding realizations ry,..., r,, of the response indicators. The latter, which take val-
ues in {0,1}4, are referred to as response patterns (or missingness patterns). The observed com-
ponents of a vector x, with respect to a given response pattern r, that is, the subvector of x
consisting of components corresponding to the entries of r that are equal to 1, will be denoted
by x,,s. Missing elements of x will be denoted by x,,;,. Similarly, for a random vector X, we
have X, and X, .

To summarize, we have a sample of n 11D realizations of a d-variate random vector X (or,
more generally, arandom element from the Cartesian product of d different spaces), along with
the corresponding response indicator vector R, which takes values, referred to as response (or
missingness) patterns, in {0,1}¢. Observed (with respect to R) elements of X are denoted by
Xops, and those that are missing by X, ;. The probability distribution of R is known as the
missingness mechanism. This distribution may or may not depend on the data itself, and this
difference leads to the definitions of the three main types of missingness mechanisms. The
following definitions, adjusted for modern notation, are due to Rubin (1976) and Little and
Rubin ([1987).

We say that the data are missing completely at random (MCAR), if the missingness mecha-
nism does not depend on the data, neither observed nor missing, i.e.

P(R =1 | Xope Xmis) =P(R =7). (2.1)

Under the MCAR assumption, the missingness mechanism depends only on its own distri-
butional parameters. The data are missing at random (MAR), if the missingness mechanism
is conditionally independent of the missing values, given the observed values, that is, it may
depend on the observed data but not on the missing data. Formally,

P(R = 1 | Xops Xunis) = P(R = | Xops)- (2.2)

Finally, if the missingness mechanism depends on both the observed and the missing data, we
say that the data are missing not at random (MNAR).

As briefly discussed in Section .7, the MCAR assumption is highly desirable in practice, as
it allows for the use of simple missing data handling methods without compromising the valid-
ity of the analysis. In many settings of statistical inference, particularly parametric ones, the
MAR assumption is often sufficient. For instance, likelihood-based estimation and Bayesian
inference can still yield valid results under MAR. Seaman et all (2013) provide a comprehen-
sive overview of various approaches to statistical inference with incomplete data, along with
the assumptions required for their validity. For a detailed treatment of Bayesian inference
with incomplete data, we refer the reader to the Chapter 18 of the monograph by Gelman et al!
(2014).

Since this thesis focuses on nonparametric inference, a detailed presentation of those re-
sults is omitted; a brief discussion follows in Section 2.3

2.3 Ambiguity throughout the literature

There are several points of ambiguity regarding the definitions of MCAR, MAR, and MNAR
presented in Section 2.2 which are important to address.
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One such issue is whether equations (2.7) and (Z.2) must hold for every r € {0,1}¢, or only for
the specific response pattern observed in a given realized sample. In this thesis, we adopt the
stronger requirement: the condition must hold for all possible r. This formulation is standard
in frequentist inference, both parametric and nonparametric, where conclusions are based on
the idea of repeated sampling. On the other hand, when dealing with, e.g., likelihood-based or
Bayesian inference, only the realized sample is of importance.

Little and Rubin (2019), being primarily interested in those types of inference, define the
data to be MCAR (and similarly MAR, or MNAR) if (£.7)) holds for realized response pattern.
If (2.7) holds for every r, then the data are said to be missing always completely at random
(MACAR). Analogously, one can define the concepts of missing always at random (MAAR) and
missing not always at random (MNAAR). Note, however, that under frequentist inference, the
notion of missing always not at random (MANAR) is not particularly meaningful: for the distri-
bution of R to depend on X, it suffices that there exists even a single r for which the condi-
tional probability P(R = r | Xyps, Xmmis) cannot be simplified any further. In some other papers
(e.g. Seaman et all, 2013), the term realized MCAR (RMCAR) is used for the definition of MCAR
presented in Section 2.2, while everywhere MCAR (EMCAR) is used in place of MACAR. Analo-
gously, the terms RMAR and EMAR are used for the MAR setting. Additionally, Gelman et al:
(2014) treats censored data as a separate category from MNAR, and Potthott et al] (2006)
defined the MAR+ missingness, aiming to define class of alternatives to MCAR that can be
detected by their proposed test.

Another important concern regarding the definitions given in Section [2.7 arises when the
sample X, ..., X,, does not consist of 11D elements. This situation occurs, for example, in time
series analysis. In such cases, for each time point ¢, we observe a data point X(¢) and a cor-
responding response indicator R(t). There are at least two natural ways to define MCAR in
this context: one possibility is that R(#) is independent of X(¢) for every ¢; another is that R(s)
is independent of X(s) for all s < ¢. Additionally, one can view the time series as a random
function taking values in a suitable metric or Hilbert space, and define MCAR by requiring
the independence of the random elements X and R. Different definitions are better suited for
different real-world scenarios, depending on the structure and goals of the analysis.

Going further, the notation X, and X, is also ambiguous: observed and missing accord-
ing to what? In fact, the existence of a response pattern that determines the division of data
into observed and missing components is implicitly assumed. A more precise notation for the
observed (and, analogously, missing) parts of the data, conditional on a given response pat-
tern r, would be X/, ., Xops(7), Xops,r, OF similar. Seaman et al! (2013) use o(X, r) and o(X, r)
to denote the observed and missing components of X under the response pattern r. Although
mathematically rigorous, this notation is cumbersome in long calculations and is rarely used.

Some authors, particularly in more applied and less mathematically rigorous fields, define
MCAR informally with statements such as: “The data are MCAR if the missingness does not depend
on either the observed or the missing data.” While this aligns with the formal definitions given
in Section [£.7, it can also be interpreted as referring to the entire dataset, in which case we
have the response indicator matrix. However, in that context, it is unclear what kinds of precise
mathematical objects are X, and X-

In many contexts, but especially in the case of likelihood-based inference, it is important
to emphasize the distinction of parameters. To be more specific, the missingness mechanism,
i.e. the probability distribution of R depends on its own distributional parameters, say, 1, and
the distribution of X on parameters 6. One of the key assumptions for validity of statistical
inference in those settings is that those two distributions do not share any parameters, i.e. that
n and @ are distinct (see e.g. Seaman et all, 2013, Sec. 5).

As seen in the previous discussion, different contexts may require slightly different, though
closely related, definitions of MCAR, MAR, and MNAR. For this reason, it is recommended to
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explicitly state the formal definition of the missingness mechanisms being used whenever pre-
senting work that involves missing data. Fortunately, this practice has largely become standard
in the modern statistical literature.

We are certainly not the first to raise concerns regarding the ambiguity in the definitions of
missingness mechanisms. Several papers have been devoted entirely to clarifying these issues,
the most widely cited being the work by Seaman et all (2013). Other valuable contributions
that we sincerely recommend include those by Mealli and Rubin (2015, 2016), Doretti et al:
(2018), and the series of papers by (Galati (2018a,b,d, 2019).

2.4 Historical overview of MCAR tests

There has been quite a lot of interest in testing the MCAR assumption. First results were
developed in the 1980’s: for categorical data by Fuchs (1982), and for the Gaussian data by
Little (1988). As far as we know, Little’s MCAR test, that is based on comparing the MLEs
across missingness patterns, remains the most widely used test in practice. However, as we
will see in Chapter [, it is highly sensitive to the assumption of data being sampled from the
multivariate normal distribution.

Diggle (1989) considered missing data in the context of repeated measurements, i.e. when
a time-ordered sequence of measurements is made on some participants in an experiment. He
considered a special case of missingness called a dropout, where a sequence of measurements is
terminated prematurely, and developed the class of procedures that test whether dropouts in
the data occur randomly, in the sense that they are not related to any of the past measurements.
The methodology involves selecting a score function, where large values indicate rejection of
the null hypothesis, and applying the normal approximation when feasible. Ridout and Diggle
(1991) presented some improvements in terms of flexibility, utilizing logistic regression. Park
and Davig (1993) extended Littlg (1T988) test to incomplete repeated categorical data. Simi-
larly, Park et al] (1993) relied on Little’s test to make a MCAR test for repeated measurements.
Following the idea of Park and Davis, Park and Le¢ (1997) constructed a MCAR test for the
incomplete longitudinal data in the framework of generalized estimating equations. [Listing
and Schlittgen (1998) developed a test for random dropouts in clinical trials by comparing the
means of the individuals that stay, and those that drop out.

Another test for the framework of generalized estimating equations, but for independent
observations, came from Chen and Little (1999), and generalized the idea by Little (1988). Qu
and Song (2002) proposed a more unified generalized score-type test for ignorable missingness
in longitudinal data.

Kim and Bentler| (2002) studied tests based on weighted generalized least squares methods,
and compared them to the likelihood-based tests, such as Little’s test, in terms of type I er-
ror and power behavior in small sample sizes. The comparison examines the homogeneity of
means and covariance matrices across missing data patterns.

A further logistic regression-based testing procedure for MCAR tailored for medical longi-
tudinal data was developed by Fairclough (2002). The main idea of the procedure is to study
the dependence between the response indicators and the quality of life scores.

Although testing MCAR vs. MAR is not possible in the general case, since the data needed
for that testing are missing, Potthoft et al] (2006) proposed the test for MAR+ assumption.

The idea of testing MCAR by comparing the covariance matrices across the missing data
patterns came with Jamshidian and Schott (2007). Jamshidian and Matd (2008) constructed a
test for distinguishing MCAR from MNAR by noting that the maximum-likelihood estimates
across random data subsamples will have the same asymptotic distribution under MCAR, but
not under MNAR.
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Fielding et al! (2009) presented a real-data empirical comparison of four tests in the context
of quality of life outcomes. Specifically, the tests of [Little (1988), Listing and Schlittgen (1998),
Ridout and Diggle (1991), and Fairclough (2002) were applied to several datasets to assess
differences in inferential results.

Jamshidian and Jalal (2010) have considered a test for MCAR that relies on imputing the
dataset and then conducting the complete-data procedures. The data are grouped by miss-
ingness patterns, and the variances across groups of data are then compared. Jamshidian and
Yuan (2013) improved the results of Jamshidian and Mata (2008) by approximating the asymp-
totic distribution rather than using the bootstrap method.

Lin (2013) developed a probability based framework for testing MCAR that appeared com-
parable to Little’s MCAR test in terms of power for a large number of studied scenarios.

Jamshidian and Yuan (2014) gave an overview of then available MCAR test that are based
on either homogeneity of parameters or homogeneity of distributions across the missingness
patterns. Additionally, they proposed a novel nonparametric test for MCAR that is based on
pairwise comparison of marginal distributions of the data, considering one variable at a time
fixed. ILi and Yu (2015) also considered a nonparametric test for MCAR. The procedure first
splits all of the data into categories by missingness patterns, and then uses Rizo-Székely dissim-
ilarity measure to compare distributions across patterns. The bootstrap algorithm is utilized
afterwards to approximate the p-value of the test.

Yuan et al] (2018) showed that, under normality, MLEs for different missingness patterns
can converge to the same values, possibly not the true ones, even under MAR or MNAR. As a
result, tests for MCAR based on comparing means and covariances across patterns cannot be
safely used.

Zhang et al] (2019) noted that most MCAR tests do not offer a method for a subsequent
estimation once MCAR is rejected, and they presented a unified likelihood approach for both
MCAR testing and subsequent estimation that appeared to behave well in the observed (al-
though limited) scenarios.

Bojinov et al] (2020) considered testing MAAR, where response mechanism does not depend
on the data not only for the observed, but for any possible missingness pattern. They note that
under certain regularity conditions, MAAR can be tested from the observed data only, and
propose three diagnostic procedures that rely on testing the dependence between response
indicators and fully observed variables.

Spohn et al] (2021) introduced the test that measures distributional differences across miss-
ing data patterns using Kullback-Leibler divergence. Rouzinov and Berchtold (2022) tested
MCAR by fitting the linear regression model on the complete cases, and then comparing dis-
tributional differences of predicted values for missing and observed data.

For the case of hidden Markov models, Chassan and Concordet (2023) developed a MCAR
which does not require grouping the data by patterns, but are based on the estimates of con-
ditional (given the latent state of the Markov chain) probabilities of missingness.

Lately, the measure of compatibility was utilized by Berrett and Samworth (2023)) for test-
ing MCAR. Their key point is that there can be no test that can reject MCAR if the class of
marginal distributions is compatible, i.e. they were successful in describing the exact class
of non-detectable alternatives to MCAR. They related the concept of compatibility testing to
MCAR testing in the discrete case. Bordino and Berrett (2024) compared compatibility of co-
variance matrices across missing data patterns to construct a MCAR test for the incomplete
data that do not need to be discrete. The formal definition of compatibility can be found in
either of these works, and can be traced back to Sklar (1959) and the theory of copulas.

Dealing with functional data, we refer the reader to the recent test by Ofner et al] (2025).

Most of the existing statistical tests for MCAR are based on comparing some measure across
different missing data patterns. To the best of our knowledge, there were no tests constructed
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using the rationale of checking the linear dependence between the response indicators and
fully observed data columns. This changed with the tests that are the subject of Chapter f and
have been presented in the studies of Aleksid (2024, 20254).
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Chapter 3

Testing the MCAR assumption utilizing
the properties of U-statistics

In this chapter, we present our novel test for assessing the MCAR assumption. The test builds
upon the theory of non-degenerate U-statistics to establish its asymptotic properties. It was
first introduced by Aleksid (2024) and generalized a year later by Aleksid (20254d). This chapter
extends this generalization by providing a deeper examination of the null distribution of the
test statistic and offering further insights into potential extensions of the proposed methodol-
ogy. Furthermore, a class of detectable alternatives is described in more detail.

The original version of the test, which we will refer to as the old, first, or sometimes the
original test, is introduced in Section 3.7 and its asymptotic null distribution is derived. In
Section 3.2, it is shown that the proposed test statistic coincides with the well-known Little’s
statistic in the case of univariate nonresponse (Little, 1988). The generalization of the test,
which we will refer to as the novel, or the new test is introduced in Section 3.3, along with the
derivation of its asymptotic properties. Extensive simulation study is conducted in Section
B.4, where the old test, the novel test and Little’s MCAR test are compared in terms of the
preservation of type I error and the power performance.

Additional simulation results supporting the findings presented in this dissertation can be
found in the supplementary materials of the two aforementioned papers, as well as on the
author’s GitHub page (Aleksid, 2025D).

3.1 Main idea and first version of the test

The objective of this section is to introduce the original variant of our test statistic and to estab-
lish its asymptotic properties. We proceed step by step, ensuring that the rationale behind the
test is presented in a clear and structured manner. We begin with the case of two-dimensional
data with univariate nonresponse, which allows us to illustrate the main ideas in a simple set-
ting, and then gradually extend the discussion to the general multivariate case. The ultimate
goal of this section is to present Theorem [3.2, which formalizes the asymptotic properties of
the proposed statistic and lays the foundation for the subsequent analysis.

3.1.1 Two-dimensional data with univariate nonresponse

Suppose we have data from a bivariate distribution that can be represented by the random
vector (X, Y), where E(X?) < oo, and let us model our sample as its n IID copies, which we

21
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expand to obtain

X1 h R
X b R (3.1)
Xn Yo R,

where every X; is observed and R; denotes the response indicator for Y;, i.e.

L if Y; is observed,
’7"lo, otherwise.

If the data are MCAR, then, by definition, it holds that R is independent of (X, Y), and, as
a direct consequence, independent of X. Therefore, X and R are uncorrelated, i.e.

Cov(X, R)=E(XR)—E(X)E(R) = 0.

Naturally, for the distribution of (X, Y, R) we can define the parameter 8 = Cov(X, R); if 0 #
0, then X and R are dependent, so the data are not MCAR. If 6 = 0, then we can not say
that the independence holds, but only that X and R are uncorrelated. However, there are
many well-known tests that reject the null hypothesis in such manner (e.g., Kendall's test of
independence, Kendall, 1975). This being said, it is natural to construct a test for MCAR based
on an estimator of #. One such estimator is

SR (3 ()RS RS » ¥ IR

i=1 j=1
J#i

T, is a biased estimator. Indeed, one can easily verify that E(T,) = Z16. After appropriate
rescaling, we obtain an unbiased estimator of 8 given by:

Tn:%;)g = IZZXIR] (3.3)

i=1 j=1
J#i

After some convenient transformations, we obtain:

1 n
- @;Xi}?i ZZ (XiR;+ X;R;).

1<z<]<n

If we denote

Ué”=ﬁ2¢((xi,zﬂ
1) i=1

and
ZZw o Yo R)(X), ), Ry)),
1<L<]<n
where ¢((X;, Y;, R;)) = X;R; andw((X,, 5, R),(X;,Y;, R;))=(X;R; + X;R;)/2, we have that
T,=U"-U%.

Note that U") and U!? are U-statistics with kernels ¢ and v, respectively. The first of our
results is presented below.
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THEOREM 3.1 [ALEKSIC (2024)]. Under the null hypothesis of MCAR data and T, being given in
(B33), it holds that, as n — oo,

\/ﬁ(U(l) _ U(Z))

n n
XSR
Sn Sn

where (SX)? = 15 27:1()( i—X,,)? is a sample variance, S} its square root, and S¥ is defined analo-
gously.

PROOF. We can see that
o 1y = Cov(p(Xy, i, Ry), (X, Y, Ry)) = Var (¢ (Xy, ¥, R)) = E(X*R*) = (E(X))* (E(R))*.

Under the null hypothesis, we have that X and R are independent random variables, and after
we note that R? = R, we obtain

o? 1, =E(X*)E(R)—(E(X))* (E(R))*.

11(

Since we are interested in the non-trivial case (not all data observed/missing), we can safely
assume that E(R) € (0,1), so E(R) > (E(R))*. Furthermore, E(X?) > (E(X))*, since only non-
degenerate distributions are of interest. These two conditions allow us to conclude that O'i(l) >
0,i.e. UV is a non-degenerate U-statistic.

Now we proceed in a similar manner with the statistic U® and, after similar calculations
as before, we obtain:

02 = COV(I/J((XD YI’RI)!(XZ’ YZrRZ))’ w((Xl! YI’RI)’ (XS’ YS:RS)))

1,(2)

= i(E( R)*Var(X)+E(X)*Var(R)).

Again, being interested only in non-trivial cases, we have that o? 2> 0,80 U@ is also a non-
degenerate U-statistic.
One can readily see that UW is a U-statistic with expected value E(¢(X,, ¥;, R,)) = E(XR),

and that U® is a U-statistic with expected value E(y((X,, ¥;, R)), (X, Y5, R,))) = E(X)E(R). By
Theorem [.Z, we have that

lim nCov(UY,U%)=20,,,

n—oo

where
o1 =E(¢:(X1, ¥, R), ¥1(Xy, Y1, Ry)) = Cov(p(Xy, Yi, Ry, (X, Y, i), (Xp, Yo, Ry)))
Under the null hypothesis of MCAR data, we have that:

1
on= COV(XlRl, §(X1R2 +X231))

1
= S([EXR(Xi Ry + X, R)) = E(X, R)E(X, Ry + X, 1))

= %((IE( R))*Var(X)+ (E(X))*Var(R)).

By Theorem .72, we have that as n — oo, under the null hypothesis,

(ﬁ(UlgU—E(XR)),ﬁ(U,EZ)—E(X)E(R))) (3.4)
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converges in distribution to bivariate normal distribution with zero mean vector and covariance
matrix

E(XY)ER)—(EX)*ER))  (E(R))Var(X)+ (E(X))*Var(R)
(E(R))*Var(X)+ (E(X))*Var(R) (E(R))*Var(X)+ (E(X)*Var(R)|’

Applying Continuous Mapping Theorem, we have that the difference +n(U"Y — U®) (expec-
tations cancel out under null hypothesis) tends to the difference of the components of the
two-dimensional normal distribution of (B.4), i.e.

n

Ja(u®—u®) 2 ﬂ(o, E(X?)E(R) — (E(X) (E(R)}

—2((E(R)*Var(X)+(E(X))*Var(R)) + (E(R)/*Var(X) + (E(X))ZVar(R)),
which simplifies to

Vi (U —U®) 2y (0, Var(X)Var(R)).

In other words,

/U -ug)

2 A(0,1),
Var(X)Var(R)

as n — oo. Since the sample standard deviations are consistent estimators, applying Slutsky’s
theorem, we have that

JRUP-0g)
SaSa

This concludes the proof. [ |
Based on this result, we suggest constructing a MCAR test using test statistic

1/ﬁ((](l) _ U(Z))

" Sxsk

{an|><I>_1(1—%)} (3.5)

)

with rejection region given by

at significance level a.

3.1.2 Multivariate data with univariate nonresponse

We next consider the broader situation of p-dimensional observations, where nonresponse
occurs in only one variable. Let us suppose that we have the (p + 1)-variate data, that we
observe as the expanded sample

XX o X% R

1 2
Xz() Xz() sz Y, R (3.6)
X’(ll) X,(f) X’(lp) Y, R,

The natural thing to do in this case is to compute the statistic T,, from (B.3) for every pair
(X, R), j =1,2,...,p. Values near zero suggest that there is little evidence contradicting the
MCAR assumption. We now state our next result.
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THEOREM 3.2 [ALEKSIC (2024)]. Let us have the data represented by the expanded sample (3.6),
and let

1 n
SRR =

ll]l
Jj#i

u=1,2,...,p. Then, under the null hypothesis of MCAR, it holds that

(VATD, vuT®,...,vaT?) 3 ¥ (0,%),

as n — oo, where

Va (X )Var(R) Cov(XW, X®)Var(R) - Cov(XW,X")Var(R)
Cov(X®, X@)Var(R) Var(X )Var(R) -+ Cov(XW), X®)Var(R)
(COV(X“),)'((”))Var(R) Cov(X© X ))Var(R)--- Var(X(’”-))Var(R)

i.e.
Y =Cov((xW,x9,..., X)) Var(R),
where the first term denotes the covariance matrix of a random vector.

PROOF. To keep the expressions simple, we will consider p =2, but it will be obvious that the
generalization to the arbitrary p is straightforward.

Assume MCAR and consider that the data are modeled by the random vector (X, X®,Y)
and, as before, consider the expanded sample

X X2 v R
x" x? Y% R

_ (3.7)
XM X® vy, R,
Denote
1n 1 n n
TO =23 xWR xWYR. 3.8
T AR T 2 X R 59
J#i
and
ll’l 1 n n
T®=—% X?R,— X?R;. 3.9
e DN S S R, 59)
J#i

Certainly, it would be wrong, in the general case, to assume joint normality from the nor-
mality of the components. However, since the statistics 7 Trg and v/n T are (scaled) dif-
ferences of U-statistics, their joint distribution can be expressed as a hnear combination of
joint distributions of U-statistics, and hence is asymptotically normal. Given that the asymp-
totic distribution of (vn TV, v T®) is multivariate normal, it will suffice to calculate the limit
value of the covariance

Cov(vATY, YA T?) = nCov(T®, T?) = nE(TOT?),
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as n — oo.
Multiplying the expressions (.8) and (B.9), we obtain

TOT® = —r ZZZZX R; X} Rl+—ZZX R X

i=1 j=1 k=1 I=1 i=1 j=
J#l 1#k
n n n
nz(n—l g;;x R; X nz(n—l ;;2)( RiX; Ry
J#i I#k
==M+N-—-Q,—Q,.
Having
n’(n—1y> ZZZX R; X! RZ+ZZX R; X
i j#i ll;f; i j#
DN NRALES ) 3 WALLLES )RR
i j#i kA # T, i A kA
k#j fﬁ k#j k#j
D XURXPR + D xR XPR,,
i j#i l;él i j#i

we can obtain

E(n*(n—1°M)=n(n—1)(n—2)E(XVX?)(E(R))
+n(n—1E (X(”X(2>)JE(R)

( —2)
( —2)
n(n—1)(n—2)
( —2)
( )

Based on this result, we have

E(nM)= —?E(X ' X@)(E(R))* +

n—2

— I]E(X(”)]E(X(z)) (E(R))* + n _Z]E(X“))]E (X®)(E(R)+0(1),

+2

as n — oo. In a similar manner, it follows that
E(nN)=(n—1DE(XW)E(X?)ER)’+E(XVXP)E(R)
and

E(nQ,)=E(nQ,)=2(n—2)E(XW)E(X?)(ER)Y +2E (X X®)(E(R)y
+2E(XV)E(X?)(E(R)).

Combining the previous results, and since E(T")=E(T®)=0 and R? =R, we have that

lim Cov(vnT",vnT?)= lim nE(T"T?)

n—oo n—oo n
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= lim (nM +nN —nQ,—nQ,)

=E(XYXY)(ER)—E(XVX?)E(R)
+E(XME(X?)(ER) -E(XVX (2))(JE(R))2
=Cov(X", X®)E(R?)—Cov(X", X®)(E(R))
=Cov(X", Xx®)Var(R).

This concludes the proof. [ |

Now, let us introduce the following additional assumption: there is no such pair (X, X(*))
in the vector (X, X®, ..., X)) such that Cor(X, X)) =41, for u,v =1,2,...,p, u #v. Itis
well-known (e.g. Strang, 2016, p. 549) that in that case X is a regular matrix, and that there
exists a matrix £-/2 such that ¥-(£1/2)" = (512)". £.= I, where I is the identity matrix. Since
matrix multiplication is linear, and hence a continuous transformation, we can use Continuous
Mapping Theorem to obtain

( 2 (vnTV \/ﬁT,jz),...,\/ﬁTév))T)T3),/1/(0,[),

as n — oo.

We further assume that each variable X*), u =1,2,..., p, has a finite fourth moment. The
entries of the matrix X are generally unknown and need to be estimated. That can be done using
standard bias-adjusted sample covariance matrix, multiplied by bias-adjusted sample variance
of R, that are known to be consistent estimators whenever fourth moments of the variables are
finite. This gives the estimated matrix 3. Specifically,

ﬁ=(n1_12mj—éj>2)(niljz_;(xj—xnf(xj—xn)),

where X; = (X](.l), .. .,X](.p ), and X, = %27:1 X;, and R, is defined similarly. Since matrix inver-
sion and square root are linear and therefore continuous transformations, by the Continuous
Mapping Theorem it holds that >7'/2 is a consistent estimator of ~7/2, Applying Slutsky’s

theorem componentwise, we obtain that

(A0, AP, ., AP):= (S (VA T, VAT, )...,\/ﬁT(”))T)Tg,/V(O,I), (3.10)

n’""n

as n — oo.

Values of any T, u =1,2,...,p, close to zero indicate that the evidence against MCAR
may be weak. The same holds for the components of the vector (AM, A®, ..., AlP)), since it is
just a linear transformation of the previous. Having this conclusion, we construct a test based
on the statistic

Ap=(AD) +(ADY o (AP,

whose small values indicate that there is not enough evidence agaist the null hypothesis. Hav-
ing (B.10), we see that A,, is asymptotically distributed as a sum of squares of p IID standard
normal variables, and hence A,, is asymptotically )(5 -distributed. Finally, we construct a critical
region of the test as

{A” > %;:a}’

where ){5,& is the adequate upper quantile of the )(; distribution.
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REMARK 3.1. Note that the statistic A,,, being equal to sum of the squares of the vector

S (VATO,.., /AT?),

can be written as

A, =n(TO, T, TV (TO, 7@, T®)"

n n n

If we, instead, used the MLE ¥ of the matrix X, which is biased, we would have relation 3. =
(%)2 ¥, and we could write

~ ~ ~ =1 (= ~ ~ T
A,=n(TO,T®, . TW) = (IO, T®,..., TP)", (3.11)

where T, u=1,2,..., p, are defined analogously as in (3.2). Asymptotically, any combination
of the previous is equivalent.

3.1.3 General case

As the final step of this section, we soften the assumption of univariate nonresponse, and allow
multiple variables to be susceptible to missingness. The only restriction we impose is that there
is at least one completely observed variable. Consider the data that can be modeled by random
vector (XW,..., x®), yW . Y®)and the expanded sample

1) (p) 1 (@) pl) ()
Xh) X%) Ylm Yl() Rh) R%)
X - XV vy e YW R ... R\
; S O (3.12)
1 1 1
X’(l) X,(f) Yn( ) Yn(q) R}g) Rilq)
Suppose that variables X, ..., X(P) are completely observed and that Y(V,..., Y@ are suscep-
tible to missingness. Similarly to previous subsections, we introduce the statistics
1 n 1 n n
T == xR ———— X“RY, (3.13)
N 2 2
J#i

u=12,...,p,v=12,...,q. In the exact same manner as Theorem 3.2, we obtain the follow-
ing theorem. At this point, we omit the proof. First, it is a straightforward generalization of
Theorem [3.7. Furthermore, a more general and technically involved result will be presented
in Section .3, of which this proof will be a special case.

THEOREM 3.3 [ALEKSIC (2024)]. Let us have data represented by the expanded sample (3-12)
and let T™“") be defined as in (B.13), for u =1,2,...,p and v = 1,2,...,q. Then, under the null
hypothesis of MCAR, it holds that

(VAT VAT, Ja T, VAT®D, ., yaT?Y,. VaTP?) 2 4(0,5),  (3.14)

n n

as n — oo, with

5 = [Cov(x11/4D, x1i/4)) Coy(RUmeda) Rlitmoda))] (3.15)

i,je{l,...pq}’°

where a (mod b) denotes the remainder of the division of a by b, and [-] is the ceiling function. ®

REMARK 3.2. In Theorem B3, we define g (modg) to be equal to ¢, and not zero, to get R
instead of the non-existent R,
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As before, if we assume that complete variables have finite fourth moments, ~~/? exists
and can be consistently estimated in a standard way to obtain >7/2 or ¥7'/2 as a consistent
estimator. Finally, it holds that

o ™T b
(ALY, ., ALD, ARD, 4G, AP, APD) = (ST (VT /AT ) = A(0,1),

n n n n

as n — oo, so we have the convergence

A, = (AW = p (T, TP (00, Tra)" B Lop (3.16)

u=1 v=1
which can be used to calculate the critical values of the test.

REMARK 3.3. Note that as long we have p complete and g incomplete variables, the data can
be rearranged to take the form (3.12).

EXAMPLE 3.1. The concise expression (B.15) for  can be somewhat abstract, so it could be of
a help to discuss it a little bit more. For that purpose, let us have four-dimensional data that
consists of the n 11D replications of a vector (X, X®, Y1) y) where we, as usual, consider
the variables XV and X® to be completely observed, and Y and Y partially observed. In
that case, > has the form

Cov(XW, XM Cov(RY,RW) Cov(XW, XW)Cov(RY,R®) Cov(XW, X@)Cov(RY,RY) Cov(XY, X@)Cov(RY, R?)
. Cov(XW, XMCov(RY,R?) Cov(XW, XWCov(R?,R?) Cov(XW, X@)Cov(RY,R®) Cov(X!V, X?)Cov(R?,R?)
~ | Cov(XW, X®)Cov(RW,RY)  Cov(XW, X®)Cov(RW,R?) Cov(X?, X®)Cov(RY,RY) Cov(X?, XP)\Cov(RY,R?)
Cov(XW, XPCov(RY,R?) Cov(XW, X@)\Cov(R?,R?) Cov(X®, X@)Cov(RY,R?) Cov(X®?, X?)Cov(R?,R?)
Cov(RW,RW) Cov(R™, R?)] [Cov(RW,RV) Cov(RW, R?)]
1 x@ ! ! 1) y@ ! !
Cox™, X )(COV(R“),R[Z)) Cov(R®, R?) Cox™, X )COV(R(U,R(Z)) Cov(R?,R®)
[CovRY),RY) Cov(RY,RY) Cov(RV,RY) Cov(RY,R®)
1 y@ ! ! 2 y@ ! !
Covx™, X )_cOv(R[U,R[Z)) cor®,R2)| CO XD couri R CovR®, RY)

= Cov((x", x?))® Cov((R™, R?)),
where ® denotes the Kronecker product of (covariance) matrices.

Example 3.7 allows us to make straightforward generalization and conclude that the matrix
¥ from Theorem [3.3 is equal to the Kronecker product

Cov((x,X@,..., x"))® Cov((R™, R?, ..., RD)).

Since the Kronecker product of two matrices is invertible if and only if both matrices are in-
vertible (e.g., Meyer, 2023, Theorem 2.7.2), we must introduce an additional assumption about
the data in order for the test to be well-defined: there should be no perfect linear relationship
among the response indicators, as such dependence would imply that their covariance matrix
is singular.

To conclude this section, we recapitulate the assumptions required for the test: there is no
perfect multicollinearity among the data variables or among the response indicators, and all
variables have finite fourth moments.

3.2 A note on the special case of univariate nonresponse

One of the most well-known tests for testing the MCAR assumption is Little’s MCAR test, con-
structed by [Little (1988). This test uses a test statistic d? that relies on splitting data into groups
by missingness patterns. For a sample of IID random vectors with a univariate nonresponse,
as in (3.6), the following theorem states that our and Little’s statistics coincide.
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THEOREM 3.4 [ALEKSIC (2024)]. For the (p+1)-variate data with a univariate nonresponse, that
can be represented as expanded sample given in (B.9), it holds that

A, =d?
where A, is as in (B-11)), and d? denotes the Little’s statistic.

PROOF. We first need to adapt the expression for Little's statistic to our notation. For simplic-
ity, we discuss the three-dimensional case (3.7), but it will be obvious that the generalization
is straightforward.

Denote the vectors

L:(anRi R__fo 5 RZX R——ZX)

i=1"% =1

n

1 n
L xPa-r)—=» xW X.(Z)l—R-—— x% o
( e IRl S D IR Ie D"

i=

and

S|~
S

L=l o— > XV1-R)—= > X", o> XP(1—-R)—— X}z)),
' (Z?:I(I_Ri); l l i=1 l Z?:l(l_Ri) i=1 l l i=1

and let ¥, be a matrix obtained by expanding ¥ to include estimates of covariance of X,
i =1,2, and Y, calculated on those rows i that have Y; observed. So, the matrix ¥, is of the

form

-~ | A

Zl - [AT A ] ’
where A and A are estimators of the corresponding matrices and ¥ is defined in Remark B,
here just for p =2. Denote ¥’ = 7% and 5 = -7+%,, where R, = . 37" | R;.

In his paper, Little (1988) 1ntr0duced the test StatlStIC that, in this special case of a univari-
ate nonresponse, has the form

d*=nR,LEEV'L"+n(1-R,)L,(E) L.

But, since in this case the vector L, has zero as the last component, matrices A and A have no
effect on d?, so we can make reduction and obtain that

d?=nR,LEYLT + n(1—R,)L/ (S LT

l )
which, after substituting ¥’ and ¥/, becomes
d*=nR’1-R,)LE'L" +nR,(1—R,LE"'L]. (3.17)

Denote XV=13" X! and X similarly. Also, let X\"R, = =137 X"R;, and let X?R, be
defined in an analogous manner. Now we can see that

1 e
L= (xR, XPR, ) -(X", )

n
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and
Y (X(”—X,&”Rn,X@)—Xff)Rn)—( (), X®)
R, - -
= (g %@ ——_(X(UR X9R )

Next, we calculate both of the terms in (B.17). First, we have that

T
RX1—R,)LE'L" =n(1-R,) (X,S”Rn, X}?Rn) sl (X,(,“Rn, XE,Z)R,,)

—2nR,(1— Rn)(x,g”Rn,X,?)Rn)i—l( (v, x@)"

+nR3(1—R,)(XW, X@)571 (X0, X))

n n

Then, it holds that

~

nR,(— RS = nk, (XUR, XPR,) 5 (XIUR, XR,)

—2nR2 Xk, XPR, ) S (0, XP)
+ nR (XD, XD 5 (X0, X2

n n

Combining, we have

T
d*=n(X\'Ry XP'R, ) £ (X R, XP'R,

n n

—2nR, (X{R,, XR, )£ (X, XP)

+nR? (X0, Xx@) 51 (X0, XY

n n

On the other hand, from (B-11) (for p = 2) and from the fact that 7 = X;R, — X(“R
u=1,2, it follows that

which is exactly d?. Thus, Theorem (-4 holds. [

3.3 Generalization

The A, -based test left some properties to be desired. The first major drawback of the test is that
it can be used only on a dataset that has at least one complete column. The second and more
significant limitation is that it entirely disregards the partially observed variables Y\,..., Y@,
This leads not only to a loss of power but also to a potential inability to detect alternatives to
MCAR where response indicators depend on Y, ..., Y@ but not on X,..., XP). This setting
is not very uncommon; e.g., it can occur whenever response indicators depend on incomplete
variables, but complete and incomplete variables are mutually independent. Therefore, it is of
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essential importance to address this issue. In this section, we improve the test so it becomes
able to utilize the partially observed variables.

Once again, we consider the expanded sample (3.12). Not to get confused, let us introduce
only a slightly different notation than one from previous section. Statistic T from (3-13)

computed from variable pair (X, R”) will now be denoted 7, ".

Our main goal is to find a way to compute the statistic 7*-*) from (B-13) for each pair
(Y™ RW) with u # v, in order to obtain an estimate of the covariance between them. The
subsequent goal is to use those statistics to extend the vector from (B.16) to include them,
and, as a consequence, to expand the set of detectable alternatives of the test. Under the null
hypothesis of MCAR data, it is reasonable to calculate it on those cases where Y* is observed.
In that case, the statistic can be written as

1 n 1 n n
(wv) _ (W) p(u) p(v) _ (1) p(u) p(v)
L= 2R, ﬁ(u)(n—l)zzy" R A

i=1 j=1
j#i

N
RS
<
N
_
<
S
=
w
—
x

where

REMARK 3.4. We note that the form (B.T§) is a generalization of (3.13)), since, for complete
variables, all of the response indicators are equal to 1.

It is intuitive (and true) that, under MCAR data, a non-degenerate U-statistic computed
from complete cases, appropriately normalized, has the same asymptotic distribution as the
one based on the complete sample. However, rigorous proof was anything but trivial, as we
will see in the Chapter f, where we will present it. The complexity of the result is due to the
fact that 2*) is not constant, but random. Formally speaking, Tn(f;”) is not a U-statistic, but is
asymptotically equivalent to one. In our case, which involves the difference between two test
statistics and the joint distribution of such statistics, we should not expect the situation to be
any simpler.

The main reason for introducing the statistic Tn(,’}'") from (B.18) is that it serves as an un-
biased estimator of Cov(Y®), R®")), which is a measure of dependence between Y and R,
However, the estimate of any value proportional to it would also suffice. So, naturally, one

could think of . oo
. 1 1
(u,v) (1) p(u) p(v) (1) p(u) p(v)
T =— YRR~ ——— YRR (3.19)
n,Y n; i i i n(n_l);; i [ J
J#i
as amodification of the test statistic. This choice seems appropriate, since we use deterministic
n instead of random 7, and

so it seems like Slutsky’s theorem could be used as a final step of deriving the asymptotic
behavior. However, a more fundamental problem lies beneath the surface. Under mutual
uncorrelatedness of response indicators, it holds that

E(T%")=E(T(y")E(R™)=Cov(Y™, RY)E(R™),

which is equal to zero under MCAR. This makes Tn('“f) appear to be a suitable choice, as its
expected value is proportional to the target covariance. However, if response indicators ex-
hibit any form of dependence among themselves, the statistic Tn(,”l;”) from (B.1§) is no longer a
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complete-case estimate under MCAR, since the data on which it is computed are not MCAR in
that case. Indeed, the data here consist of realizations of the pair (Y, R?")), while complete
cases are selected with respect to R™). These response indicators corresponding to different
variables need not be mutually independent for the data to be MCAR; the only assumption
required by the test is the absence of multicollinearity among them, that is, their covariance
matrix must be regular.

If we assume MCAR and make no additional assumptions about the response indicators, it
is straightforward to see that

E(7.5")=E(Y")Cov(R™,RY),

which does not necessarily equal zero under the null hypothesis, as it should be. In fact, T,ff‘y'”)
is a U-statistic that estimates Cov(Y®R®, R"), which may or may not be close to desired
Cov(Y™, R™) E(R™), depending on the internal structure of the response indicators. In other
words, the statistic T,ff‘l;”) can be interpreted as an indirect measure of the covariance between
the incomplete variable and the response indicator, although with variable reliability.

To be able to examine this issue in more detail, we first need asymptotic results for these
statistics.

LEMMA 3.1. Under MCAR, it holds that

lim Cov(vnT,y", vnT,})=E(Y“Y"). A+E(Y™)E(Y")-B, (3.20)
where
A=E(R®RWR"RY)—E(RWRWRY)E(R®)
_E(R®R"RY)E(R)+E(RYR)E(RV)E(R")
and

B:]E(R(M)R(S))E(R(V))]E(R(r))+E(R(V)R(r))]E(R(u))E(R(S))+E(R(V)R(S))E(R(u))E(R(T))
+2E(RVRY)E(R™)E(RY)+2E(R“RM)E(RV)E(RY)—E(R™RVRY)E(R™)
—4E(R(u))]E(R(V))E(R(r))E(R(S))—E(R(M)R(U))E(R(r)R(S))—E(R(U)R(r)R(S))E(R(u)).

In particular, if either the incomplete variables have zero means or the response indicators are un-
correlated, it holds that

lim Cov(vnTy", vuT'y)=E(Y™y!"). A, (3.21)

n—oo

PROOF. Let u,v,r,s be fixed. Begin by noting that

R 1 < 1 1
i) = UZ YRR — WZZE(Y,.(”)RZF”)R;“) + Yj(”)Rﬁ.”)RZF”)) = M,—N,
2

1) i=1 1<i<j<n

and, similarly

1 L
(Z) 1<i<j<n
Relying on Theorem .2, we have that

lim nCov(M,,Q,)=1-1-Cov(Y“R™RY, yIR"RW)

00 1 oo
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— E(y(“) Y(r))]E (R(M)R(V)R(r)R(S)) . o) ( Y(u))E(Y(r))E (R(M)R(V))E(R(r)R(S)) ,
and, similarly,

lim nCov(M,, S,)

n—oo

=1.2. COV(Y(”)R(”)R(” ,

1
(r) p(r) pls) (r) p(r) pls)
E(Y’RHQS+Y2’R2 R;))
)

1
—(COV(Y( R§“)R§”),YIrR§f RY)+Cov(Y"“'R A
=E(YWY")E(RYRVRV)E(RY)-E(Y™)E(Y")E(RYR)E(RV)E(RY)
+E(Y(u))E(Y( ))E(R(M)R( )R( ))E(R( ))_E(Y(u) E(Y(r) E(R(H)R(U))E(R(r))E(R(S))
( E( )R(r) E(R(S))_ZE(Y(u))E(Y(r))E(R(u)R(U))E(R(r))E(R(s))
+]E(Y NE(YV ))]E(R(”)R(”)R(S))]E(R(’)).
Analogously, we obtain
lim nCov(N,,Q,)
n—oo
1 2 2

=2-1-Cov(1(y(”)R(”)R(”)+ YW R RY) Y(’)R(’)R“))
2 1 2 [t 1 1

(

1

— E(y(u) Y(r))lE (;(M)I;(F)RI(S)) _II_ E Y(U))E ( Y(r))E(R(V)R(V)R(S))E(R(u))
—2F ( Y(u))E(Y(r))E(R(u)R(U))E(R(F)R(S))

=Cov(Y"RM™RY, YRIRY) + Cov( VR

and
lim nCov(N,,S,)
n—oo
1
(u) p(u) p(v) (N p(r) pls) (1) p(r) p(s)
=2.2- (Cov( y +Y2”R2”R1“),§(erRl’R;+Y3’R3’Rls))
= Cov(Y,"R" R;v, Y"RVRY)+ Cov(v;"RM™RY, YVR{RY
+(Co ( IRWRY, Yl(”R{”Rgs))+<cOv(Y2(“)R(”)R§”) Y"R{"RW™)
" ( E(R)E(R")

(

)]E(R ”)R NE(RV)E(RY)+E Y(“))JZE(Y(”’)]E(R(“)R“))
(R (

By noting that

lim nCov (74", 7" )— lim nCov(M,,Q,)— lim nCov(M,,S,)

— lim nCov(N,,Q,)+ lim nCov(N,,S,)

n—oo

and combining the derived expressions, we obtain the statement of the Lemma. This concludes
the proof. [ |

COROLLARY 3.4.1. Under MCAR, it holds that
lim Cov(vnT, ", vni.y)

n—oo

= COV(X(u), Y(’)) (E (R(V)R(F)R(S)) + E(R(V))E(R(V))E(R(S))

—]E(R(”))]E(R(’)R(S))—E(R(”)R(”)E(R(s))). (3.22)
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PROOF. The results follows from Lemma B.4.1 by setting Y*) = X(*) and noting that RW =1.
|

COROLLARY 3.4.2. Under MCAR, it holds that

lim Cov(vrT %", vaTy)=Cov(Xx™, X")Cov(R"™, RY). (3.23)

n—oo

PrROOF. Follows directly from Corollary B.4.1 by setting Y’ = X(”) and noting that R"”'=1. m

REMARK 3.5. Note that Corollary is in fact Theorem [3.3. As stated in Subsection 3.1.3, it
is a corollary of a more general result.

The following result summarizes our findings.

THEOREM 3.5 [ALEKSIC (2025)]. Assume the data are MCAR, all variables have finite fourth
moments, and either the incomplete variables have zero means or the response indicators are uncor-
related. Then

(1L1) (Lg) (21) 2,9) (p.1) (r.q)
ﬁ(Tn,X SR O NSRS M LR M SO Mol

and

T
’_ (L,1) ~(q,9-1) A =1 (1,1 ~(gq-1)| D2
A '_n(Tn,X""’ ny )A (Tn,X""’Tn,Y ) = X paraig-1y (3.24)

where A is corresponding limiting covariance matrix with limiting covariances (B.21), (B.22), and
(B:23), and A is its standard bias-adjusted estimate.

PROOF. The results follows directly from the equations (3.21), (B.22), and (3.23)), and the fact
that the A is a consistent estimator under the finite fourth moments assumption. [ |

The convergence (8.24) can be subsequently used to construct the rejection region and
compute the p-value of the improved MCAR test.

REMARK 3.6. The assumption of either the incomplete variables having zero means or the re-
sponse indicators being uncorrelated makes the test inapplicable in most scenarios, so we mit-
igate this issue by centering the data before conducting the test. Since we center them using
(complete-case where necessary) estimates of their means rather than the (unknown) theoret-
ical ones, this introduces a potential methodological concern. One of the goals of the empirical
study is to examine the robustness of the test with respect to this issue.

3.4 Empirical study

In this section, we present the results of an extensive simulation study which is conducted to
examine how the novel test behaves in terms of empirical type I error and power. The novel
test is compared to Little’s MCAR test, as well as the old test based on the statistic A, from
(B.16), which novel A’ from (3.24)) improves upon.

As previously noted, the original test based on A,, could only detect correlations between
the response indicators and fully observed variables. Therefore, in addition to evaluating alter-
natives undetectable by the original test, we also compare A,,, Little’s 42, and the proposed A’
in these scenarios (Aleksid, 2024). This allows us to assess whether the improvements offered
by the new test come with potential trade-offs, such as reduced power or calibration issues.

The missingness probability for any value in the data, i.e. the probability that a specific
data cell is missing, ranges from 3% to 30%; we have decided to study sample sizes of n =100,
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n =200, and n =300, which appears to be adequate for illustrating the quality of asymptotic
approximations.

Throughout the rest of this section, we use the abbreviation i X jY to denote the dataset
with a total of i + j variables, where i of them are complete, and j of them are incomplete. We
present only the 2X3Y results in the main text to avoid overload; findings for other cases are
consistent and thus omitted.

All simulations are performed with N =2000 replications and at nominal level of @ =0.05.

3.4.1 Study design

Generating the data

For the data distributions, we use the standard normal distribution, as well as the normal dis-
tribution with marginal means equal to 1 and covariance matrix 0.5I +0.5J, where I is the
identity matrix and J is a matrix with all elements equal to 1. We also consider a Clayton cop-
ula with parameter 1 and exponential &(1) margins, as well as y? margins (see, e.g., Fischer
and Kock, 2012). The main idea behind this choice is that Little's test relies on the normality
assumption. Given this, it is important to assess the performance of the novel test for nor-
mally distributed data, for data whose distribution deviates substantially from normality, and
intermediate cases. The Clayton copula was also used in an independence testing scenario by
Cuparic¢ and MiloSevid (2024), where the test of independence by Kochar and Guptd (1990)
was adapted for the setting of randomly censored data.

Generating missingness with uncorrelated response indicators

For implementation, R package missMethods is used (Rockel, 2023). For the null distribution
case, function delete_MCAR is used. We stick to the alternatives implemented in functions
delete MAR_1_to_x, with recommended choice of x = 9 and argument n_mis_stochastic
= FALSE, and delete MAR_rank. The main idea between these mechanisms is that, for each
incomplete data column, we have the so-called control column, that is fully observed, and the
data from that column is used to dictate the missingness probability in the incomplete one. The
first mechanism works by setting a specific threshold (default is median), and then splitting
the cases into two groups: those that have value of control variable smaller than the threshold,
and those that do not. Then, the missingness is introduced such that the odds of a value being
missing in those two groups are 1: x. For the second mechanism, the probability that a value
is missing is directly proportional on the rank of its observed pair. For much more details, we
refer to Santos et al] (2019), where they were first introduced.

Generating missingness with correlated response indicators

To examine the behavior of the improved test when centering is required, we generate missing
data with correlated response indicators, controlling their correlation coefficient. This is done
by modifying the functions delete_MCAR, delete MAR_1 to_x, and delete_MAR_rank. Algo-
rithm (.7 illustrates the procedure for the 2X3Y data and positive correlation, and it can be
easily adapted to other dimensions and correlation structures.

The following lemma formally establishes that the correlated response indicators generated
in Algorithm 3.7 have a correlation coefficient equal to p.

LEMMA 3.2. Let R, and R, be two independent indicator random variables with the same expected
value q. Let U be a random variable uniformly distributed on [0, 1] and independent of both R, and

R,. If, for p €[0,1],
Ry=I{U<p}R +I1{U>p}R,
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Algorithm 3.1 Generating missingness with positively correlated response indicators.

1: Start with the complete sample (x,, X, ..., x,,), where each x; = (x](.”, x}z), yj(l), y}z), y]@);

2: Specify the desired missingness probability p and the correlation coefficient p;

3: Generate missingness in variables yV and y® using the probability p and a chosen method;
record the response indicator vector r®;

4: Generate a random vector r of length n consisting of zeros and ones, where 0 appears with
probability p, and 1 with probability 1—p;

5: Generate a response indicator vector r® of length n such that its jth element is equal to
r}z) with probability r, and r; with probability 1—r;

6: Generate missingness in y® according to the response indicator r®.

then Cor(R,,R;)=p.
PROOF. We have that
Cov(R,, Ry) =E(R,R;)—E(R,)E(Rs)
=E(I{U<p}R +1{U>p} RR,)-ER)E(I{U<p}R+I1{U>p}R,)
=P{U <p}E(R)+P{U > p} E(R))E(R,)—E(R)E(R,)P{U < p} —E(R))E(R,)P{U > p}
=pq+(1-p)g*—pg*—(1-p)g*
=pq(l1—q).
Additionally,

VVar(R)=/q(1-4q)
and
Var(Ry) = E(RS) — (E(R,))*
—E(I{U<p}R+21{U<p} 1 {U>p}RR+I1{U>p}R,)—(rg+(1—r)q)
=rq+2E(I{U<p}(1-1{U<p}))g* +(1—plg—q°
=q—q°+2-0
=q(1—q),

so v/ Var(R;) = v/q(1—q). Finally, we have that

Cov(Ry, R3) _ pq(l—q) —p
Vv Var(R))y/Var(R;) +/q(1—q)v/q(1—q)

Cor(Ry, R3) =

REMARK 3.7. Similarly to the missingness settings shown in Figures B.5-3.7, we adapt Algo-
rithm B.7 so that the variable YV governs the missingness of Y@, while the missingness in Y®
is generated to be correlated with that of Y. Additionally, MCAR is imposed on Y to make
the alternative hardly detectable for the A, -based test.

3.4.2 Performance of the tests under zero mean or uncorrelated response
indicators
In this subsection, we present the results of simulations in which the A’ -based test was con-

ducted under the assumption that the variables have zero means or that the response indica-
tors are uncorrelated. In this case, no scaling of the data was performed prior to the test, as
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Figure 3.1: Empirical type I errors for 2X3Y case, standard normal distribution.
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Figure 3.2: Empirical type I errors for 2X3Y case, Clayton copula with parameter 1 and &(1) margins.

it was unnecessary for its validity. We first present results for the exact missingness scenar-
ios considered in Aleksid (2024), and subsequently for scenarios in which the alternative was
undetectable or only marginally detectable by the original test. Finally, we discuss the case of
increasing dimension.

Performance in scenarios where A, -based test was compared to Little’s test

As one can see from Figure 3.7, for the standard normal distribution, all three tests are well
calibrated and have the empirical type I error approximately equal to the nominal level. From
Figures and B.3 we can see that Little’s d* has significantly larger deviation of the type I
error, which is almost twice the nominal level. However, in most of the real-world scenarios
that would not be the problem, especially since the empirical type I error remains stable across
sample sizes. On the other hand, A, and A’ have very similar performance and are much better
calibrated compared to d?. This is most clearly seen in Figure 3.2, where the data distribution
deviates most from normality.

Figure 3.4 shows that, under MAR 1 to x alternative and normal data, the novel test based
on A’ suffers a power loss compared to old one based on A,, but it still outperforms Little’s
MUCAR test, especially for smaller sample sizes. A similar conclusion holds for other underlying
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Figure 3.3: Empirical type I errors for 2X3Y case, Clayton copula with parameter 1 and y7 margins.
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Figure 3.4: Empirical test powers for 2X3Y case, standard normal distribution, MAR 1 to 9 (var. 1
controls missingness in var. 3 and var. 5, var. 2 controls var. 4).
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Figure 3.5: Empirical test powers for 2X3Y case, standard normal distribution, combination of MAR
rank and MCAR (var. 3 controls missingness in var. 4 and var. 5, and then MCAR missingness is
generated in var. 3).

distributions, as well as for the MAR rank mechanism. To improve the readability of the thesis,
those can be found in the Supplementary Material of accompanying paper (Aleksid, 2025a).

Performance in novel scenarios

Figure 3.5 shows power performance for a specific MAR setting for standard normal 2X3Y
data: variable 3 controls missingness in variables 4 and 5 according to MAR rank mechanism,
and MCAR missingness is generated in variable 3 afterwards. This is a representative example
of a setting where response indicators depend on the column which is incomplete - alternative
undetectable for the old test. The novel test has once again performed better than Little’s.
Figure 3.9 shows that the old test is able to detect the alternative when the variables are cor-
related, namely the case of Clayton copula with parameter 1 and &(1) margins. The old test
is able to capture the dependence through the completely observed ones. However, the old
test has significantly lower power, whereas the novel test is comparable to Little’s, although
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Figure 3.6: Empirical test powers for 2X3Y case, Clayton copula with &(1) margins, combination of
MAR rank and MCAR (var. 3 controls missingness in var. 4 and var. 5, and then MCAR missingness is
generated in var. 3).
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Figure 3.7: Empirical test powers for 2X3Y case, Clayton copula with y2 margins, combination of MAR
rank and MCAR (var. 3 controls missingness in var. 4 and var. 5, and then MCAR missingness is
generated in var. 3).

slightly more powerful. For yZ margins the old test is once again significantly less powerful
than others, but we can see that Little's test has almost the same power as the novel one, hav-
ing barely larger power for extremely large missingness rates that are not expected to be very
common in practice. The behavior observed in Figures .5, B.6, and 3.7 persists across differ-
ent dimensions, distributions, and alternatives undetectable for A, -based test: if the novel test
has larger power than Little’s, it is substantially better, and in other cases it is comparable, or
slightly worse for large missingness rates. Further examples of this behavior are shown in the
tables in the Supplementary Material of Aleksid (2025a).

REMARK 3.8. It is important to note that in scenarios where the data deviate from normality,
Little’s test tends to reject the null hypothesis more frequently than it should, indicating in-
flated type I error rates. Consequently, the apparent power of Little’s test under non-normal
settings should be interpreted with caution, as part of the observed rejections may come from
this liberal behavior rather than genuine departures from the null. In other words, the re-
ported powers for non-normal data likely overestimate the true power of the test. Therefore,
when comparing the performance of the proposed methods, the results obtained under nor-
mality should be regarded as the most reliable benchmark, providing the best estimate of the
actual differences in power between procedures.

Since all three studied tests rely on the assumption of all of the variables having finite
fourth moments, it is interesting to examine the robustness of tests when that assumption
is not fulfilled. Figure B.§ shows the empirical type I errors for the standard Student’s t-
distribution with 2 degrees of freedom, which does not have finite fourth moments. As we can
see, the novel test performs much better that Little's test, even for larger sample sizes. Despite
the tendency of d?-based test to reject the null hypothesis in this setting even when the null
hypothesis is true, Figure 3.9 shows that the novel test is significantly more powerful. For a
small number of variables (e.g., 3 or fewer), Little’s test can be slightly more powerful in some
scenarios, but that difference in power is notable for large missingness rates, which are not
very common in practice. For clarity and better organization of the text, we omit those figures
from the text.

Another important scenario in which the novel test needs to be examined is the case of
MNAR data. Since the test by its construction is not able to calculate the covariance be-
tween the incomplete variable and its response indicators, alternatives that are "purely MNAR”
should be undetectable for the test. More precisely, those are alternatives where the only form
of dependence between the response indicators and the data is realized between the variable
and its indicators, but not any others. However, as seen from Figure .10, in the case of the
standard normal distribution, Little’s test is not able to detect such alternative either. Figure
B.17 presents behavior in the case of same missingness mechanism, but Clayton copula with
parameter 1 and exponential with parameter 1 margins. As we can see, all tests have practi-
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Figure 3.8: Empirical type I errors for 2X3Y case, standard Student’s t, distribution.
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Figure 3.9: Empirical test powers for 2X3Y case, standard Student’s ¢, distribution, MAR 1 to 9 (var. 1
controls missingness in var. 3 and var. 5, var. 2 controls var. 4).

cally the same power, and are able to detect the alternative. The same behavior is noted for
other distributions and dimensions.

However, there are exceptions that behave unexpectedly, such as previously studied Stu-
dent’s t, distribution which does not have finite fourth moments. When combined with upper
censoring as the only missingness mechanism, Figure shows that all three test experience
loss of power as the missingness rate increases, which is not expected, and was not observed in
the scenarios before. It appears that the combination of an undetectable alternative and data
from a population that do not satisfy the assumption of finite fourth moment is too challenging
for the tests to handle, and they start behaving in a strange manner. We have tried replacing
the identity scale matrix of the standard ¢, distribution with the matrix that has unit diago-
nal elements, and others equal to 0.1 and 0.5, respectively, but it did not help the Little's test,
and behavior persisted. For example, for the scale matrix with non-diagonal elements equal to
0.5, the novel test stopped having decreasing power for n =100, but Little’s test stabilized for
n =300.
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Figure 3.10: Empirical test powers for 2X3Y case, standard normal distribution, MNAR (upper) censor-
ing.

REMARK 3.9. The novel test we have presented is based on estimating the covariance between
the response indicators and the data variables, which is a measure of linear dependence. To
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Figure 3.11: Empirical test powers for 2X3Y case, Clayton copula with parameter 1 and &(1) margins,
MNAR (upper) censoring.
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Figure 3.12: Empirical test powers for 2X3Y case, standard Student’s ¢, distribution, MNAR (upper)
censoring.

capture other form of dependence, one is free to transform the variables and apply the test to
the transformed data, if some other form of dependence is expected to occur based on previous
experience. One such example where transforming the variables improves the power perfor-
mance of the test can be found in Aleksid (2024), where the original A,-based test was intro-
duced. The transformation of variables in this context could be the best solution in those cases
where specific dependence between the data and the response indicators is to be expected.

3.4.3 Performance of the tests under nonzero mean and correlated re-
sponse indicators

This subsection examines the properties of the A’ -based test in situations where data centering
is required, that is, when some variables have nonzero means and certain response indicators
are correlated. We provide a concise overview of the conducted simulations to avoid overload-
ing the text. For this purpose, only some of the results for the normal distribution with all
means equal to 1 and covariance matrix 0.57 + 0.5/ are presented. The behavior observed for
other distributions is consistent with the results shown here, except that Little’s test exhibits
weaker type I error control for distributions that deviate substantially from normality. This
was also the case for the setting of zero means and uncorrelated response indicators.

The same pattern is also observed across different dimensions and alternative hypotheses.

Figures .13 and .14 display the empirical type I errors for normally distributed data with
correlated response indicators and nonzero means. As observed, all tests are well calibrated,
while the A’ -based test shows a slightly lower empirical type I error than the nominal 0.05 level,
though the difference is minor and not practically significant. As previously noted, Little’s
MUCAR test exhibits weaker control of the type I error when the data deviate from normality.
Figure 3.15 provides an illustrative example of such behavior.

Figure 3.1¢ provides a representative example of the power behavior under an alternative
detectable by the A,-based test. As in the zero-mean case, the A’ -based test outperforms
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Figure 3.13: Empirical type I errors for 2X3Y case, normal distribution with mean (1,1,1,1,1) and co-
variance matrix 0.5I5 +0.5J5, MCAR using Algorithm .7 with p =0.2.
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Figure 3.14: Empirical type I errors for 2X3Y case, normal distribution with mean (1,1,1,1,1) and co-
variance matrix 0.55 +0.5J5, MCAR using Algorithm 37 with p =0.8.

Little's test but is slightly outperformed by the A,-based one. However, for the alternatives
described in Remark .7, the A’ -based test attains the highest power, particularly at higher
missingness rates; a representative example is shown in Figure B.17.

Behavior as dimensionality increases

Another important remark is that the standard implementation of Little’s MCAR test in the R
package naniar can handle no more than 30 variables. To the best of our knowledge, the most
capable implementation addressing this limitation is found in the (now deprecated) Baylor-
EdPsych package, which can process up to 50 variables. In contrast, the novel test introduced
here has no such constraints, neither theoretical nor practical.

To examine the type 1 error and power behavior, we conduct a series of simulations. Fol-
lowing our previous notation, we generate 2X3Y, 5X5Y, and 10X10Y datasets and compare the
performance of the tests as dimensionality increases. MAR 1 to 9 data are generated as follows.
For 2X3Y data, missingness is generated using Algorithm .7 with r =0.5. For the 5X5Y case,
the algorithm was modified so that the variables X'V, X? and X® govern the missingness in
YW, Y@ and Y®, respectively. Subsequently, the missingness in Y and Y® is generated to
be correlated with that in Y® and Y®), following the same procedure as in the original algo-
rithm. For the 10X10Y case, the same procedure was applied, with variables XV through X®
governing the missingness in YV through Y®. The variables Y® through Y% were then made
incomplete, with their response indicators correlated to those of YV through Y®). MCAR data
are generated in a similar manner, except that no variable pairing is used to govern missingness
among variables.

Simulation results for a normal distribution with all variable means equal to 1, covariance
matrix 0.57 + 0.5/, and sample size n = 100, reveal that Little's test suffers a substantial loss
of both type I error control and power as dimensionality increases. This behavior is illustrated
in Figure for type I error and in Figure 3.19 for power. As dimensionality grows, the
empirical type I error of Little’'s test becomes much smaller than the nominal level, which
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Figure 3.15: Empirical type I errors for 2X3Y case, Clayton copula with parameter 1 and &(1) margins,
MCAR using Algorithm .7 with p =0.8
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Figure 3.16: Empirical test powers for 2X3Y case, normal distribution with mean (1,1,1,1,1) and covari-
ance matrix 0.5I5+0.5J5, MAR 1 to 9 using Algorithm 3.7 with p =0.8.

negatively impacts its power.

In contrast, the A’ -based test remains considerably more stable, with type I error showing
noticeable inflation only for 20-dimensional data with high missingness rates; even then, the
deviation is moderate. The A,-based test is the most stable overall, with empirical type I error
nearly equal to the nominal level. However, the improved A’ -based test is preferable when no
specific form of dependence among the response indicators can be assumed.

To evaluate the impact of using the more general A’ -based test on power, we consider an
A, -detectable alternative. As shown in Figure 3.T9, the generalized test exhibits lower power
than the original A,-based test, even in cases where type I error inflation occurs.

As shown in Figure B.20, increasing the sample size to n =300 allows the A’ -based test to
regain proper type I error control, with empirical values remaining close to the nominal level.
In contrast, Little's test continues to exhibit the same issues observed for smaller samples: its
empirical type I error remains well below the nominal value, resulting in a marked reduction
in power relative to the other two tests.

The corresponding power performance is presented in Figure 3.27. The A, -based test main-
tains consistent performance, while the A’ -based test, though stable, has slightly lower power
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Figure 3.17: Empirical test powers for 2X3Y case, normal distribution with mean (1,1,1,1,1) and covari-
ance matrix 0.55+0.5J5, MAR 1 to 9 using modified Algorithm B from Remark 3.7, with p =0.8.



3.4. EMPIRICAL STUDY 45

2X3Y 5X5Y 10X10Y
0.2000 0.2000 0.2000
0.1500 0.1500 0.1500
& 0.1000 & 0.1000 & 0.1000
wv (%] wv
0050 e 00500 %
0.0000 0.0000 0.0000
0.030.060.090.120.150.180.210.240.27 0.3 0.030.060.090.120.150.180.210.240.27 0.3 0.030.060.090.120.150.180.210.240.27 0.3
Missingness probability Missingness probability Missingness probability
e (2 (Little) o= A'n (new) e An (old) e (|2 (Little) —em——A'n (new) —e===An (old) e (2 (Little) —em=A'n (new) —e===An (old)

Figure 3.18: Empirical type I errors as dimension increases, MCAR with correlated response indicators,
p =05, n=100.
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Figure 3.19: Empirical test powers as dimension increases, MAR 1 to 9 with correlated response indi-
cators, p =0.5, n=100.
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Figure 3.20: Empirical type I errors as dimension increases, MCAR with correlated response indicators,
p=0.5, n=300.
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Figure 3.21: Empirical test powers as dimension increases, MAR 1 to 9 with correlated response indi-
cators, p =0.5, n =300.
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than the A, -based one, similarly to the behavior observed in the smaller-sample case.

REMARK 3.10. We believe that the problems observed with Little’s test come from how the test
is constructed. It splits the data into groups based on missingness patterns and then estimates
the mean and covariance within each group. When the number of variables is large and the
total sample size is small, each group ends up with only a few observations, making these
estimates very unreliable. This explains the poor control of type I error and loss of power in
such settings.



Chapter 4

Non-degenerate U-statistics for MCAR
data with application to testing
independence

The main goal of this chapter is to derive the asymptotic distribution of a non-degenerate
U-statistic under the MCAR assumption, presenting the results introduced by [Aleksic et all
(2023). Sections B.7 and are devoted to the theoretical results. In Section .1 we derive
the asymptotic distribution of a U-statistic with non-degenerate kernel under the complete-case
approach. Section .2 applies these results results to the independence testing using Kendall's
7. Furthermore, as an alternative to the traditional complete-case approach, sample median
imputation is considered, and the asymptotic properties of Kendall's statistic are examined
under that approach of handling missing data. The main result of this section is the derivation
of the asymptotic distribution of Kendall's estimate on the median-imputed dataset. In Section
we compare the complete-case approach for handling missing data and the sample median
imputation in the context of Kendall's test. An extensive simulation study is conducted to
compare the type I error and the power for samples of small and moderate size. Finally, in
Section .4 we illustrate the methodology on a real-data example.

4.1 Asymptotic distribution under the complete-case appro-
ach

In this section, we obtain the asymptotic distribution of a non-degenerate U-statistic in the

presence of MCAR data and the complete-case approach for handling missing data. These re-

sults form the basis for obtaining asymptotic properties under different imputation approaches,

which we briefly discuss after the formulation and proof of the main result.

Let X;,..., X, be a sample of IID d-dimensional random vectors. Suppose that for the pur-
pose of estimating of an unknown parameter 8 we consider a non-degenerate U-statistic

én:(% Z ¢(Xier)’ (41)
2

1<i<j<n

let us denote ¢ (i, j) := ¢(X;, X;) for its kernel and assume that the kernel is square-integrable.
Then, by Theorem [I.7], we know that the following relation holds:

Vn(6,—0)> 4(0,402), (4.2)
where 2 = Cov(¢(1,2), ¢(1,3)).

47
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Now suppose that some of the data are MCAR and that every row has an overall proba-
bility of being incomplete p and denote g = 1—p. If we denote by S; an indicator that X; is
completely observed (i.e. S; = ]_[ ( ), then the overall number of complete rows is equal to

Zl: S;. Itis clear that g = E(S;) for all i=1,2,...,n. Under the MCAR assumption, indicators
S; are independent of any X;. Due to the elements of a sample being 11D, indicators S; are also
mutually independent.

A standard approach is, of course, to calculate a statistic 8, only on the complete rows,
which we sometimes refer to as complete-case U-statistic. It can be written as:

Z ¢(i, j)S (4.3)

1<l<]<n

where 2=>""_ S;. Since using the complete-case approach for handling missing data is equiv-

alent to working with a sample of smaller size, we expect 8, — 6 to have the same asymptotic
distribution as 6, — 0 when we use 7 as a normalizing constant. In other words, we expect

VA0, — 0) to have the same asymptotic distribution as vn(0,—0). Note that the size of a
truncated sample is now a random variable, unlike the original size n. This is formalized in
Theorem §.1. Despite being somewhat obvious, the rigorous proof is not trivial and, to the best
of our knowledge, can not be found in the literature.

THEOREM 4.1 [ALEKSIC, CUPARIC, MILOSEVIC (2023)]. Let X,,..., X,, be a sample of 1ID
d-dimensional random vectors, and let 8,, be as defined in (&3). It holds that

b, —0)2 w( 4‘; ) (4.4)

and
Vi(0,—0)2 ¥ (0,402), (4.5)
as n— oQ.

PROOF. Let us consider the expanded sample

X 1 Sl
XZ 82
X, S,

instead of the original one. Using this sample, we define the symmetric kernel
@ ((x,-, si),(x;, sj)) =0 (x,-, xj) 5;S;j.

We denote @(i, j) == ¢(X;, X j)S,- S;. Let us consider the following U-statistic:

quXZ,S)(],] Z¢(u”

1<t<]<n 1<l<]<n
First, due to the MCAR assumption, it is easy to see that ]E(gb(z j) ) q*6. Now, we have

52 =Cov(¢(1,2),4(1,3))
=E(¢(1,2)$(1,3)—q"0”
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=E(¢(1,2)$,5,¢(1,3)8,S;)—q"6
= {Sj are independent of all Xj}
=E(S)E(S)E(S)E(¢(1,2)¢(1,3))—q" 6%
Since, $2 = S and hence E(S2) =E(S) = g we have
ot =q"E(9(1,2)9(1,3))—q"0° = ¢° (07 +6%)—q"6?,

which is obviously strictly positive, so 7, is non-degenerate.
By Theorem 1.7, it holds that

Vi (T,—q%0) > 4 (0,22(q° 0% +(q° — g")6?),

or, equivalently:
Since we have that
we can calculate

As we have that,

1 T, ] 1 S,—q?

VnT, (——%):—_—"\/ﬁ(sz—qz)——_”—q, (4.6)
at (3))  a*Sil "

where §,=+>"" S, by noting that the second summand is op(1), the only thing left to derive

is the limiting distribution of the first summand.

Applying the Law of Large Numbers for U-statistics and the Continuous Mapping Theorem
(e.g., Koroljuk and Borovskich, 2010), we get

T, 0

—_— - > — . 47
a?8,(z—=S)  a* 7
Then, applying the Delta Method for the function g(q)= g* we obtain that
V(82— %) > A (0,40°(1—q)). (4.8)

Finally, using Slutsky’s theorem on (§.7) and the (#.§), and symmetry of the normal distribu-
tion, it yields to

T — D l—q
__n §2_ g2 HJV(()A—HZ),
qZSn(%—Sn)ﬁ( » ) q

as n — oo, which gives us that, indeed, vn(0,—0) has a limiting normal distribution with
mean 0.
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Since we know the limiting distributions of v72(T,/g*>—8) and vnT,(1/g%—(3)/(5)), it is

eo{{Z2-0). v -8

sufficient to show that

behaves as

-]

2

as n — oo. Having (B.6), it remains to calculate the limiting covariance of

E_ T, g2 2
(E0) ™ Gy )

We have
T T - T T _
covl vii( ), — L vm(§i—q’) | =B [ viI( 0] (s -4
q° 725, (5= S,) a> ) q25,(3-S,)
For brevity, let us denote
O .
" _n(%__n)

Now, since

(2051188) A (;qbu)ss)

i<j

it holds that
(4.9)

)) (SiSjSkSIYn)-

2 l#] k#l
Next, we calculate the following sums, the importance of which will become obvious very soon

Kio13 :iizn:s SjSl

ll]l%;él
i L
J# 1%

—ZSZS (nS,—S:—S;)

J#t

i=1

an (< 1\(a 2
=n35,(S,— = |[S,— =],
n n

Klm—ZZSS = n2§, (s ——)

i=1 j=1
J#i
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. 2\(. 3
=S 55 S ss=ns (5 D(5-2)(5- )
i il
sy
1#k

Now, if we denote o5 = Cov(¢(1,2), ¢(1,2)), we have that:

SZ_ 2
—IE Tz'll—q_
; S,
( ¢(i, Np(k,1))E (sisjskslrn))
D OES S S S+ >, (0 +0ME(SS;SeSi7 )
a&lél 1 pair
diff. the same
+ Y (O3 +OMESS SSiT)
both
pairs
the same
n 1
= AT (0°E (7, Kipss) + 402+ 0PE(y, Kipis) + (02 + 0HE(y , Ki212))
2
—i—ezE( K )+i—1 4o+ 0PE(y, Kizs) + (02 + 0DE(y, K1)
~gin(n—1) Tnf12s4 g n(n—1) 1 Tnfaz1s 2 Ynki212) |-
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As n approaches infinity, (o5 + 602)E(y,, K;,1,) behaves as n?. Therefore the last summand above

vanishes as n — oco. Next,

.
(5 -a)(5 )
=—E(n®S? )+n q*+n’E(2(S2—q%)).

Since

E(nS?)= E(S;S;S)=n(n—1)n—2)g*+3n(n—1)g*+ nq,

we have that

E(y,Kizns)=—n(n—1) n—2)q*—3n(n—1)q*—nq +n’q*+ n’E(2(S*— q%)),

from which we conclude that terms having »n® cancel out, so E(ynK1213) is of order n?.

leads us to the conclusion that

n $2—q? 1 1
_]E(TZ_—) = %WQZE(YnKlzszl) + u

That
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where u,, — 0 as n — co. Now,

S$2—q? " IN\(- 2\(s 3
elrakon) =g iy (53 ) (55 (53
=—E(n'S!)+5E(n’S?)+ n'q°E(S?)—51°¢*E(S,) + O(n?)
=—n(n—1)(n—2)(n—3)q*—6n(n—1)n—2)q°—7n(n—1)g* —nq

+5n(n—1)(n—2)q*+15n(n—1)g*+5nq + n*q* (q( n_q) q) 5n°q*+ 0(n?)
=6n’q*—n(n—1)(n—-2)q°>—4n’*q>—n*q* + 0(n?).

From here, we can easily conclude that

lim —E Tzﬂ = lim (i;ezE(YnKlzsm)"‘un)
e gt _n(%_s_ﬂ) reelgtnin =1
0% 4 3 3 14
=;(6q 7*—4q°—q")
_ 517
q

and hence we obtain that

—ﬂ]E(T _Sﬁ—qz ): n 921—67 _,921__q

as n — oo.
Finally, we can conclude that

T, T 1—
lim Cov| vii( 20 ), ———va(§i—q?) | =—a—20"
n—00 q> q28§, (_ S ) q

which, together with the established asymptotic normality with mean zero and the fact that

Var(X + Y)=Var(X)+ Var(Y)+2Cov(X, Y), finishes the proof of (#.4). Another application of
Slutsky’s theorem gives us (#.5), which completes the proof of Theorem f.1]. [ |

If the decision is made not to proceed with the complete-case analysis, but to impute the
data using some simple imputation methods like mean and median imputation, test statistics
can be represented as a U-statistic with estimated parameters. For the asymptotic properties
of such statistics we refer to the results discussed in Subsections [[.5.1 and .57, i.e. the pa-
pers by Randled (1982), De Wet and Randleg (1987), and Cuparic et al! (2022). Applying results
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therein, by eventually posing some additional mild conditions, the asymptotic properties for
such statistics might be obtained. In the next section, we demonstrate this methodology by
deriving the asymptotic distribution of Kendall's test statistic under the null hypothesis of in-
dependence, assuming MCAR data with uncorrelated response indicators and using the sample
median imputation approach as method for handling missing data.

4.2 Testing independence using Kendall’s tau

In this section, we examine the problem of testing independence for MCAR data using Kendall's
coefficient, which quantifies the strength and direction of the association between two numer-
ical random variables. We explore the testing using two approaches for handling missing data:
the complete-case approach with results from Theorem §.7], and the median-based imputation
approach with theoretical results, where we derive the asymptotic distribution of Kendall's tau
statistic computed from the median-imputed data.

Let (X, Y) be a two-dimensional random vector. Kendall’s tau rank correlation coefficient
between the variables X and Y is defined as E (sgn(X — X)sgn(Y — Y)), where (X, ¥) is an inde-
pendent copy of (X, Y). Given a sample of IID random vectors (X, ¥;),...,(X,, ¥,), an unbiased
estimator of 7 is given by

1
ta=7m D, sgn(X;—X;)sgn(¥;—Y))
(2) 1<i<j<n

Note that this is a U- statistic with a non-degenerate kernel ¢ ((x;, y1), (%2, 35)) = sgn(x,—x,)sgn(y,—
1), from which easily follows that

V£, —1) > N(0,02),
where
o* =4Var(E(sgn(X — X)sgn(Y — Y)| X, Y)).

Considering this, one may construct test for the independence of X and Y using 7, as the
test statistic, and to reject the null hypothesis if |1, is sufficiently large. If data are MCAR ,
Theorem f.7 tells us that we can use 7, defined as

. 1
Th=—= Z sgn(X; — X;)sgn(Y; — V;)S;S;,

(2) 1<i<j<n

as the test statistic and preserve the asymptotic properties.
Moreover, under null hypothesis the asymptotic variance o2 does not depend on the data
distribution and is known to be equal to 4/9 (see e.g., Kendall, 1975, p. 71).

4.21 Median imputation

In this subsection, we explore the limiting properties of an estimator of Kendall’s tau based on
median-imputed dataset.

Let My denote the median value obtained from the non-missing values among Xi,..., X,
and let My be defined in a similar manner. Consider the following statistic:

Fo= s Z (sgn(X,- —X;)sgn(Y;— Y)RXR¥R) R/
(2) 1<i<j<n
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+sgn(X; — My)sgn(Y; — Y;)R¥X(1— Rj‘ )Rl.YR].Y

1

+sgn(My — X;)sgn(Y; — ¥;)(1— RX)RXRYRY
+sgn(X; — X;)sgn(Y; — MY)RXRXR (1— R)

i—Xj)sgn(My — Y;)R*RX(1-R/)R/
+sgn(X; — MX)sgn(Y-—MY)RX(l—RX)RY(l— R))
+sgn(My — X;)sgn(Y; —My)1—R)R; R/ (1—R)

+sgn(X; — My)sgn(My — RX(I—RX)(I—RiY)RY

><

(
(
(
+sgn(
(
(
(

)
Y))R;

+sgn(My — X;)sgn(My — Y;)(1— RX)RX(I R, )R ) (4.10)

where we denoted by R an indicator that X; is observed, and similarly by R an indicator that
Y; is observed. In other words, the statistic %, is obtained by replacing every missing value
with the corresponding marginal sample median.

One can note that 7, itself is a U-statistic with estimated parameters, having a symmetric
kernel as in the expression (#.10). Letus denote it as <I>((X,, Y, RX R »(X;, Y, RX Y); (My, My)).

Suppose that the data were MCAR, the response 1nd1cators are uncorrelated and that the
columns have proportions of observed values equal to g, and g,, respectively. More precisely,
let R be independent from R].Y for every i and let E(R) = ¢, E(R) = ¢,. The next theorem
provides the asymptotic distribution of %, under the null hypothesis of independence of X and
Y.

THEOREM 4.2 [ALEKSIC, CUPARIC, MILOSEVIC (2023)]. Let ( (X, ¥1),..., (X, ¥y) be a sam-

ple of IID absolutely continuous 2-dimensional random vectors and let 7, be as defined in (E.10).
Suppose that, if fx and fy are the corresponding marginal densities, they are bounded in some neigh-
borhood of median of X and median of Y, respectively. If X; and Y; are independent for j=1,...,n
and q, and q, defined as before, it holds that, as n — oo,

=~ D 4
Vit Bn (0.5 l3 =30+ 47330+ ).

PrROOF. The proof consists of two steps. In the first step, we derive the asymptotic distribution
of vn7,, where 7, is defined by replacing My and My in (E.10) with theoretical medians
my and my, respectively. In the second step, we show that 7%, and +/n%, have the same
asymptotic distribution.

First step. It can be easily shown that E(7,)=0. In addition, one can notice that 7, itself
is a U-statistic, having a symmetric kernel whose first projection is equal to:

Sol(x’y’rx’ry;mX’mY)
=1E(<I>((X1,K,R5‘,R1Y),(Xz, Y, Ry, R));(my, my)) | X, = x, ¥ = y,RIX:rX,RlY:rY)

=E(sgn(x — X)) E(sgn(y — %)) r*r g4,
+sgn(x — mX)]E(y - Yz) ”X(l_ql)”Y%
+E(sgn(x — X,))sgn(y —my)r¥ g r¥ (1—q,)
+sgn(x —my)sgn(y — my)rX r Y(l —q)(1—q,)
=(2F(x)-1)2F (y)-Dr*r g4,
+sgn(x —my)2FE(y)— UTX ry(l —q1)q>
+(2Fx(x)—1)sgn(y — my)r* ryﬁh(l_CIz)
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+sgn(x — my)sgn(y —my)r*r’(1—q,)(1—q).

Next, note that since X is absolutely continuous, Fx(X) follows a uniform distribution on the
interval [0, 1]. As the CDF of any absolutely continuous distribution is strictly increasing on its
support, it holds that sgn(x —my) = sgn(Fx(x)—3) and sgn(y — my) = sgn(Fy(y)—3). Therefore,
we can, without loss of generality, assume in further calculations that X and Y are independent
and uniformly distributed on [0, 1]. Thus, we can write ¢, as:

o1(x, 3, 15, 1 my, my)=(2x —1)2y = Dr*r g1

1
4ﬂ%n(x—§)9y—iﬁxrﬁl—qd%

1
+(2x— l)sgn(y - 5) "Xrych(l_%)

+sgn(x—%)sgn(y—%) rXrY(1—q)(1—q). (4.11)

Since E(¢,(X,Y,R*,RY; my, my))=0, we can see that Var(¢,(X,Y,R*,RY; my, my)) is equal to
E(¢,(X,Y,RX,RY; my, my)*). By squaring the sum in (4.17), and using mutual independence
of R* and RY, and their independence from X and Y, after integration, one can obtain

1
Var(p,(X,Y,R*,RY; my, my)) = 943 —3q,+ q2)3-3q,+q).

By a known property of a non-degenerate U-statistic, we obtain that
. D 4
ﬁhfﬂﬂ@ﬁm%ﬁ—wﬁﬁﬂ&%%+%ﬂ

which completes the first step of the proof.

Second step. As seen in the Subsection [I.5.7, Randles (1982) obtained conditions under
which the distribution of U-statistics with estimated parameters can be related to the distri-
bution with the true parameter values. Due to having a very specific case in terms of notation,
we restate the sufficient conditions 2.3 and 2.9A from the original paper.

(C1) [Orig. 2.3] There is a neighborhood of (my, my), called K((my, my)) and a constant K; >0
such that if (m}, m}) € K((mx, my)) and D((m}, m}),d)=(m}—d, m\ +d)x(my,—d, my,+
d) is a rectangle centered at (m;, m; ) satisfying D((m}, m}),d) C K((my, my)), then

®((Xy, i, R, RY),(X,, Y5, RY, R );(mly, m)))

]E( sup
(my,my)eD((m},my),d)

—®((X,, ¥, RS, R"),(X,, Y5, RS, R, );(my, m}))

)<md
(4.12)

and

o((X,, Y1, RS, R"), (X, Y3, RS, R) );(mYy, m}))

lim ]E( sup
(m// 'm/;)

=0 eD((mly,m}y),d)

—&((Xy, i, R, R)),(X,, Y, RY, R) );(mly, m3))

)0

(4.13)

In the original Randles’ formulation, D((m}, m}),d) is a disk, but our modification is
equivalent due to the equivalence of norms in finite-dimensional space.
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(C2) [Orig. 2.9A] It holds that v/n((Myx, My)—(my, my)) = 0p(1) and the expected value of the
kernel ®((X;, ¥;, RX,RY), (X, Y;, R, R.Y);(mX,mY)) has zero differential (with respect to
(m,, m,)) at true parameter Values

Having these conditions satisfied, Randleg (1982) proved that

ﬁ(%n _E((D(.;(YI’YZ))” (rur2)=(My, My)_fn +0) i 0

Expectations of terms in (£.10) go in pairs with opposite signs, so it is not difficult to note that
IE((I)((X,-, Y, R*,RY),(X;, Y],RX R.Y);(MX,MY))) = 0. That means, if we show that conditions
(C1) and (C2) are satisfied, we have obtained that the difference between 7%, and vn%,
tends to zero in probability, so they have the same asymptotic distribution.

For the first condition, one can see that

E ( sup ®((X,, %1, RS, R"),(X,, ¥, RS, R) );(m%, m}))
(m¥,my)eD((m},my),d)

—&((X,, Y5, R R)), (Xp, Yo, R, R ); (i, mY)

)

27772

s E((mx my) eSDupmx my),d) |sgn(X1 N mg)_Sgn(Xl B m;()| )

oo, i o)

{8 i)

+ E( sup |sgn(X1 — mg)sgn( Y, — m; —sgn(X; — sgn Y)| )
7 meD(mly,m’y),d)

+IE( ot es;)ulr)nx o |sgn(m§ — X,)sgn(Y, —mY)—sgn(m; — X,)sgn(Y; |)

+E( sup |sgn(X1 —my)sgn(my — Y,)—sgn(X, —mj)sgn(m}, — Y;) |)
7 meD(mly,m’y),d)

+E( sup |sgn(m — X,)sgn(m — Y,)—sgn(m), — X,)sgn(m;, — Yz)|) (4.14)

(mg,my)eD(my,my),d)

Begin by concentrating on the first term:

E( sup |sgn(X1 —my)—sgn(X; — m;()| )
(my,my)

eD((mY,m%),d)

=E( sup |sgn(X1—m;)—sgn(X1—m§()|)-
miy€(

ce(mi—d,mi+d)
Let us denote

Ew)=  sup  [sgn(X;(w)—my)—sgn(X,(w)—my)|
mye(my—d,mi+d)
= sup |sgn(X1(w)—m;( +(m;(—m§))—sgn(X1(a))—m;()|.

mye(my—d,mi+d)
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The supremum above can be 0 or 2. It will be equal to 2 if d is large enough so that adding
(negative, if necessary) m} —m{ can change the sign of X;(w)— mj, which happens when
| X;(w)—mi| < d. That gives us that

P{E, =2} =P{| X, — m| < d} =P{m},—d < X, < m, +d} = Fe(m/ + d)— Fy(m’, — d).

Theorem @.2 assumes that fy = Fy is bounded in some neighborhood of the median. The set

K ((my, my)) can be reduced if needed so that for any permissible m, and d it holds that (m} —

d,m +d) C K((myx, my)) lies in the mentioned neighborhood. By denoting 3K 3 ) an upper

bound for fy, using Lagrange’s mean value theorem we obtain
1
P, =2} = Ed(mj +d)— Fy(m} —d) < S K[d.
Then, we get that

]E(gl): ZP{gl =2}< Kd

which proves the condition (£.12) for the first term in (. 14). Itis obvious that the same argu-
ment applies identically on all of the rest terms, producing constants K1 yeenr K If we denote
by &,,...,&, the rest of the suprema appearing in (£.14), we have that E( 52 )< K HE(Eg) <

®4d. Taking K, = max{K",..., K}, we have successfully proven (&.12). Cond1t10n (B.13) is
verified in the exact same manner.

It is a known fact that the sample median has an asymptotic normal distribution. In a
similar manner as Theorem #.1], one can prove that +/n(My — my) has an asymptotic normal
distribution, which means it is bounded in probability. The same argument can be used for
My, which is, by the assumed independence of the samples, enough to conclude that the first
part of condition (C2) holds. Verification of the second part is also not a very difficult task,
since the expected value of the kernel ®((X;, ¥;, R*,RY),(X;, Y, R, RY);(my, my)) is itself zero,
for any values my and my, not just the true medians. Therefore it flas zero differential. This
concludes the proof of Theorem f.2. [

The theoretical values g, and g, are unknown even to the imputer, and they are estimated
A = n A = n
by 4 =R; = %Zi:l RYand g, =R, = %Zi:l RY.

COROLLARY 4.2.1. Denote ¢, = RY and §, = RY. Under assumptions of Theorem .2, it holds that,
as n— o9,

1

. Vg, 2> H(0,1).
\/95/15/23 3¢+ GH)(3—34+ ;)

PROOF. Follows from Theorem f.7, using that 4, and g, are consistent estimators of ¢; and ¢,
respectively, and then from Continuous Mapping Theorem and Slutsky’s theorem. [ |

REMARK 4.1. Similar results can be obtained when the mean imputation is used for handling
missing data instead of median imputation. However, we note that the null distribution may
no longer be free of the marginal distributions of X and Y.

4.3 Empirical study

In this section, we conduct an empirical study with the goal to compare %, and %, as test
statistics for testing independence, and to further explore the usability of obtained limiting
results.
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Bearing this in mind, we form critical regions relying on asymptotic normal distribution,
i.e. we reject the null hypothesis when

Jni,

~VEIR %, =
23/ 4,6,(3—36,+G2(3—3G, + 4?7

2

= Za/2

’ 3

> zq, and ’

where z,,, is the upper quantile of the standard normal distribution at level a. We obtain
empirical type I errors and powers of both £ and %, for the level of significance a = 0.05, and
the rate of incomplete rows 1—¢q, ranging from 0 to 30%, using the Monte Carlo approach with
N =10000 replicates. Here we consider the case of balance missing design, i.e. we assume that
q, = g, (see the definition just before Theorem [{.7), while results for non-balanced designs
with different values of ¢, and ¢, can be found in the Supplementary Material of Aleksic et al!
(2023).

For ease of comparison, we also include the results for the complete sample case (7). Em-
pirical type I errors are calculated for sample sizes n = 30,50, 100 and 200 when the marginal
distributions are exponential &(1) (see Figure f.7). The results for different marginals &(1)
and &(2) can be seen from the aforementioned Supplementary Material.

0.100 0-100

0.075 .~ 0.075

0.050 0.050

Size
Size

0.025 0.025

0.000 0.000

1-q . 1-q

n=100 n =200

0.100 0.100

0.075 0.075

Size

0.050

Size

0.050

0.025 0.025

0.000 0.000

0.0 0.1 02 03 0.0 0.1 02 03
1-q -9

Figure 4.1: Empirical type I errors using two independent &(1) marginals, q; = ;.

Figure .7 shows that, for samples of small size, even 7, exceeds the desired type I error of
0.05 with an empirical type I error of about 0.06. It is notable that 7,, exhibits similar behavior
to 7 and does not experience a sudden increase in the type I error. On the other hand, it does
not hold for 7,,. As the sample size increases, this problem becomes less notable for the sample
size of n =50 and n =100. For n =200 all three statistics are well calibrated. We note that in
the case of non-balanced incompleteness design 7, and 7, tests have the same behavior for all
considered sample sizes.

From this point onward, we will compare 7, and 7, in terms of power, for n =50 and 7 = 100
and a wide range of alternatives, following the same study design as Cupari¢ and MiloSevid
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(2024). We have not included the case of n =30 since the tests under comparison are not of
the same size. We note that there are ways to compare tests with different empirical sizes
in terms of power, but such discussion falls out of the scope of our research. For a useful
reference on that topic, see Batsidis et al] (2016). To ensure a point of reference, we will also
include empirical powers obtained from % ,.

In Figure .2 we present the power of the tests against the following bivariate distributions
with &(1) marginals:

» Clayton copula, i.e. with survival function
H(x,y)=1—(F(x) "+ E(y)" 1) *, 0 €(0,00);

» Farlie-Gumbel-Morgenstern copula (labelled by FGM), i.e., with survival function

H(x,y)=Fx(x)Fy(y)1+6 Fe(x)F(y)), 6 €[-1,1].

Sample sizes of 50 and 100 are considered. Parameter 6 is chosen in such a way that the
Kendall's 7 of the considered alternatives are equal to 0.1 or 0.2. From Figure .7 we can see
that the powers decrease with the increase of missingness rate which is reasonable since the
effective sample size decreases. In addition, the choice of the copula function has an impact on
the behavior of the power. In the case of Clayton copula, the differences between complete-
case and median-based imputation approaches are noticeable (but not drastically different),
which does not hold for the FGM copula. In addition, the powers of tests, for fixed 7, and
different choices of copula function slightly differ. That is even more evident from the figures
presented in the Supplementary Material. From the figures presented therein, one can also
see that the decrease in the power is the steepest in the balanced design.

4.4 Real-data example

To illustrate the proposed methodology, we consider a dataset from Kaggle: the Sales and
satisfaction dataset (Mahmoudi, 2024). The dataset includes sales and customer satisfaction
data from both before and after a specific intervention, along with purchase information for
control and treatment groups. It contains 10000 observations on 7 variables: Group (14%
missing values), indicating whether an observation belongs to the control or treatment group;
Customer_Segment (20% missing values), that categorizes customers based on their value, as
high, medium or low; Sales_Before (15% missing values), representing sales figures before the
intervention; Sales_After (8% missing values), representing sales figures after the interven-
tion; Customer_Satisfaction_Before (17% missing values), the customer satisfaction scores
before the intervention on scale from 1 to 100; Customer_Satisfaction_After (16% missing
values), the customer satisfaction scores after the intervention; Purchase_Made (8% missing
values), variable indicating whether a customer made a purchase.

It is natural and interesting to see whether there exists any relation between the cus-
tomer satisfaction and sales figures. For that purpose, we considered two pairs of variables:
Customer Satisfaction BeforeandSales Before,aswell as Customer Satisfaction Aft-
er and Sales_After. To apply our proposed methodology, as well as complete-case, on those
variables, we first need to verify that the MCAR assumption holds. In addition to our general-
ized MCAR test developed in Section 3.3 (applied to centered data), we employ the compatibility-
based test by Bordino and Berrett (2024) and the one by [Little (1988). We note, however, that
Little’s test relies on the assumption of normality and is highly sensitive to departures from
this assumption, as demonstrated in Chapter B. This will be the reason not to use Little’s test in
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Figure 4.2: Empirical test powers using Clayton and FGM copulas with &(1) marginals for n =50 (bottom
group, in orange) and n =100 (top group, in blue), g; = ¢».

the following chapter, where we test multivariate normality on an incomplete dataset. The re-
sults of MCAR testing, both on the complete dataset as well as the two variables of interest, are
presented in the Table f.1. As we can see, there is no reason to reject the MCAR assumption.

Table 4.1: Sales and satisfaction dataset: p-values of MCAR tests for the entire dataset, pair
Customer_Satisfaction_Before and Sales_Before, and pair Customer_Satisfaction_After and
Sales_After.

Variables used / Test | Aleksi¢ (Section 3.3) | Bordino and Berrett (2024) | Little (1T988)
All variables 0.984 1.000 0.345
Pair before 0.838 1.000 0.838
Pair after 0.532 1.000 0.532

Proceeding with the independence testing, both complete-case and median imputation ap-
proach detect strong relationship between variables and reject the null hypothesis of indepen-
dence with p-value effectively equal to zero.

To see the behavior of the methods on real-world dataset of smaller size, we randomly select
a subsample of size 100 from the dataset. Although we have seen from Table .7 that there is
no evidence against MCAR from the entire dataset, for methodological purposes we redo the
MCAR testing on the selected subsample. The results can be seen in Table #.7. Again, we do
not reject the MCAR assumption.

When we conduct the Kendall’s test on the pair, we obtain the p-values seen in Table .3
As we can see, both studied approaches do not reject the null hypothesis of independence (i.e.
7 =0) of variables Customer_Satisfaction Before and Sales Before.

However, for variables Customer Satisfaction After and Sales After, we have differ-
ent conclusions. At the standard significance level of 0.05, complete-case approach suggests
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Table 4.2: Sales and satisfaction dataset (subsample of size 100): p-values of MCAR tests
for the entire dataset, pair Customer_Satisfaction_Before and Sales_Before, and pair
Customer_Satisfaction After and Sales After.

Variables used / Test | Aleksi¢ (Section 3.3) | Bordino and Berrett (2024) | Littlg (1988)
All variables 0.719 1.000 0.332
Pair before 0.934 0.949 0.611
Pair after 0.977 1.000 0.944

Table 4.3: Sales and satisfaction dataset (subsample of size 100): p-values of Kendall's test under the

complete-case and median imputation approach for handling missing data.

Pair of variables/Approach for handling missing data

Complete-case

Median imputation

Before
After

0.1615
0.021

0.159
0.105

rejecting the null hypothesis, and median imputation approach suggests the opposite. Hav-
ing the results of our simulation study, we know that for sample size of 100 both approaches
should be well calibrated and the complete-case should be slightly more powerful. In this case,
we would reject the null hypothesis and state that there is some correlation between the Cus-
tomer satisfaction and the Sales numbers after the intervention.
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Chapter 5
The BHEP test for MCAR data

Although the problem of missing data has been studied from various perspectives, in the con-
text of goodness-of-fit testing, the literature is very sparse. On the other hand, testing multi-
variate normality is a crucial aspect of statistics as it provides a foundation for many statisti-
cal techniques and assumptions. In multivariate data analysis, researchers often assume that
the data follows a multivariate normal distribution. Deviations from multivariate normality
(MVN) can affect the validity of various statistical methods, such as multivariate analysis of
variance, some properties of coefficients of linear regression, etc. Identifying departures from
MVN allows researchers to make informed decisions about the appropriateness of chosen sta-
tistical methods and can guide the selection of alternative techniques if necessary. Ensuring
MVN is also important in fields like finance, biology, and social sciences, where accurate mod-
eling of data distributions is essential for having valid inference and quality decisions based
on statistical analyses. For this reason, many tests for testing MVN have been proposed so far.
Mecklin and Mundfrom (2005 gave a useful comparison in terms of empirical type I and type
II error rates, while for some more recent results we refer to Ebner and Henze (2020), Ebner
et al] (2022), Gonzalez-Estrada et al! (2022), and Ejsmont et al] (2023).

Only a handful of tests were proposed for testing MVN on an incomplete sample, and they
are based on skewness and kurtosis estimates. Yamada et al] (2015) proposed a test for MVN
that is based on a generalization of Mardia's statistic for measuring kurtosis. The test was suit-
able for two-step monotone incomplete data, which is a special case of missing data. Another
such test was given by Kurita and Seq (2022). Tan et al] (2005) proposed a test for multiple
samples of possibly small sizes, that was, again, based on estimating kurtosis and skewness,
utilizing multiple imputation and Gibbs sampler. Recently, an extended simulation study was
conducted by [I'satsi et al] (2024) to compare various tests (including BHEP) under numerous
imputation methods, for two-step monotone MCAR data. To the best of our knowledge, MVN
testing for arbitrary patterns of MCAR data has not been studied in the context of the BHEP
test, nor within the broader class of tests with L?-weighted test statistics, to which the BHEP
test belongs. We aim to fill that gap with results from this chapter, which were obtained by
Aleksi¢ and MiloSevid (20254).

The remainder of this chapter is structured as follows.

In Section 5.1 we make a brief review of the BHEP test and its properties that are essential
for studying the test in the presence of missing data, which is one of our aims. Sections 5.7,
5.3, and 5.4 are structured to highlight the key contributions of this chapter.

* In Subsection5.2.1we examine the behavior of the BHEP test statistics under the complete-
case approach, and we prove that it is suitable for testing MVN under the MCAR assump-
tion. Specifically, we show that the asymptotic distribution of the BHEP test statistic
based on complete cases is the same as that based on the full sample.

» The contribution of Subsection is to give an insight in the technique that might
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be used for deriving the asymptotic distribution of the BHEP test statistic calculated on
an imputed dataset. We explain the complexity of the derivations, even for the simplest
imputation techniques.

* Section offers an alternative approach, by presenting a bootstrap algorithm that ap-
proximates the null distribution of the test statistic calculated on an imputed sample.
Then, it presents the results of an extensive simulation study that compares the type I
error preservation and power behavior of the test statistic under the complete-case ap-
proach, as well as with some of the most widely used imputation methods, using the
proposed bootstrap algorithm. A discussion of the findings is also provided.

« Section 5.4 clearly illustrates all of the discussed approaches using a real-data example.
Additionally, the section discusses the p-values obtained from the real data, taking into
account the results of the simulations from the previous section.

5.1 Prerequisites

Here, we focus on the BHEP test which is one of the most well-known procedures for testing
MVN assumption and review its properties in the absence of missing data. For more details, we
refer to Baringhaus and Henze (1988) and to Henze and Wagner (1997) for the generalization
of the test. All of the results stated here are known and will be utilized afterwards.

Let X;,X,,..., X, be asample of n IID d-variate random column vectors, equally distributed
as X =(xW,..., X (‘”)T. We are interested in testing the assumption that X has some d-variate
non-singular normal distribution, i.e. the hypothesis

H, : the law of X is A} (u, ),

for some u € RY and some non-singular covariance matrix X, where .4,(u,Y) denotes the d-
variate normal distribution with mean u and covariance matrix .
Let

1 - _ _
S =—§ X —X,)X,—X,)"
n nj:1( J n)( J n)

be the sample covariance matrix, and let
_1 S .
Yj:SHZ(Xj—Xn), j=12,...,n.

If we denote by

n

Ya(t)= %Zexp(itTYj), t eR?

j=1
the empirical characteristic function of Y}, ..., Y,, the test statistic of the BHEP test is given as

|
R4

where ¢(1) = (27)" 2 exp(—3|1]?).

Baringhaus and Henze (1988) were successful in proving that 7,, can be represented as a
weakly degenerate V-statistic with estimated parameters. More precisely, they have shown
that

2

p(t)dt, (5.1)

1
wn(t)—exp(—gllrllz)

Ty = Vu(An),
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where A = (4, %), A, =(X,,,S,), V,(A)=n—2 Z;.”kzl h(X;, X;; A) and the closed-form expression for
the kernel £ is given as

1
h(xy, xp;A) = exp(— E(xl - xz)TZ_l(xl - xz))

1
—27? eXp(—Z(xl—u)TZ‘l(xl —u))
1
—274/2 exp(—Z(xz—u)TZ_l(xz—u))+3_d/2, (5.2)
or, as they have shown
h(xl,xz;l):f glxy, t; )g(x,, t; M)p(t)dt, (5.3)
Rd

where
1
glx,t;A)=cos(t"X*(x —w)) +sin (¢ "= (x —u)) —exp (_5” tllz) .

The authors then used existing theory about weakly degenerate U- and V-statistics with esti-
mated parameters that was developed by De Wet and Randled (1987)) to derive the asymptotic
distribution of T, and to prove some further properties of the test. Specifically, the authors
found that

D +00
nT, = E Kid e (5.4)
k=1

where y? are IID y?-distributed random variables, and x-s are eigenvalues of the integral
operator A defined as

Af(x)=f h(x,y)f(y)e(y)dy. (5.5)

The closed form of the kernel h, was derived by Baringhaus and Henze (1988), while the prob-
lem of deriving the eigenvalues was recently studied by Ebner and Henze (2023).

Although the asymptotic distribution (5.4) can be approximated, in practice, the null distri-
bution is usually approximated using Monte Carlo simulation. Since the 7,, is affine invariant,
one can safely assume that the null distribution is d-variate standard normal, and simulate the
null distribution for the desired sample size. The empirical quantiles are then used to construct
the rejection region of the test.

5.2 Challenges of incomplete datasets

Now, assume that we have a sample X, ..., X,, of IID d-variate random column vectors and that
some of the data are missing. For every j=1,2,...,n and k=1,2,...,d, the response indicator
for X will be defined here as:

w |1, if X!¥is observed,
RV = J
0, otherwise,

where X](.k) is k-th component of X;, as in previous chapters. Denote R; = (Rj.”, . ..,Rj.d))T. We
assume that R;s are mutually independent, and denote g =(q,, ..., ;)" =E(R,). Finally, we use
® to denote the Hadamard—Schur componentwise multiplication of vectors.
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In what follows we consider the expanded sample
(XIT’ le—‘)T’ ) (X’Z‘7 R’Z‘)T)

which is suitable for expressing the test statistic in the presence of missing data.

5.2.1 Complete-case approach

The complete-case approach, i.e. when every observation that is not completely observed is
removed from the sample, is very common in practice. It is mostly used when data are MCAR
and the missingness rate is not very high, since most estimates, such as sample mean, remain
unbiased and consistent. Intuitively, one can expect that a test statistic will preserve properties
under MCAR and complete-case, since we are working with the "representative” subset of the
original sample. The claim remains true for the test statistic of the BHEP test. Although intu-
itive, it deserves rigorous proof. Furthermore, the proof of a similar result for non-degenerate
U-statistics was anything but trivial, as shown in Chapter f.

The proof relies on the results given by De Wet and Randleg (1987), which we restated in
Subsection [1.5.2, slightly adjusted to our notation.

THEOREM 5.1 [ALEKSIC, MILOSEVIC (2024)]. Let the X,,...,X,, be IID sample from non-de-
generate d-variate normal distribution, let the MCAR assumption hold, and let T,, be as defined in
(57). Let T, be the same statistic, but calculated on the completely observed sample units. Then, it
holds that nT, and 7T, have the same asymptotic distribution, where fi is the number of complete
cases.

PROOF. First, observe that g = E(R,) is not treated as a distributional parameter, but rather
as a known constant. The test statistic does not use its estimate in the sense of De Wet and
Randles.

Secondly, note that T}, is also affine invariant with respect to transformations of X;,..., X,,.
It follows in the same manner as for the 7,,. For more detail, one can consult Baringhaus and
Henzed (1988).

Now, if we denote by S; = ]—[Zz1 Rﬁ.k) an indicator that X; is completely observed, one can

easily see that, if 71 = 27:1 S;, then 7i/n 5 g under MCAR, where g; =E(S;). From this point
onwards, we can consider that we work with the expanded sample

x5 8)5.(xh s
If we introduce
8((x,s), ;M) =sg(x,t;2),

and

A

h((x, ), (¥, 5y); A) :f 8((x,5:), 5;M)8((y,8,), £; A)p(r)dt = 5,5, h(x, y; A),
Rd

one can see that é(t; A1) :=E(g((X,S), t; 1)) = qnE(g(X, t; 1)) = qne(t; A), where e(t; A) is the same
as from Baringhaus and Henze (1988). Having these direct relations between kernels makes
regularity conditions of De Wet and Randles (1987)) (see Subsection [.5.7) follow trivially from
those derived by Baringhaus and Henze (1988). The only one that requires attention is Condi-
tion 2.10, i.e. the expansion of parameter estimates, which we now present.

The parameters here are estimated on the complete cases, being

1 < 1S
I=—» S X;=— > LX 401
i ﬂ;,] n;qﬂ i +0p(1/V/7)
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This allows us to use

to express

j=1

S|

(2,2)=(0,1,)+

where a(x)=(x, xx’—I;). Having this, and the direct relation é,(t;0, I;) = qn€,(¢;0, I;), where
€, is the same as one from Baringhaus and Henz¢ (1988), we proceed in the same manner and
obtain the kernel

i:l*((x’ Sx)’(y’ Sy)) :f (g((x’ Sx)r t;O) Id)_él(t;oy Id)&(x’ Sx))'

R4
(8((y,5,), 50, 1) —€,(£;0, I)a(y, s,)) p(£)dt
= 5,5, h(x, ). (5.6)

By De Wet and Randles, and similarly to Baringhaus and Henze, we have that

+
8

~ D 9
nTn - gk}hyk’
1

~
I

where { are the eigenvalues of an integral operator

Bg(x,s,)= Z U sxsyh*(x,y)g(y,sy)w(y)dy)lP’{S=sy}
sy€{0,1} NJ R4

:%%f h.(x, Y)g( D) dy.
Rd

Now we see that g(x,s,) is an eigenfunction of B if and only if g(x,s,) = s, f(x), where f(x)
is an eigenfunction of A, where A is from (5.5). Furthermore, every eigenvalue of B is the
eigenvalue of A multiplied by gy;. Then, it follows that

+00
~ D 9
nTn_)qHE Kk%l,k’
k=1

where the right-hand side is as in (5.4). Since n/7n 51 /G, Slutsky's theorem gives us that

which concludes the proof. [ |
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5.2.2 Imputation approach

In this subsection, we discuss the BHEP test in the context of the imputed dataset, illustrating
the methodology and problems that arise using the example of sample mean imputation. To
be more formal, we replace every X (k), j= 1 2,...n, k=1, 2 .,d, that is not observed, with
the complete-case estimator of its mean z i= 1X ) calculated on available column
units. Now, one might wish to derive the asymptotlc dlstrlbutlon of the BHEP test statistic
calculated on the imputed sample. To be able not to work from scratch, but to rely on some
known results, it is wise to first use components of the theoretical mean value u=(u,,..., uqs)"
of the distribution as the imputed values, and then move to estimated ones. This is due to the
fact that we can see u as the parameters of the kernel of the statistic, and then rely on the
results of De Wet and Randles (1987) (see Subsection [I.5.7) to be able to replace them with
sample means.

By noting that instead of saying that data value is getting replaced with corresponding u;
when missing, and remaining unchanged when observed, one can neatly write that every X;
from the sample, j=1,...,n, is being replaced with

(X;—u)@R; + .

Now, the test statistic on the (sample) imputed dataset can be written as

where 1, = (X,,,S,) are parameters estimated from the incomplete data. The vector of means
is estimated as mentioned above, i.e. X, = ﬁZ;‘lﬂX j © R;, where we use slight abuse of
j=11

notation since the division is also componentwise, R; being a vector for every j. The covariance
matrix X can be estimated using only complete cases:

N 1
5= SZS(X — X)X - X)) (5.7)

Z]l]]l

Going further, one can see that the auxiliary V-statistic V,(A) can be written as V,(A) =
_ZZ]k 1h( , Xi; A), where

R((x1, 1), (%, 1) A) = R ((0 =) @ 1y + 44, (%, — 1) @ 1+ 45 A) (5.8)
and, similarly
gx, 1)t 0)=g((x—wor+u,t;1).

Since integrations depend only on ¢, the relation (5.3) holds for /2 and &. To rely on the known
results for the asymptotics of weakly degenerate V-statistics with estimated parameters, one
needs to verify that conditions of De Wet and Randles (1987) hold.

It is readily seen that

g((x,r), ;1) =cos(t "= (x —pw)o r))+sin(t "=V (x —p)o 1)) —exp (—%II tllz)

=cos(t' M (x @ r))cos(t " (o r))+sin(t "= A(x 0 r))sin(t T =V (uo 1))
+sin(t"S 7 (x @ r))cos(t TSV (uor))—cos(t " (x @ r))sin(t "X (uo )

1
—exp(—§||t||2). (5.9)
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If we go back to the kernel & as in (b.2) and substitute every missing X; with sample mean, and
looking at ¥ as in (5.7), we can easily see that V,(A,) is invariant with respect to translations,
i.e. does not depend on the expected value of the data. Unfortunately, it does depend on the
covariance matrix of the data. The discussion can be found in the Supplementary Material of
Aleksi¢ and MiloSevid (2025d). From this point onward, it will be assumed that data are IID
sampled from the d-variate normal distribution .4;;(0, A), for some positive definite covariance
matrix A.

REMARK 5.1. Note that for the column vectors a, b, ¢ from R¢ it holds that a”(b®c)=(a” ®
chb.

Following the idea of Baringhaus and Henze (1988), let us focus on the first term of the
first summand of (5.9), that is cos(tTZ‘l/ 2(x® r)) (the other term is constant with respect to
x). Assuming for a moment that R is a constant vector equal to r, one is able, relying on the
Remark 5.1, to calculate that

E{cos(t"S 4 (X @R))|R=r)=| cos(t"=*(x0r))f0a(x)dx
1(0,A)

R4

= J cos(((£"=) @ r")x) f v 00(x)dx,
Rd

which is exactly the characteristic function of the .4,(0, A) distribution, calculated at the point
(tT¥2)o rT, so we obtain

1
B{cos(t73 00 R) | R=r) =exp(— ;{750 M)A =)0 "))
Conducting similar calculations on the other terms in (5.9), one can obtain that

E(g((X, R), M)’R =)
_ (COS(ITZ—I/Z(‘U ® r))_sin(tTZ‘l/Z(,u 0] r)))

exp(— (750 AT 0 1)) —exp (5 lleIE).

The next step would be to obtain the expected value with respect to R of the above expression,
which is a finite sum over all possible values of d-tuples of zeros and ones.

To be able to use conditions of De Wet and Randleg (1987), as we did in proving Theorem
5.1, one needs to verify conditions 2.9-2.11 of De Wet and Randles (1987) (see Subsection
A.5.2). On the first glance, calculations go as smoothly as before, with the only difference
being that we do not use g and its expected value é, but & and its expected value

é(t, \)=E(g((X,R), ;7).

Then, assuming the underlying .4;;(0, A) distribution, we need to find the vector of its partial
derivatives, calculated at the true value of parameters (here A = (0,A)), denoted by é&,(t; 7).
This would then be used to find the kernel similar to (5.6), and to determine the asymptotic
distribution using its eigenvalues.

However, further calculations would be of no great help, since this kernel, and subse-
quently, its operator eigenvalues, depend on the unknown distribution parameters, and it is
not very likely that one could be able to obtain them analytically. In the complete-data case,
the null distribution can be simulated by sampling from the multivariate standard normal dis-
tribution, and empirical quantiles can be used for determining the critical values. This is all
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due to the fact that original test statistic proposed by Baringhaus and Henze (1988) is affine in-
variant, and consequently distribution-free. Our statistic is neither, so we believe that, at this
point, it is more convenient to rely on resampling methods for testing MVN in this context.

Another (more natural) choice would be to estimate X as the sample covariance matrix cal-
culated on the imputed dataset, but for that estimate, it is difficult to verify the Condition 2.10
of De Wet and Randleg (1987) whose results one may aim to utilize in this context. However,
our preliminary simulations indicate that if that choice is made, for imputation methods used
in this study, the null distribution of test statistic does not depend on the location and scale pa-
rameters of the underlying multivariate normal distribution (see the Supplementary Material
of Aleksi¢ and MiloSevid (20254d)). Up to this point, proving so remains an open question.

5.3 Empirical study

In this section, an extensive simulation study is conducted to answer a crucial question that
motivated our work: Is it better to impute the data, or to use a complete-case approach when
using BHEP test of MVN? We observe different scenarios, varying underlying data distribu-
tion, missingness rate, as well as imputation methods. Here we highlight the most significant
simulation results that reinforce our key points. Additional results can be found in the Sup-
plementary Material of Aleksi¢ and MiloSevid (2025a).

At this point, as seen before, we have only empirical indications that the distribution of
the BHEP test statistic calculated on the imputed dataset does not depend on the mean and
covariance parameters, and only for data scaled using parameter estimates obtained from the
imputed data. Moreover, this distribution does depend on the missingness rate. Having that
in mind, we offer the Algorithm 5.7), that simulates the distribution of the BHEP test statistic
calculated on the imputed data, assuming the MCAR missingness, and is able to utilize various
imputation approaches.

REMARK 5.2. We note that the Algorithm 5.7 is a modification of a bootstrap algorithm pro-
posed by Jiménez-Gamero et al] (2003), that was designed to work with a complete sample.
One of the goals of the empirical study that follows is to examine its properties under various
methods of imputation.

Empirical type I errors and powers are obtained using Monte Carlo procedure where Algo-
rithm 5.1is repeated N = 2000 times with B = 1000 bootstrap cycles in each repetition. The lat-
ter is a common value in literature (e.g. Jiménez-Gamero and Alba-Fernandez, 2021). In order
to make a fair comparison we apply the same procedure along different approaches, although
we are aware that the usage of bootstrap in the complete-case is not necessary. Everything is
done for the level of significance a =0.05.

The choice of imputation methods came down to mean imputation, median imputation, as
well as 3- and 6-nearest neighbor imputation. For the first two, built-in functions from the R
missMethods package are used (Rockel, 2023), and for the kNN we use knn. impute function
from the package bnstruct (Franzin et all, 2017).

MCAR data are created using the delete_MCAR function from the missMethods package. To
examine the properties of each method, with the increase in sample size, sample sizes of 30,
60, 90 and 120 are considered. As the alternatives to the null hypothesis, we consider Student’s
t distribution with several degrees of freedom. This family is frequently used as an alternative
distribution within the literature related to testing MVN (Ebner and Henze, 2020; Ejsmont
etall,2023). In particular, we look for the power behavior against Student’s ¢ distribution with
5,7 and 11 degrees of freedom. Also, 2-dimensional and 3-dimensional data are generated, and
the covariance/scale matrix is also varied. Here, we present empirical type I errors for standard
normal distribution, while the cases of other covariance matrices, with their descriptions, are
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Algorithm 5.1 A bootstrap algorithm for testing MVN on an incomplete sample with MCAR
data

1: Start with the incomplete sample x =(x;,..., x,,);

2: Obtain the imputed dataset x;,,, using the chosen method,;

3: Obtain the value of test statistic T,,(x;y,) on the imputed dataset; that is, the data are stan-
dardized using the sample covariance matrix and the sample mean calculated on the im-
puted dataset;

4: Estimate covariance matrix X by ¥, calculated on the complete cases; estimate mean vector
u by i on the dataset that is imputed by the chosen method,;

5. Estimate p of the vector of by-column missingness probabilities using response indicator
averages;

6: Generate bootstrap sample x* = (x,..., x*) from (g, ¥);

7: Generate missingness in x* according to MCAR and probabilities p and impute the sample
using the chosen method to obtain the imputed sample x*,;;

8: Obtain the value T*(x*,,) of the BHEP statistic on the imputed dataset in the same way
as in Step 3;

9: Repeat steps 4-5 B times to obtain the sequence of bootstrapped test statistics 7> ,,..., T ;

10: Reject the null hypothesis for the significance level « if T,(x) is greater than the (1 — a)-
quantile of the empirical bootstrap distribution of (T,,..., T ).

presented in the Supplementary Material of Aleksi¢ and MiloSevid (2025d). Similarly, here we
present empirical tests’ powers against standard Student’s ¢ distributions, while we omit the
results for various scale matrices. Furthermore, the aforementioned Supplementary Material
also contains the results for different columnwise missingness proportions.

Before we present the results of our study, we point to one of the most common misuses
of the BHEP test in the presence of missing data, which consists of imputing the dataset but
proceeding with the data analysis procedure that was originally designed only for complete
samples. As illustrated in Figure 5.7, it is clear that, in the context of testing MVN, this is not
a feasible approach, since the type I error is severely distorted.

10% (5.1%) 20% (10.6%) 30% (16.3%)
0.6 0.6 0.6
0.55 0.55 0.55
0.5 0.5 0.5
0.45 0.45 0.45
0.4 0.4 0.4
0.35 0.35 0.35
0.3 0.3 0.3
0.25 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
0.1 0.1 I I 0.1
0.05 0.05 0.05
o oall ol wii =l ol ol -l Wl Sl
n=30 n=60 n=90 n=120 n=30 n =60 n=90 n=120 n=30 n=60 n=90 n=120

W Complete-case ™ Mean Median 3NN 6NN

Figure 5.1: Empirical type I errors (y axis) for underlying 2-dimensional standard normal distribution
and MCAR data, ignoring that the data were imputed (First percentage = probability that a row is in-
complete, second percentage = probability that a value is missing).

REMARK 5.3. One might initially find it counterintuitive that the distortion of type I error
becomes more significant as the sample size increases. However, since the imputed values are
not equally distributed as the available data, the test more accurately detects deviations from
normality with larger sample sizes.
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Figure 5.2: Empirical type I errors (y axis) for underlying 2-dimensional standard normal distribution
and MCAR data (First percentage = probability that a row is incomplete, second percentage = probability
that a value is missing).

As one can see from Figure [5.2, for the MCAR data and bivariate standard normal distribu-
tion, the complete-case approach presents itself as the best in terms of type I error preserva-
tion, and is, especially for moderate missingness, followed closely by the other methods. For
the 3-dimensional case, however, as seen in Figure 5.3, kNN methods appear to be slightly
more conservative and have empirical type I error further from the desired level 0.05. This
becomes emphasized as the missingness probability starts to grow. However, in most of the
real-world scenarios, where missingness is moderate, we can expect all of the methods to re-
main well-calibrated. Similar conclusions can be drawn for different correlation structures;
for brevity, we omit those results.
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Figure 5.3: Empirical type I errors (y axis) for underlying 3-dimensional standard normal distribution
and MCAR data (First percentage = probability that a row is incomplete, second percentage = probability
that a value is missing).

This being said, we shift our focus to the power comparison. As can be seen from Figure
5.4, mean value imputation provides the greatest empirical powers, followed closely by me-
dian imputation. The kNN approaches significantly lag behind, while complete-case performs
somewhere in the middle. One needs to point out that the advantage of the mean imputation
approach is even more significant if we remember that empirical type I errors have shown that
the complete-case approach has a higher tendency to reject the null hypothesis. The same re-
lations are upheld for all of the other ¢-distributions, both standard and scaled, as well as for
all of the observed dimensions. Those results also can be found in the Supplementary Material
of Aleksi¢ and Milosevid (2025a).

REMARK 5.4. Although it might initially seem unexpected that mean value and median impu-
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Figure 5.4: Empirical test powers (y axis) for underlying 2-dimensional ¢#; distribution and MCAR data
(First percentage = probability that a row is incomplete, second percentage = probability that a value is
missing).

tation provide higher empirical power than the complete case, we believe this can be attributed
to the ability of Algorithm .7 to utilize all of the partially observed data, unlike the complete-
case approach. This effectively increases the sample size that the test works with.

In all of the studied scenarios, including those from the Supplementary Material of Aleksié
and MiloSevid (20254), Algorithm .7 combined with the mean imputation approach proved to
be the best solution in terms of empirical power of the test, which is the primary advantage of
this method. While median imputation offers a slightly less powerful approach, it still outper-
forms the complete-case. The main advantage of the complete-case method is its simplicity
and its computational efficiency.

Once again, we emphasize that the MCAR assumption is necessary for the validity of both
the complete-case method and Algorithm [.7. Therefore, it is imperative to verify that the
MCAR assumption holds before utilizing these approaches. This can be done using, for exam-
ple, the well-known test developed by [Little (1988) (having in mind that its validity relies on
the normality of the data), or some of the recently developed tests, such as those by Aleksic¢
(2024, 20254), Berrett and Samworth (2023), or Bordino and Berrett (2024).

5.4 Real-data example

Before applying our methodology to a real-world dataset, we once again emphasize that, since
our methodology is best suited for data that is missing according to the MCAR mechanism,
it is imperative to verify that this assumption is met. For that purpose, we use two recently
developed tests for MCAR, that do not require the normality assumption for their validity. In
particular, we consider our covariance-based test from Section 3.3 (applied on centered data),
and the compatibility-based test developed by Bordino and Berrett (2024). Both tests were
used in Section §.4. As it was mentioned there, the Little’s MCAR test is sensitive to the MVN
assumption, which we aim to test. Not to make a logical fallacy, we omit it from the MCAR
testing here.

As an example demonstrating the ability of Algorithm 5.7 to detect departures from MVN,
we once again consider the Sales and satisfaction dataset (Mahmoudi, 2024). A preliminary
visual inspection of the variables, using histograms, density plots, or similar tools, suggests
that it is of interest to examine whether the variables Sales_Before and Sales_After are
jointly bivariate normal. Since the sample size in the original dataset is equal to 10000, due
to the nature of real-world datasets in the context of GOF testing, it is expected that all of the
testing procedures reject the null hypothesis with p-value equal to zero. This, indeed, is the
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case for our dataset. Having this in mind, and knowing that maximum sample size covered
in our simulation study was 120, a random subsample of that size was selected from the data,
which resulted in missingness percentages of 18%, 15%, 17%, 5%, 13%, 22%, and 9% across all
of the variables, in the same order as presented in Section §.4.

Next, we test whether MCAR assumption holds for the selected sample. Although the
MCAR assumption holds for the entire dataset, as seen in Section §.4,, for methodological pur-
poses we conduct the testing once again for the selected subsample. Covariance-based test,
applied to all variables, provides the p-value equal to 0.5. Compatibility-based test provides
p-value equal to 1. When applied to the two variables of interest, the p-values are 0.72, and
0.98, respectively. We do not have enough evidence to reject MCAR, so we proceed with the
MVN testing. The corresponding p-values can be seen in Table 5.7

Table 5.1: Sales and satisfaction dataset: p-values for testing multivariate normality of Sales_Before
and Sales_After on the subsample of size 120.

Complete-case | Mean | Median | 3NN | 6NN
0 0.002 | 0.002 | 0.112 | 0.112

As observed, the complete-case approach, as well as mean and median imputation, are able
to detect departures from bivariate normality at the standard 5% significance level for this
sample. In contrast, imputation using 3 and 5 nearest neighbors produces substantially higher
p-values, resulting in a failure to reject MVN. This difference can be attributed to the markedly
lower power of the 3NN and 5N N methods, as demonstrated in the power study.



Chapter 6

Multivariate two-sample hypothesis
testing in the presence of missing data

Testing whether two samples originate from the same probability distribution, known as two-
sample hypothesis testing, is a fundamental problem in statistical theory with a broad spectrum
of applications across various fields. In medical research, such tests are used to compare pa-
tient outcomes between treatment and control groups, assessing the effectiveness of new drugs
or interventions. For example, in quality control, manufacturers employ these methods to
verify whether changes in production processes affect product characteristics. Environmental
scientists utilize them to assess changes in climate variables, such as temperature distributions
over time, while geneticists apply them to compare gene expression profiles between different
populations.

Given the versatility of possible applications, two-sample tests continue to play a crucial
role in data-driven decision-making across numerous disciplines, and, consequently, they have
been extensively studied in the literature. Here, we present some notable examples. The idea
of testing whether two samples originate from the same probability distribution first appeared
for one-dimensional data, and can be traced back to Pearson (1900), who introduced the well-
known y2-test. Later, in the early 20th century, Student (1908) proposed a test for differences
between normal distributions by comparing the means; the idea was later generalized by Fisher
(1925) in his works on Analysis of Variance (ANOVA). These methods are parametric, and they
have severe limitations in non-normal settings.

Early nonparametric solutions for this problem were presented in the form of the well-
known Kolmogorov-Smirnov (KS) test, which was introduced by Kolmogorov (1933) and gen-
eralized by Smirnov| (1939). The test is based on measuring the discrepancy of ECDFs between
the two samples. The Wilcoxon—-Mann—Whitney test (Wilcoxon, 1945; Mann and Whitneyj,
1947) is another nonparametric two-sample test for one-dimensional data that was based on
comparing the rank-sums between groups.

Cramér (1928) and von Mised (1928) considered the GOF testing by comparing the inte-
grated square distance between the CDFs. Anderson (1962) later extended the idea to the two-
sample setting. Another approach that utilized integrated square difference of ECDFs came
with Pettitt (1976), who modified the test statistic of the GOF test by Anderson and Darling
(1954) for the two-sample problem.

The test proposed by by Hotelling (1931)) can be considered to be one of the first two-sample
tests for multivariate data. The test was based on a test statistic that generalizes the Student’s
ratio, and, as such, it relies on the normality assumption, as well as on the assumption of equal
covariances. Notable example of a nonparametric multivariate two-sample test is the test by
Friedman and Rafsky (1979) that generalizes the two-sample runs test by Wald and Wolfowitz
(1940). Some of the modern examples are the energy distance-based two-sample test (Bar-

/5
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inghaus and Franz, 2004; Székely and Rizzd, 2004), the Maximum Mean Discrepancy (MMD)
kernel-based approach by Gretton et al] (2012) (their equivalence is shown by Sejdinovic et al.
(2013)), as well as the binary classifier-based approach by Lopez-Paz and Oquab (2016). For
count data data, a useful reference is Alba-Fernandez et al] (2017), and for matrix data we
recommend [Luki¢ and MiloSevid (2024).

Results obtained from real-world data indicate that complex data types, like audio and
images, despite their high dimensionality, tend to be structured around a lower-dimensional
manifold. Due to this fact, the standard energy distance-based two-sample test, which is built
upon Euclidean distance, performs well for low-dimensional data, and loses power quickly for
data in high dimensional space (e.g. Chu and Dai, 2024, and references therein). Consequently,
much work has been done in that direction: to modify the original test to be able to recognize
the inner structure of the data and effectively reduce the dimension. A nice overview can be
found in a paper by Chu and Dai (2024). However, in terms of adapting the original test to
work with incomplete samples, not much progress has been made. Knowing the importance
and the wide applicability of the test, it is essential to address that issue. Our findings, that are
presented in this chapter, aim to begin filling this gap in the literature.

In this chapter, we consider the problem of two-sample testing in the presence of miss-
ing data under the broad class of missingness mechanisms, presenting the results of Aleksi¢
and MiloSevid (20250). For this purpose, we focus on the energy-based two-sample test (Bar-
inghaus and Franz, 2004; Székely and Rizzd, 2004). Besides the complete-case approach for
handling missing data, we propose a novel modification of the test statistic that utilizes all
available data, along with two resampling procedures for approximating the corresponding
p-values. A novel bootstrap method is also introduced for p-value approximation when the
test statistic is computed on samples filled using commonly used imputation methods for han-
dling missing data. In an extensive simulation study, all approaches are compared in terms of
preservation of type I error and in terms of power. General recommendations are given for
each of the studied scenarios.

The results are presented according to the following structure. In Section .7, we restate
some basic properties of the original energy test that are necessary for our further research.
In Section .2, we introduce our novel testing procedures and outline their expected strengths
and flaws. Some theoretical results regarding the null distribution of the novel test are also
provided. Section [6.3 is devoted to the extensive simulation study, with the aim of examining
the performance of novel procedures in terms of preservation of type I error and empirical
power. Depending on the specific scenario, such as data distribution and the underlying miss-
ingness mechanism, certain recommendations are provided at the end of the chapter.

6.1 Revisiting the energy test

Let .# be a metric space and let u and v be two probability measures on it. Assume we have
two independent samples of 1ID random elements in ./ :

X,..o,Xy~u and Y,,.... Y, ~w (6.1)

A commonly tested hypothesis in a two-sample test is whether the two samples originate from
the same distribution

HO:‘LL:V, (62)

against the complementary alternative. If p is a metric on ./, one can define the energy dis-
tance between the distributions u and » as

D(u, v)=2Ep(X,Y)—Ep(X,X")—Ep(Y,Y"), (6.3)
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where X, X’ ~u and Y, Y’ ~ y are all mutually independent.

The name energy distance comes from physics. In physics, particularly in electrostatics,
gravity, or molecular systems, we often deal with systems of many particles that interact pair-
wise (e.g., via gravitational or electric forces). In such a system, we can distinguish: (i) energy
due to interactions within a group (e.g., within one cloud of particles), and (ii) energy due to
interactions between particles from different groups. Physicists are often interested in the net
interaction energy, which is the difference between the total interaction energy and the internal
self-energies.

The term Ep(X, Y)in (p.3) can be interpreted as the total interaction energy between u and
v, i.e. the average distance between the two randomly chosen points from them. Similarly,
Ep(X,X’) (Ep(Y,Y’)) can be interpreted as the internal energy of u (), the average distance
between the two randomly chosen points from u (v). So, when computing the energy distance
D(u, v), we are basically measuring the excess interaction energy between u and v, beyond the
energy one would expect if both samples were from the same distribution.

To further clarify this interpretation, one may ask: Is the separation between the distri-
butions greater than what would be expected solely due to their natural variability? If the
answer is negative, the energy distance is expected to be close to zero, and to deviate signif-
icantly from zero otherwise. For additional parallels to physics and further motivation, we
recommend consulting the paper by Székely and Rizzo (20713).

The test statistic of the energy test (Baringhaus and Franz, 2004; Székely and Rizzd, 2004)
is based on the sample estimate of D(u, v) and is defined as

ZZP(XUY]) ZZp(X,,X) ZZP L Y)) (6.4)

11] i=1 j= i=1 j=

The energy distance is not always the proper metric on the set of all probability distributions
on ./ . Sometimes it is not positive; a sufficient condition, for example, is for (.#,p) to be a
metric space of a strong negative type. Specifically, (.#, p) is of a strong negative type if for any
two probability measures u and v, with finite first moments, it holds that

Jf u, v)du(u)du(v JJ u,v)dv(u)dv(v ff u, v)du(u)dv(v) <

and the left hand side is equal to zero if and only if u = v. As a consequence, on a space of
strong negative type, the energy distance is able to differentiate between any two probability
distributions. An example of one such space, that is of key interest in mathematical statistics
is any separable Hilbert space. As a special case, we have the Euclidean space (R4, || - ||) with
standard Euclidean metric. Since that space is of our main interest, further discussion would
fall out from the scope of this paper. For more details, one should consult, e.g., Klebanov et al.
(2005), Chu and Dai (2024), and references therein.

6.2 Novel procedures

In this section, we propose several novel adaptations of the energy test suitable for incomplete
samples with missingness mechanisms that are not necessarily MCAR. The main assumption
is that the samples in (.1)) are independent, and that both consist of IID random vectors from
R“. Generally speaking, our methodology can be applied to any metric p on R¢, although our
main focus will be on the standard Euclidean metric, which will be thoroughly examined in
the extensive simulation study that will follow, where the novel approaches will be compared
to the complete-case analysis, which is used as a benchmark.
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First of all, let us introduce some basic notation that we will need, which is similar to the
one used in previous chapters. For every element X; of the sample X;,..., X, let R* be the
corresponding vector of the same length d as X;, whose kth element is equal to 1 if the kth
element of X; is observed, and 0 otherwise. We will refer to R as a response indicator vector of
X;. Let SX be the indicator that each component of X; is observed, i.e. indicator that X; is the
complete case. Let R} and S” be defined in a similar manner.

The number of complete cases from the sample X;,..., X,, will be denoted as 7; it is clear
that 2= SX. Similarly, let 72 =3"" S* be the number of complete cases from the sample
Y;,..., Y,. Finally, let ® denote the standard Hadamard—Schur componentwise multiplication:

(ul) Upy..., ud)Q(vl) Usyovn Ud):(ulle UpUy,..., udvd)'

6.2.1 Complete-case analysis: the benchmark

First, and fairly common approach for handling missing data in practice is the complete-case
analysis, where the test statistic T, is calculated only on the completely observed sample
elements. In our notation, the statistic can be written as

TCC = anZp X, V)SXSY — ZZ,O X;, X;)S X — Zzp(y,,yj )$¥sr. (6.5)

i=1 j=1 i=1 j=1 i=1 j=1

The following theorem states that, as expected, the complete-case test statistic has the same
asymptotic distribution as the complete-sample one, under the assumption of MCAR data. This
result might seem obvious, but results such as those from Chapters [ and 5 demonstrate that
the formal proofs can be very challenging.

THEOREM 6.1 [ALEKSIC, MILOSEVIC (2025)]. Let X;, X,,...,X,, and Y;, Y, ..., Y,, be two sam-
ples of random vectors from R¢, such that the variables X,,...,X,, Y,,...,Y,, are independent and
identically distributed with characteristic function ¢(t). Let T,,,, and TSC be as in (6.4) and (6.5),
respectively. Finally, assume that both samples have equal probabilities of a case being complete, i.e.
ESX =ESY =gq. Then, under MCAR, it holds that 2~ T, ., and 7= T<C have the same asymptotic
distribution. More precisely,

A A

D D
Tim = IZWOIE, =T = IZ(0IF, as n,m— oo,

n+m n+m "M n+m

nm
—)Az,

where {Z(t)| t € R4} is a centered Gaussian process with covariance operator defined for s,t € R?
as
C(t,s)=E(Z(s)Z(t))
= Re(go(s — t)) +Im(g0(s + t))
—Re((1))Re(p(s))—Im (p(2)) Re(p(s)) —Tm(p(s))Re (1) —Im(p(s)) Im (1))
(6.6)

Here, (f,8)w = [o0 f(Dg(D)w(1)dt, and | fI2 = (f, £}, where w(t)=[|£]]4).

PROOF. We adapt the proof of Theorem 1 from Chen et al] (2019), where they treated the
problem of convergence of T, i.e. the case where m = n.
It is a known result (see, e.g., Chen et al], 2019) that

=f l@a(t) = om(t)Pw(t)dt, (6.7)
R4
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where w(t) = |[t]|9 and ¢,(t) =+ > e "Xi is the empirical characteristic function of the
sample X, X,,...,X,, and ¢,, is defined similarly.
It is now readily seen that

2
n

1 r 1 &
- it stX elt Y]SY w()d
2D 3 ()

k=1 ]=1

nm 1< r « 1< ooy
= ﬁ+ﬁ’lfw E;cos(t Xi)S; —%Zlcos(t Y]-)Sj
= ]:

> _

Rd

1 S—

1 m
. T X : T Y
sin(z" Xi)S; - E sin(t Yj)Sj w(t)dt
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A+ i /7 =
— ﬁfm‘/%;[(cos(tTYj)+sm(t Y;)—(Re(o(2))+ Im(i(2))) SY]
— Lo - .
+ ﬁn+mm (Re(p(1))+Im(g( )))5 S¥— ﬁnerm (Re(g(£))+Im(p(t)) ZSJ.Y] w(t)de
k=1 j=1
~—— N

\ 7 Tm %Z[(COS(ITXk)+Sin(tTXk))_(Re(SO(t))+Il’n(<p(t)))]slf
k=1

2
-\ ﬁ_:lmJ%;[(cos(ﬂYj)+sin(tTYj))—(Re(go(t))—I—Im(gp(t)))]S}.Y} w(t)de
f [\/w

n+m

3.

X
; ‘/_‘/n+ fz [(cos(¢7 X,)+sin(¢7 X,))— (Re(w(t))+lm(¢(t)))]75

v + f
i ——Vay/ cos(¢"Y;)+sin(¢"Y;))
F n+m \/_Z

SY TP
—(Re(w(t))+1m(¢(t)))]7’7] w(t)de. (6.8)

Now, by the Law of Large Numbers and Continuous Mapping Theorem we have that

1 A1
A+m Vi il, and n+m i (6.9)
n+m Jn n+m ym
By Slutsky’s theorem, these terms can be asymptotically treated as 1.
Denote
Zn(1) . Zn:[( (¢7X;)+sin(r " X;)) = (Re((2)) + Im(p(1))) ] S
wi(t)i=— cos ;)+sin i))—(Re m
,1 \/ﬁ - 80 (p ﬁ
and
m SY
Zo(t)i= —— cos(t”Y;)+sin(¢"Y;))— (Re(p (1)) + Im(p(1)))] —=.
Z )—(Re(y el —

One can easily note that for every 1 <i < n and 1 < j < n the random functions

X
h((X;, RF), t):=[(cos(¢" X;)+sin(¢" X;)) — (Re(p(£)) + Im(¢p(1)))] j"ﬁ

and

SY

h(Y;, R, 1) = [(cos(¢" ¥;)+sin(¢" ¥;)) — (Re(s(t))+ Im(ip()))] ﬁ
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are independent and identically distributed centered random elements of L*(R?, w(t)dt) with
covariance function equal to

E{ [(cos(z” X;)+sin(z” X)) — (Re(p (1)) + Im(yp(1)))]

[(cos(s” X;)+sin(s” X;))—(Re((s)) +Im(p(s) ( )}

=E[cos(t” X;)cos(s” X;)+cos(¢” X;)sin(s " X;) +sin(¢” X;) cos(s " X;) +sin(¢” X;)sin(s " X;)]
—(Re(p(1)) +Im(p(2))) - (Re(p(s)) +1Im(e(s))

1 . . 1

:E[E(cos((t—s) X1)+cos(((t+s) Xl)) 2(sm(s—t )+ ((s+t Xl))

+%(sin((t—s)TXl)+sin((s+t)TXl)) ;(cos((t—s ) X)) cos((t+s)TX1))]

—(Re((1))+Im(p(1))- (Re(g(s))+Im(p(s)))
=Re(p(t —s))+Im(p(r + s))—Re(p(1))Re(p(s))—Im(p(2))Re(p(s))

—Re(p(£))Im(p(s))—Im(p())Im(p(s)),
(6.10)

which is exactly the covariance function C(t, s) from (p.§).

Now, since the random functions h((X;, RX), t) and h((Y;, R].Y), t)are elements of L?(R%, w(t)dt)
with existing covariance function (6.10), we can apply the Central Limit Theorem for Hilbert
spaces (e.g., Henze, 2024, Theorem 17.29) to conclude that

m D n D
V ——Z,.(t)—= Z,(t) and Zm 1) = Zy(1),
n+m n+m

where {Z,(t) | t € R?} and {Z,(t) | t € R} are independent, centered Gaussian processes with
covariance functions equal to A2C(¢, s) and (1—A2)C(t, s), respectively, where C(t, s) is defined
in (6.68). Having the independence of Z; and Z, and the convergence (6.9) we can conclude that
the difference inside the large square brackets in (f.§) converges in distribution to the random
process

Z(t)=Zy(1)—=2Zy(1),

with covariance function equal, due to independence, to the sum of the corresponding covari-
ance functions:

A%C(t,s)+(1—A%)C(¢,s)=C(t,s).
Recalling the definition (and continuity) of || - ||,,, we finally conclude that

Am_cc D
e Lo 1122 I3,

where {Z(1) | t € R%} is the centered Gaussian process with the covariance function C(z,s)
given in (b.6), which concludes this part of the proof.

The proof that nmT,,,/(n+m) also converges to [|Z(t)||*, follows directly from the fact that
i =n,m =mand g =1, and is known from the literature (see Chen et al], 2019). This concludes
the proof of Theorem p.1]. [

Asin the original (complete-sample) energy test, the asymptotic null distribution of the test
statistic depends on the underlying distribution of the data and is therefore not distribution-
free, so the bootstrap algorithm is utilized for calculating the critical values or p-values of the
test. The two proposed resampling procedures will be presented in the Subsection 6.2.4.
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Due to its simplicity and low computational cost, complete-case analysis became one of the
most commonly used approaches of handling missing data when conducting various statistical
analyses on incomplete datasets. Generally speaking, it can serve as a quick solution when
data are MCAR, or missingness rate is very low. Furthermore, for some procedures, such as
independence testing (Aleksi¢ et all, 2023), or MVN testing (Aleksi¢ and MiloSevid, 20254),
complete-case analysis performed better under MCAR than some imputation methods. How-
ever, when either data are not MCAR, or the missingness rate is very high, complete-case is
known to leave much to be desired, producing biased estimates, decreasing the power of the
test, having no type I error control, and exibiting other limitations (e.g., Aleksi¢ and MiloSe-
vid, 2025a; Tsatsi et all, 2024, and others). This is especially noticeable when dealing with
high-dimensional data, where restricting analysis to complete cases can, obviously, result in
a significant loss of information and statistical efficiency. The energy test is not an exception
to this rule. For example, simulations by Zeng et al] (2024) indicate that, under their specific
MMD-Miss approach and MNAR setting, complete-case analysis exibits type I error asymptot-
ically equal to 1.

Given the aforementioned flaws of complete-case analysis, i.e. wastefulness and sensitivity
to data not being MCAR, it is imperative to seek for better approaches for conducting the
energy test on incomplete samples, which could, at least partially, overcome these limitations.

As our simulations will demonstrate, complete case analysis can, in many scenarios, includ-
ing the MCAR setting, be outperformed by certain weighting and imputation methods, when
appropriate bootstrap resampling is employed.

6.2.2 Weighting methods

As we have discussed, partially observed cases, although incomplete, may still carry useful
information about the underlying structure of the data, or parameters of interest, and should
not be disregarded outright. A natural way to incorporate these cases is to assign them weights
based on the amount of observed information they contain. This approach ensures that ob-
servations with more observed components have a proportionally greater impact on the test
statistic, hence making fuller use of the available data while acknowledging varying degrees
of completeness across cases. For that purpose, we modify the original (de facto Euclidean)
distance into a weighted distance as

) 2 [(R¥®RY);

pw((X,R*),(Y,RY))= punc((X, R*),(Y,R") y , (6.11)

where (RX ® RY); is the ith component of R¥ ® RY, and distance p (X, RX),(Y,R")) is cal-
culated between those subvectors of X and Y that are observed in both cases. The weight
éZ?;l(RX ® RY); is assigned such that that complete cases receive a weight of 1, while cases
with more missing components receive smaller weights, contributing proportionally less to the
overall sum. Naturally, the weighted test statistic is defined as

=—ZZpW(X,,RX( ") ZZpW (X, RY),(X;, )

i=1 j=1 i=1 j=

ZZpW (%, R, (Y, R))). (6.12)

i=1 j=

Unlike for the statistics T,,,, and TS, there is no representation analogous to (.7) for
statistic TV . An alternative approach would be to express it as
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T = ZZ(pW (Xo, RO, (Y1, R)) + pu (X, RO, (Vi RY))

T
\.
||
—
~
Il
—

= > (X, B, (X5, RV (Y, R, (¥, RY)), (6.13)

n n m m
2m?2
I’l m =

i=1 j=1 k=1
where
ho (X1, RY), (Xo, RY); (Y3, RY), (Y3, R)) = pw (X1, RY), (Y, RV)) + pw (X2, RS, (Y, R)1))
—pw((Xl,R ), (X2, RY))— pw((¥i, RY), (Y2, R))).

T is itself a V-statistic, so we may proceed further in a standard manner by deriving its
asymptotic distribution. We state our conclusions in the following theorem.

THEOREM 6.2 [ALEKSIC, MILOSEVIC (2025)]. Let X, ..., X, and Y, ..., Y,, be two independent
samples of IID d-variate random vectors, and let TV be as in (6-13). Let the response indicators R*
and RY and their realizations r* and rY be defined as in Section p.2. Define the integral operator
A: L2(R* dF'(x, X)) — L*(R%*¢,dF’(x, X)), where F' is a CDF of (X, RX) and of (Y,RY), as

Ag((xl,rf),(yl,rly))=f R (Cey, 1), (60, 1% (0 1), (0, 1,)0))AE (30, YA F (35, 7,1 ). (6.14)
R2d xR2d

Let {7, j = 1} be the sequence of eigenvalues of A and let {f;, j > 1} be the sequence of corresponding
orthonormal eigenfunctions. Let

=E[f;((X1, B, (¥, R) f;((X0, RY), (¥, R)))],
and
n=E[pw (X1, RY),(¥;,R))].
If (X, RX) 2 (Y, RY), then

nm
—2A*€(0,1),

Tnvxl T]+ZZ7L]C]()(1] ), as n,m— oo,

n+m
j=1

n+m

where { )(1 . j =1} are IID y2-distributed random variables.

PROOF. We first note that the assumptions of Theorem [6.7 are consistent, since the operator

A from (b.T4) is indeed known to be compact and self-adjoint, so its eigenvalues do form a

diminishing sequence, and the eigenfunctions are orthonormal (see e.g. Henze, 2024, Ch. 8).
The kernel is weakly degenerate. Indeed, it holds that

hl,l((xlr rlx)’(yl! rlY)) =E pW((xl’ rlx)»(YZ»RQY)) +pW((X2’R2X)’(y1’ rlY))

_PW((xpr ) (Xo, R, )) pW((J’l’yl )(YZ’RZY)) -

where two pairs of terms cancel out due to symmetry of p,, and the fact that (X, RX )2(Y,RY).



84  CHAPTER 6. MULTIV. TWO-SAMPLE TESTING IN THE PRESENCE OF MISSING DATA

The key idea of the proof is to use the results of Neuhaug (1977) that we have restated in
our notation in Section I.4. Similarly to the Lemma 2 of Fernandez et al] (2008), it holds that,
for every j>1, fi((x,r),(y,r¥))=—fi((y, r¥),(x,rX)), and, as a consequence,

EL£((x0, BY), (4, RO) (06, BY), (%, B))] =ELf (X0, RY), (%, RO (X, BY), (Y, BY) -

Denote this quantity as c;. If a]; and b].2 are defined as in (I.10), it is readily seen that

ai=1-22E[f;((X,, R, (¥, RO)f((X1, R, (Ya, R )] = (1= 2%)c;,
by = AEL£;((X,, RY), (%, RO)f((Xe, RY), (%, RY))| = A2c,

for every j > 1.
If 2 TW is understood in the context of ([[.8), for ¢, = t, = 1, then the corresponding

n+m “nm

U(1,1) can be written as

U(1,1) :ij[(ajwljun b Wo (1)) —(a%+ b]?)]

:f:xjcj[(le(l)Jr W2,.(1))2—2]

~A(0,2)

Next, observe that

nm W 1 n n m m X X v v
S — hy (X, R, (X:,R);(Y.,R,),(Y;,R
T nm(n+m)zjzkz,z w((Xi, BY), (X, RO (%, RY), (%, R)))
1 n n m m
= hy((X;, RY), (X, R); (Y., RY), (Y, RY
"m(n+m),-:1,-:1;; w((Xi, R, 06, RO (Y, R, (%, R)))
j#i
1 n m m
+ h((X:, R, (X, RX); (Y., RY), (Y, RY
nm(n+m)i:1k§:;l§:; w (X R, (X3, R (Vi RO, (Y3, R))
n n m m
- DI (X, R, (X, RO (Y, RY), (%, R))
nm(n+m) 4 o ;;}c
j#i
1 n n m
+ ho((X;, R, (X, RX); (Y., R, (Y., RY
nm(n+m)l:1j:1; w((Xe, R, (X, R (Yie, R, (Yie, R))
j#i
+ . n iihW((Xl’RlX)!(XI»RZX):(YIC»R]Z)»(Y»RIY))
nm(rH—m) i=1 k=1 I=1
n n m m
- SIS (6, B, 06, RO (Ve R, (%, RY))
nm(n+m) e zl;}c
J#i
1 n n m
+ ho((X;, R, (X, R%); (Y, RV), (Y., RY
nm(n+m)i:1;; w((Xi, R, (X, R (Yi, R)), (Yi, R))
J#i
1 n m m
+ hw((X;, R, (X;, R*); (Y., RY),(Y;,RY
nm(n+m)l:1;Z w (X R (6, R (Y, RO, (Vi R)



6.2. NOVEL PROCEDURES 85

1 i X X
Lo P lZIkZEhW((X,,R ) (X5, R (Y, RO, (Y, RY))
_._____l_____ C NN . X ) Xy, Y %
- nm(n+m) MZ;;}ZW((X“R;' )’(X]er ) (Y, R, (Y, R, ))
(T
n 1 . . . )
+(n+m n+m)n —)m ;;;hw (X0, R, (X, R; ) (%, R, (Y, R)))
J#i
+( T ) : ZZi ((X:, R, (X, RY); (Y, R), (Y, R)))
n+m n+m nm(m—l)ilk & i ko £ 1
1
LSS (60, R, (X RO (Yo, B (% RY)
n+mnm

i=1 k=1

= My +| — G N L p, +——0
S n+m on+m) """ \n+m n+m) " n4+m "

where
Mnm ZZZZhW (X”RX (X RX) (Yk» ) (Y,RY))
n-+rn i=1 j=1 k=1 [=1
J#i I#k
X' X Y v
Nnm n(n—]_ lz;]zl:kz;hw Xl,R X],R )(Yk’ )’(Yk’Rk ))’
Jj#i
_ 1 n m m X K
Pam = T lZIkZ;;hW(( o RX), (X0, R (Ye, RV, (Y1, RY),
I#k
and
1 n m
Qun == > (X, RE), (X0, RO (%, R, (Yo, RY).

i=1 k=1

It is clear that, as n,m — oo, n/(n+m)— A2,

1 1 1
( no_ )—vlz, ( m_o_ )H1—7£, -0 (6.15)

n+m n+m n+m n+m

Next, by (.17), we have that
M, >Ua,). (6.16)
By the Law of Large Numbers for U-statistics, we have that

Num = E (hyy (X1, R), (X, RX); (Y, RV), (¥, R)))), (6.17)

Pom = E(hy (X0, RY), (X1, R (%, RY), (%, RD))), (6.18)
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and
Qnm i E(hW ((XI’R1X)>(X1)Rlx);(erRly)r(erRly)))- (619)
Combining (6.15), (6.16), (6.17), (6.18), and (b.19), we conclude that
1 2 UL )+ 2B (huy (X, RO, (06 RN, RY) (%, R))

+(1—22)E (hy (X, R, (X1, RS ); (1, R, (Y5, R))))
=U(1,1)+E(hy (X, R]), (X5, RX); (Y1, R)), (1, R)))),

where the last equality is due to the symmetry of hy, and due to the assumption that (X, Ry) 2
(Y, Ry). Noting that

E(hW ((XI)RIX)’(XZ’RZX ;(Yl)Rly)»(Yl»Rly))):]E[pW((Xl’RIX)’(YIrRly))]

concludes the proof of the theorem. [ |

REMARK 6.1. Note that Theorem does not assume the MCAR assumption. However, it is

clear that, if it holds, then it is sufficient to assume that R¥ 2 RY and that the null hypothesis
holds.

The null asymptotic distribution of the test statistic TV clearly depends on the distribution
of (X;, R¥). However, it is important to note that the use of random weights did not affect the
type of the limiting distribution.

Given the above, turning to resampling procedures is a straightforward decision in this case
as well. Those procedures will be presented in Subsection [6.2.4.

6.2.3 Imputation

In many practical situations, a particular dataset will not be used exclusively for a single sta-
tistical procedure, such as two-sample testing, but rather as a subject of a broader range of
analyses. This makes imputation particularly appealing: by filling in the missing values and
producing a completed dataset, it allows analysts to apply standard methods, possibly known
not to be sensitive to the fact that the data are imputed, without needing to account for miss-
ingness at each step. Moreover, in real-world scenarios, people that analyze data may not have
specialized knowledge of missing data techniques or access to tools that handle incomplete
observations correctly. So the only option for them would be to treat the imputed dataset as
complete. For this reason, it is often desirable to provide a single imputed version of the dataset
that can be used in lot of the future analyses, including hypothesis testing and many others.
An algorithm that imputes the data is a natural requirement in such scenarios. In a similar
manner as for the statistic 7", we turn to the bootstrap once again. One such algorithm is
proposed in the Subsection .2.4.

6.2.4 Resampling procedures

We propose two bootstrap resampling procedures that can be used to both 7€ and T , re-
sulting in four distinct two-sample testing procedures overall. The first bootstrap approach,
summarized in Algorithm [6.7 (replacing the generic T with T°€ or T"), is designed to account
for the structure of the incomplete data by treating complete and incomplete cases separately
during resampling. Specifically, the pooled dataset is divided into two subsets: one contain-
ing only complete cases and the other containing only incomplete ones. Resampling is then
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carried out independently within each subset, after which the resampled complete and incom-
plete cases are recombined to form new bootstrap samples. This procedure ensures that the
proportion of complete cases in each bootstrap sample remains close to the one in the original
data. By preserving this proportion, the algorithm keeps the original missingness pattern and
avoids artificially inflating or deflating the amount of information available in the bootstrap
replicates, compared to that in the original incomplete sample.

In addition to the first method, we also propose a simpler alternative, described in Algo-
rithm p.Z. Unlike the previous approach, this algorithm does not distinguish between complete
and incomplete cases during resampling. Instead, it pools all available observations and ran-
domly splits them into two bootstrap samples of fixed sizes n and m. This method significantly
reduces the complexity of the resampling procedure by avoiding the need to track and preserve
the proportion of complete cases. It also slightly accelerates computation. Although this is of-
ten unimportant in applied settings, it becomes critical in simulation studies, where the test
must be rerun tens or hundreds of thousands of times.

However, this simplicity may come at a cost. Since the proportion of complete to incomple-
te cases is not preserved across bootstrap samples, the testing procedures may have difficulties
controlling the type I error, or may exhibit reduced power in certain settings. One of the
objectives of the simulation study that follows will be to examine whether this potential trade-
off between computational simplicity and statistical performance has an impact in practice.
In particular, we aim to assess whether the test remains well-calibrated and retains sufficient
power under various missingness scenarios.

Algorithm 6.1 A bootstrap algorithm for the energy test: preserving the proportions of com-
plete cases.

1: Start with incomplete samples x =(x,...,x,) and y =(,,..., ¥») of d-variate vectors;

2: Calculate the value T'(x, y) of the test statistic T;

3: Produce two pooled samples: z.,,, that consists of complete cases from both x and y, and
Zine that consists of incomplete cases;

4: Randomly split z.,, into x* of size 72 and y* = of size ri1; randomly split z;,. into x_ of

size n—n and y;_of size m—

Combine x* and x_into x*; combine y* and y_into y*

Calculate T*=T(x*, y*);

Repeat the steps 4-6 B times to obtain T*, T},..., T,

Reject the null hypothesis at the significance level a if T(x, y) is greater than the (1 — a)-

quantile of the empirical bootstrap distribution of (T.%, T}, ..., T;).

o g O U

Algorithm 6.2 A bootstrap algorithm for the energy test: resampling directly from the pooled
sample.

1: Start with incomplete samples x =(x,...,x,) and y =(,,..., ¥,») of d-variate vectors;
Calculate the value T'(x, y) of the test statistic;

Combine incomplete samples x and y to obtain the pooled sample z =(x, y);

Randomly split the pooled sample z into x* of size n, and y* of size m;

Calculate the value T* = T(x*, y*);

Repeat the steps 4-5 B times to obtain T}, T}, ..., T;;

Reject the null hypothesis at the significance level a if T(x, y) is greater than the (1 —a)-
quantile of the empirical bootstrap distribution of (7*, T}, ..., T).

Under the imputation approach, we introduce the Algorithm p.3. The algorithm begins
by imputing the original incomplete samples resulting in their fully observed versions, from
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which the test statistic is computed. To approximate its null distribution via bootstrap, the
algorithm pools the original data and resamples from it to create new incomplete bootstrap
samples, which are then imputed using the same method method of imputation. The test
statistic is calculated on each imputed bootstrap pair, and the distribution of these replicates
is used to determine the critical value. This approach allows the test to operate on completed
data while remaining coherent with the imputation model throughout the resampling process.

The success of this approach, however, depends critically on the quality of the imputation:
poor or biased imputations may distort the type 1 error or reduce the power, as we will see
from the results of our simulations. Therefore, one of the goals of the simulation study will be
to examine the sensitivity of this method to the choice of imputation strategy and to compare
its performance with the other two algorithms. This will help clarify the trade-offs involved in
choosing a more general-purpose imputation approach over more specific, tailored, weighting
methods.

Algorithm 6.3 A bootstrap algorithm for the energy test: imputing the data.

-

Start with incomplete samples x =(x,,...,x,) and y =(y,..., ) of d-variate vectors;
Impute the samples using the chosen method to obtain x;,,, and y;,,;

Calculate the value T/M"(x;,,,, yim,) of the test statistic T,,,, from (£.4);

Combine incomplete samples x and y to obtain the pooled sample z =(x, y);
Randomly split pooled sample z into x* of size n, and y* of size m;

Impute x* and y* using the chosen method to obtain x; ) and Vimps
Calculate the value T/MP* = Tam(X 0 Vi)

Repeat the steps 5-7 B times to obtain T, /™, T/, ... T,

Reject the null hypothesis at the significance level a if T!"?(x;,,,, ¥i,)) is greater than the

(1—a)-quantile of the empirical bootstrap distribution of (T, 1", T,)2 ™, ..., M ).

6.3 Empirical study

In this section, we present the results of an empirical study conducted under the MCAR setting,
designed to evaluate the performance of the proposed methods. Simulated data were used to
compare testing procedures under controlled scenarios and limited computational resources.
We note that the scenarios presented here represent only a subset of those studied. A more
extensive investigation, including various MAR settings, as well as analysis on real data, is
available in the accompanying paper by Aleksi¢ and MiloSevid (2025b). These additional results
are omitted from the thesis to avoid overloading the main text, as they offer limited added value
in terms of methodological novelty.

6.3.1 Design of the study

Due to the high computational demands of these methods, designing the study was a non-
trivial task: it needed to cover as many scenarios as possible while minimizing the number of
cases that need to be simulated. One of the first trade-offs that had to be made was the use of
the warp-speed bootstrap algorithm (Giacomini et al], 2013) in place of the classical bootstrap
method, in order to avoid nested loops during the Monte Carlo simulations. For the conve-
nience of the reader, we restate the general warp-speed bootstrap procedure in Algorithm [6.4.
Given that N = 5000 replicates were used, this approximation is not expected to have a substan-
tial impact on the simulation results. Regarding the results presented in this text, the sample
sizes were fixed to be n =100 and m =50, and trivariate data were considered.
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Algorithm 6.4 Warp-speed bootstrap algorithm for approximating type I error or power.

1: Generate samples x =(x,,...,x,) of size n and y =(y,,..., ¥,,) of size m from the assumed
distributions;

2: Calculate the test statistic T from x and y;

3: Generate one single bootstrap resample x* from and one y* as in one of the Algorithms
from Subsection 6.2.4;

4. Calculate the bootstrap test statistic 7* from x* and y*;

5: Repeat steps 1-4 N times to obtain pairs (T}, 7%, ..., (Ty, T});

6: Calculate the estimated type I error (or power) of the bootstrap test at significance level a
as the average rejection rate:

N
m’t\eziZI{Tk>q*},
Nk:l

where g* is the empirical (1 — a)-quantile of the distribution of T7,..., Ty, and « is the
nominal level.

As shown in Table 6.1, which serves as a legend for the other tables, combining Algorithms
6.1 and 6.2 with both T¢¢ and TV yields four testing procedures. In addition, Algorithm
6.3 is paired with commonly used imputation methods: mean and median imputation (from R
package missMethods by Rockel, 2023), kNN imputation (from R package bnstruct by Franzin
et all, 2017), and missForest (from R package missForest by Stekhoven|, 2013). This leaves us
with a total of eight testing procedures to be evaluated in this study.

As stated previously, this thesis focuses on the MCAR mechanism. However, results for
three MAR mechanisms are available in the accompanying paper (Aleksi¢ and MiloSevid, 2025h).
The first two mechanisms, MAR 1 to 9 and MAR rank, are implemented in the missMethods R
package (Rockel, 2023) and have been used in recent studies (e.g., Bordino and Berrett, 2024
Aleksid, 2024, 20254). For detailed explanations of these mechanisms, we refer to Santos et al.
(2019), and for a general overview of generating missing data we refer to the monograph by
Van Buuren (2018). The third, MAR logistic, was implemented from scratch, and it assigns
missingness based on a logistic regression model, with control variables as predictors. We
summarize the findings for these settings in Remark [6.2.

The results for the trivariate data will be presented here, while the results for the decavari-
ate case can be found in the aforementioned paper.

Certainly, there are infinitely many ways in which the distributions of X and Y can differ.
However, two of the most commonly studied types of differences are shifts in the mean and
changes in variance. The matrices

05 0 O 1 05 05
=10 05 0 and C,=|(05 1 05
0 0 05 05 05 1

were used as covariance matrices, together with the standard identity matrix. Besides the
standard zero mean, we considered the mean vector m, =(0.5,0.5,0.5) to see how the testing
procedures detect the change in mean.

To assess both light- and heavy-tailed distributions in different dimensions, we considered
five non-degenerate normal distributions and Student’s ¢ distribution with 5 degrees of free-
dom. Specifically, the distributions are: .A45(0,1), A5(0,C,), A5(m,, C,), A5(0,C,), AN5(my, C,),
and #;(0,I), where I is the identity matrix of size 3 x 3.

We considered three missingness settings: two with equal missingness probabilities across
all three variables (0.1 and 0.4), and one with unequal probabilities of 0.1, 0.2, and 0.3.
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6.3.2 Results

With the structure of the study now thoroughly outlined, we are in a position to present and
interpret the results obtained from the conducted simulations.

Table 6.1: The legend of simulation procedures.

% | Distribution of Y

Algorithm g with T¢¢  Algorithm p.3 with mean imputation
Algor@thm 6.2 w@th T”E’?C Algor?thm 6.3 \Ajth mediz?n impu'Fation
Algogthm 6.1 chh T, g Algogthm wf[h GNN 1mputf51t10n .
Algorithm p.Zwith 7,7/ Algorithm p.3 with missForest imputation

Distribution of X

Table p.Z presents the empirical type I errors and powers under the MCAR mechanism, with
a missingness probability of 0.1 for each variable. All eight testing procedures are generally
well calibrated. The procedures based on the weighted test statistic show a slightly elevated
type 1 error in some cases, but the deviation is not major and does not undermine the overall
validity of the procedures. Interestingly, when the missingness probability is increased to 0.4
(Table p.3), the type I error does not increase; in fact, it appears slightly improved. In the
setting with unequal missingness probabilities across variables (0.1, 0.2, and 0.3), shown in
Table 6.4, all of the studied methods remain acceptably calibrated.

Table 6.2: Percentage of rejections (rounded to the nearest integer) for trivariate data missing according
to the MCAR mechanism, p =(0.1,0.1,0.1), n =100, m =50, N =5000.

% A5(0,1) A45(0,Cy) M(my, G) | A(0,G) M(my, G) | t5(0,1)
4 4 25 25 100 100 | 13 11 92 96 12 9
0.0) 4 4 24 24 100 100 | 11 11 91 96 12 9
I3 5 5 40 14 100 97 14 8 96 81 13 9
5 4 38 26 100 100 | 14 15 9% 96 14 10
47 46 5 5 100 100 | 53 53 99 100 | 77 80
440,C1) 45 48 5 5 100 100 | 54 53 98 100 | 77 80
’ 55 34 5 4 100 100 | 61 38 99 96 76 59
56 50 | 4 5 100 100 | 62 65 100 100 | 77 83
100 100 | 100 100 | 5 5 99 99 54 55 100 100
Ao, Cy) 100 100 | 100 100 | 5 4 99 99 57 55 100 100
ST 100 99 100 99 5 5 99 96 58 37 100 100
100 100 | 100 100 | 5 5 99 100 | 60 67 100 100
11 9 31 35 99 100 | 5 6 80 89 | 21 18
10 9 30 34 |99 100 |5 6 80 89 19 17
A5(0.G) 13 6 44 14 100 93 6 5 88 68 | 25 13
13 13 47 51 100 100 | 6 6 88 89 35 24
94 97 |99 100 | 34 28 | 80 89 5 5 94 97
Aomy. Cy) 93 97 | 99 100 | 32 27 | 80 89 5 6 94 97
=20 97 82 100 94 | 45 13 88 68 5 5 97 82
97 98 100 100 | 45 46 | 88 89 5 5 9% 97
6 5 57 56 100 100 | 12 12 90 95 5 5
10.1) 5 6 50 58 |99 100 | 11 12 90 95 5 6
’ 7 5 65 22 |99 98 18 8 93 74 5 5
7 6 63 58 |99 100 | 17 15 94 95 5 6

Analyzing the empirical power, kNN imputation can immediately be ruled out, having the
empirical power substantially lower than any other. Procedures that use weighted test statis-
tic performed the best overall. Mean and median imputation follow closely in some settings,
but are mostly lacking power compared to the former two. Imputation using the missForest
algorithm performs somewhere in between. A similar pattern is observed for the settings with
unequal missingness probabilities (Table [6.4).

In Subsection p.2.4, it was noted that Algorithm [6.Z represents a simplified version of Algo-
rithm p.7], and that this simplification could potentially come at a cost in terms of accuracy or
validity. However, as evidenced by the results presented in Tables p.2 and .3, the performance
of both algorithms is essentially comparable.
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Table 6.3: Percentage of rejections (rounded to the nearest integer) for trivariate data missing according
to the MCAR mechanism, p =(0.4,0.4,0.4), n =100, m =50, N =5000.

% A5(0,1) A5(0, Cy) N(my, Cp) | A5(0,C) | As(my, Cy) | £5(0,1)
5 5 (4 6 |5 9 |6 6 |3 8 |9 9

5 5 |4 6 |5 9 |6 5 |33 8 |9 7

#5(0,1) 5 4 |22 3 |10 23 |8 5 |79 20 |1 s
5 5 (20 7 |10 9 |7 8 |79 78 |10 9
4 155 5 |63 100 |15 14 |54 95 |24 26
14 16|5 6 |65 99 |15 16 |54 93 |24 26
MOCG) 133 4305 5 |99 42 |35 12 |93 37 |52 19
32 195 5 |99 98 |36 30|93 95 |52 36
60 98 [ 65 100 [4 5 55 95 [ 17 15 | 65 98
mc) | 63 %6 |67 %9 |5 5 52 92 | 15 15 | 65 97
’ 9% 3998 39 |5 5 93 37 |36 11 |95 39
9% 9 |99 98 |5 5 93 95 |36 32 |85 97

6 5 |4 5 1[4z 9% [6 5 |3 8 |10 8

6 5 |4 5 |40 92 |5 5 |28 75 |10 7

MOG) 1y 4 L o4 |93 23 |5 5 |72 21 |14 9
7 10|22 19 |93 9 |5 5 |79 71 |15 1
35 8 |40 9 |5 5 77 80 |5 5 34 82
ey | 35 79|20 91 |5 s 27 73 |6 4 34 78
, 81 22093 22 |22 3 71 205 5 79 21
81 82093 94 |22 19 |71 70 |5 5 78 82

35 4 |5 6 [39 9 |4 4 |28 78 |5 5

LoD 4 5 |5 8 |39 9 |5 5 |27 77 |5 5
' 5 3 |35 a4 |92 12 |9 4 |72 14 |1 s
5 5 33 10 |92 92 |9 6 |73 12 |4 5

Taking all of this into consideration, under the MCAR missingness mechanism, we rec-
ommend employing Algorithm in combination with the weighted test statistic ' . This
combination consistently delivers the best overall performance with respect to empirical type
I error control and statistical power, balancing simplicity and effectiveness.

REMARK 6.2. As mentioned earlier, beyond the MCAR setting studied in this thesis, more
complex MAR mechanisms were examined in the accompanying paper (Aleksi¢ and MiloSe-
vid, 2025b). In general, weighting-based testing procedures tend to show the best power when
the missingness rate is low; they may suffer from inflated type I error as missingness increases,
but only under certain missingness mechanisms. Imputation methods, particularly mean and
median imputation, maintain better control of type I error at higher missingness rates, though
their power can be inconsistent: sometimes slightly outperforming weighting methods, but
more often falling substantially behind. The missForest imputation typically achieves a good
balance between power and type I error control, performing substantially better than nearest-
neighbor imputation. Although nearest-neighbor imputation preserves nominal type I error
rates, it is consistently outperformed in terms of power and should therefore be avoided.

Our preliminary simulations show that none of the methods had satisfactory type I error
control under the MNAR upper censoring setting, and adapting the energy test statistic for
such scenarios remains an open problem.



92  CHAPTER 6. MULTIV. TWO-SAMPLE TESTING IN THE PRESENCE OF MISSING DATA

Table 6.4: Percentage of rejections (rounded to the nearest integer) for trivariate data missing according
to the MCAR mechanism, p =(0.1,0.2,0.3), n =100, m =50, N =5000.

% A3(0,1) M3(0,Cy) M(my, Cy) | A3(0,Cy) | As(my, C) | £5(0,1)
5 5 12 15 [ 9 1009 7 |78 93 [8 3
5 5 |12 14 |95 100|9 7 |77 91 |9 7
A50,1) 5 5 |31 6 |99 53 |11 6 |92 39 |11 8
5 4 |32 17 |99 100 |11 11 |92 94 |11 9
30 31 |5 5 99 100 |35 31 |92 99 |59 60
31 31 |5 5 |99 100 |34 31|93 99 |57 59
MOC) g 14 |5 5 100 73 |52 16 |99 63 | 71 24
44 37 |4 5 | 100 100 |49 55 |99 99 |69 68
98 100 |99 100 [ 5 5 |92 99 [ 36 24 |98 100
omcy | 97 10099 100 |56 |92 98 |36 31 |98 100
UL g99 70 100 73 5 5 98 64 | 51 15 99 72
99 100 | 100 100 |5 5 |98 99 |51 54 | 100 100
5 6 [17 16 [91 99 [5 5 |64 88 |16 12
8 7 |15 14 |91 99 |5 5 |64 8 |16 12
MOC) g 5 |38 5 |98 46 |4 5 |8 36 |2 7
10 11 |37 39 |98 100|5 5 |8 8 |2 21
78 95 |92 99 | 16 14 |64 88 |6 6 80 94
Gy | 7993 |93 99 |16 14 |64 85 |6 5 79 93
smG) gy 40 |98 44 [ 37 6 |85 36 |5 5 93 36
94 95 |98 100 |37 37 |8 8 |5 6 92 95
7 5 27 29 [97 1008 7 [ 73 91 |5 6
oD 5 6 |27 30 |97 100|7 8 |73 9 |6 6
' 8 5 |55 6 |98 37 |14 4 |8 25 |6 5
7 5 |55 37 |98 10016 11 |8 92 |5 6




Chapter 7

Conclusions and future work

This thesis is devoted to the problem of model specification testing when the data contain
missing values. To make the dissertation self-contained, Chapters[] and [J introduced essential
mathematical and statistical background on U-statistics, V-statistics and missing data analy-
sis, which are critical for understanding the methods and results presented in the subsequent
Chapters 3-8. Building upon this foundational material, what follows is a summary of the
main contributions, findings, and possible extensions for each core chapter of this thesis.

In Chapter 3, we introduced two novel statistical tests for assessing the MCAR assump-
tion: the second one being the generalized version of the first, with its own merits and flaws.
Across the majority of the scenarios examined, particularly those that are more likely to arise
in practice, such as cases with moderate missingness rates and a large number of variables,
the proposed tests consistently outperformed Little’s MCAR test. In these settings, it demon-
strated superior control of the type I error rate, higher statistical power, and greater robustness
to violations of the assumption of finite fourth moments, provided that both tests performed
satisfactorily.

In situations involving infinite fourth moments combined with the alternatives that are
more difficult to detect, both the novel test and Little’s test exhibited unexpected behavior.
Specifically, their power declined as the missingness rate increased, which was unexpected.

However, in contrast to Little's test, the novel test did not exhibit a loss of power as dimen-
sionality increased, indicating that it performs more reliably in high-dimensional settings. This
stability suggests that the novel test may be better suited for modern applications involving
large number of variables relative to the sample size, where traditional methods often strug-
gle.

A natural direction for future research would be to investigate the asymptotic properties
of the two proposed tests as well as Little’s test as the dimension grows. In particular, it would
be of interest to derive their asymptotic distributions when the dimension tends to infinity:
either at the same rate as, faster than, or slower than the sample size.

With regard to Remark B.9, another possible direction for further improvement would be
to replace the covariance, which is used in the current formulation as a measure of linear
dependence, with an alternative discrepancy measure that either characterizes dependence or
is more closely related to it. This is a potential goal for future research.

Chapter f was devoted to the study of Kendall's independence test in the presence of MCAR
data. The contributions of that chapter can be summarized in three main aspects. First, we
derived the limiting distribution of U-statistics with a non-degenerate kernel of order two un-
der the MCAR setting, and we applied these results to the well-known Kendall's test statistic
for testing independence.

Second, we established the limiting distribution of Kendall's test statistic when the widely
used median-based imputation method is applied to handle missing values.
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Third, we carried out a comparative analysis of two approaches for handling missing data,the
complete-case approach and the median-based imputation approach, in the context of Kendall’s
tau. Their performance was evaluated in terms of empirical type I error and statistical power,
which are the most relevant criteria for assessing the practical effectiveness of statistical tests.

In summary, our results showed that the median-based approach performed more reliably
for smaller samples, making it a sensible choice in such situations. One possible drawback of
this approach is that it could slightly distort the estimation of Kendall’s tau, which might then
affect the power of the test. In our study, however, this effect was small. For larger samples,
the complete-case approach gave slightly better results. Finally, our simulations confirmed
that the way missingness was introduced in the data had a clear effect on how well the test
performed.

Exploring how advanced imputation methods affect the statistical properties of Kendall's
test of independence would be a promising direction for future research. It would also be
valuable to study the asymptotic properties of various degenerate U- and V-statistics that are
commonly used in various areas of model specification testing.

Chapter j focused on testing MVN in the presence of MCAR data using the BHEP test. The
contributions of this chapter can be summarized as follows. First, we proved that complete-
case analysis can be applied for MVN testing under MCAR data, since in this case the test
statistic has the same asymptotic distribution as the test statistic computed on a fully observed
sample. Second, we examined the limiting distribution of the test statistic when imputation is
used and showed that, under such procedures, the affine invariance property of the statistic is
no longer preserved. However, we also noted that, for carefully chosen parameter estimators,
the distribution may remain independent of the unknown parameters.

To address this loss of invariance, we proposed a bootstrap algorithm for MVN testing that
maintains proper type I error control. We also emphasized the potential problems arising from
the common practice of treating an imputed dataset as complete and carrying out the analysis
without accounting for the imputation process. Finally, we compared the power of the BHEP
test under the complete-case approach and under several common imputation methods, in-
cluding mean, median, and kNN imputation.

As demonstrated in the real-data example in Section [5.4, the complete-case approach pro-
ved effective in detecting departures from MVN. Although our power study showed that, in
general, the mean and median imputation approaches achieved higher power, we recommend
using the complete-case approach whenever the sample size is sufficiently large. The main rea-
sons for this recommendation are its simplicity, interpretability, and computational efficiency.
We also advise exercising caution when working with samples containing a small number of
observations.

One natural extension of this work would be to investigate other commonly used multi-
variate tests for normality and, beyond that, to study the behavior of recent goodness-of-fit
tests for other multivariate distributions (e.g. Karling et al], 2023; Ebner et all, 2024), espe-
cially for the data with dependent observations (Meintanis et all, 2024). Another direction
would be to examine the properties of such tests under MAR settings. Our preliminary find-
ings indicate that, in those settings, all of the approaches considered in Chapter [f do not have
a satisfactory performance. Developing a bootstrap algorithm that effectively addresses this
scenario remains an open problem. Furthermore, preliminary simulation results, included in
the Supplementary Material of Aleksi¢ and MiloSevid (2025d), suggested that the null distri-
bution of the test statistic of the BHEP test, when calculated on an imputed dataset and scaled
with parameter estimates obtained from the same dataset, might not depend on the mean vec-
tor or covariance matrix of the underlying multivariate normal distribution. This observation
points to another possible research direction, namely, the study of the invariance properties
of different MVN tests under various imputation strategies and missingness mechanisms.
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In Chapter [, we adapted the well-known energy-based two-sample test to handle data
that are not necessarily MCAR. Our results showed that energy-based two-sample tests, when
properly modified, remain effective in the presence of missing data. Among the approaches we
examined, the weighted method stood out due to its ability to utilize all available observations
and its superior power performance. This advantage is particularly important because the
weighted approach can be readily applied to other distance-based tests, thereby broadening its
practical applicability.

The favorable performance of the weighted method as data dimensionality increases natu-
rally raises the important question of how it behaves as the dimension tends to infinity. This
remains a promising area for future research. Regarding imputation approaches, careful selec-
tion is crucial, since some popular methods, such as kNN, can significantly reduce the power
of the test.

Heinze et all] (2024) proposed four phases of methodological research that, although de-
veloped primarily for the biostatistical framework, are broadly relevant across statistics. Their
brief overview is as follows. Phase I involves the theoretical development of a new method.
Phase II focuses on empirical evaluation in a narrow setting. Phase III includes validation
across diverse scenarios and the creation of user-friendly software implementations of the
proposed methods. Phase IV aims for comprehensive understanding of the method, includ-
ing knowing when it is preferred or not, identifying common pitfalls, and developing practical
diagnostics of whether the assumptions of the method are met.

Our work currently falls between Phase II and Phase II1. By the end of Phase 111, a user-
friendly software implementation is expected, which we aim to provide in the near future.
Phase IV involves gaining a deeper understanding of the method through practical use. We
expect that as our methods are adopted more widely, both their strengths and limitations will
become clearer.
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1. AyTtopcteo - [losBorbaeate yMHOXaBake, ANCTPUBYuUMjy M jaBHO caonwiTaBare
Aena, v npepaae, ako Ce HaBeae MMe aytopa Ha HauvwH oppeheH of cTpaHe ayTtopa
WM gaeaoua nuueHue, Yak n y komepuujanHe cepxe. OBo je HajcnobogHWja o4 cBux
nvueHun.

2. AytopctBo — HekomepuujanHo. [lo3BorbaBaTe yMHOXaBawe, ANCcTpubyLujy u jasHo
caonwTaBak€e fena, v npepage, ako ce HaBede MMe aytopa Ha HauuH oapeheH of
CTpaHe ayTopa unu gasaoua nuueHue. OBa nuueHua He J03BOrbaBa KOMepuujarHy
ynotpeby aena.

3. AyTtopctBO - HekomepuujanHo — 6e3 npepage. [Jo3BosrbaBaTe YMHOXaBambe,
avctpubyuujyy v jaBHO caonwTaBawe Jena, 6e3 npomeHa, npeobnukoBarwa wnu
ynotpebe aena y cBOM feny, ako Ce HaBege MMe aytopa Ha HayvH ofpefheH of
CTpaHe ayTopa “nu gasaoua nuueHue. Osa nuueHUa He Ao3BorbaBa KoMepLujanHy
ynoTtpeby fena. Y ogHocy Ha cBe ocTane nuueHue, 0BOM NULEHLIOM Ce orpaHuyasa
Hajsehn 0bum npaea kopuwhera fena.

4. AyTOpCTBO - HEKOMEpUMjanHO — AenuTM nog ucTum ycnosuma. [lossorbaBaTe
yMHOXaBate, AucTpubyLmjy v jaBHO caonwTaBare Aena, U npepage, ako ce Haseae
WMe ayTopa Ha HauuH ofpefleH of CTpaHe ayTopa Wnu faBaola NULUEHLe U ako ce
npepapga aucTpubyMpa noag WCTOM wnu cnvdHoMm nuueHuom. OBa nuvueHua He
[03BOMbaBa kKomepuyjanHy ynotpeby aena v npepaga.

5. AytopctBo — 6e3 npepape. [lossorbaeate ymHoXasare, AUCTPUBYUM)Y WU jaBHO
caonwrTaBsatwe fena, 6e3 npomena, npeobnukosara unu ynotpebe fenay csom geny,
aKo ce HaBefe MMe aytopa Ha HauuH oapefleH oa cTpaHe ayTopa wnu gasaoua
nuueHue. Oea nuueHUa Ao3sorbasa komepuujanHy ynotpeby gena.

6. AyTOpCTBO - AENUTW Nof WCTUM ycnoBuma. [lo3BorbaBaTe YMHOXaBat-e,
AMcTpuByuujy U jaBHO caonluTaBake Aena, U Npepage, ako ce HaBede UMe ayTopa Ha
HauuH ogpefleH of CTpaHe ayTopa WM [fdaBaola NuUUeHUe W ako ce npepaaa
aucTpubyupa nog WCTOM MNWM CMWYHOM nuueHuoMm. OBa nuueHua [03BOSbasa
komepuujanHy ynotpeby aena u npepaga. CnudHa je codpTeBepckMM nuUeHuama,
OAHOCHO NULEeHLama 0TBOpPEHOr KOAa.
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