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Abstract

Donald Knuth introduced abstract CC systems to represent configurations of
points in a plane with a given orientation (clockwise or counterclockwise) of
all triples of points. We present efficient enumeration of all non-isomorphic
CC systems with at most 12 points. Our algorithm is based on Faradžev-Read
type enumeration, enhanced with the homomorphism principle and SAT solving,
enabling us to enumerate more than 1.3 · 1012 non-isomorphic CC systems with
12 points.
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1. Introduction

Many conjectures in finite discrete geometry can be tested by examining
them on different configurations of points in a plane. Therefore, it is often de-
sirable to list all non-isomorphic configurations of points wrt. some isomorphism
relation. In many applications it suffices to consider that two configurations are
isomorphic if orientation (clockwise or counterclockwise) of all corresponding
triplets of points is the same (without loss of generality, it can be considered
that all given points are in a general position i.e., that no three points are
collinear). For example, some finite cases of the famous Erdős-Szekeres Happy-
Ending conjecture [1] are shown by analyzing all different orientations of triples
of points [2, 3]. Orientation can be easily determined from the Cartesian coor-
dinates of the points. However, if the coordinates of points are not given, but
only the orientation of all triples of points, the problem of enumerating non-
isomorphic configurations becomes a pure combinatorial problem, that may be
easier to solve than the more general geometric problem.

Orientations of points cannot be assigned arbitrarily, as in some cases the
configurations would not be geometrically realizable i.e., it would not be possible
to find coordinates of points with such orientation. Knuth [4] introduced abstract
CC systems to be sets of points with a fixed orientation of all triples of points,
where the orientation satisfies some axioms used to rule out configurations that
would obviously be geometrically unrealizable. Those axioms give necessary,
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but not sufficient conditions to realizability, so there exist CC systems that are
not geometrically realizable.1 Nevertheless, for many applications, it is sufficient
to enumerate all non-isomorphic CC systems, without testing their realizability,
since many interesting conjectures hold for non-realizable CC systems as well.

The problem of enumeration of all non-isomorphic CC systems quickly be-
comes quite challenging, since the number of non-isomorphic CC systems of a
fixed size n (i.e. the number of points) tends to grow very fast as n grows (ex-
ponentially in n2 [4]). Up to our best knowledge, the greatest size for which the
number of non-isomorphic CC systems is published is n = 10, and that number
is 28 627 261 [7].

In this paper we present a novel algorithm for enumerating non-isomorphic
CC systems. It is based on Faradžev-Read general algorithm scheme [8, 9].
It is combined with the homomorphism principle [10], that is applied on the
structure of nested convex hulls of the set of points in order to reduce the
number of tested permutations. An important component of the algorithm is
the augmenting operation, which is based on efficient SAT solving, enabling
us to enumerate all non-isomorphic CC systems of sizes n = 11 and n = 12
(there are respectively 4 686 329 954 and 1 382 939 012 729 such systems),
using a multi-processor computer. The question of realizability of enumerated
CC systems is not considered in this paper. Aside from the obtained numbers
(which could be calculated relatively easily from the existing publicly available
data generated by other researchers), the main contribution of our work is the
method itself, since the presented techniques could be generalized and applied
to other problems in the field of combinatorial geometry.

Related work. The concept of abstract CC systems is related to a very
similar concept of abstract order types. An order type of a set of n points
in a plane is a mapping that assigns to each triple of points from the set an
orientation (clockwise or counterclockwise). The key difference between order
types and CC systems is in the way the equivalence relation is defined – while
two CC systems are considered equivalent if they can be obtained from each
other only by relabeling, two order types are considered equivalent if they can be
obtained from each other by both relabeling and mirroring. In other words, each
order type may consist of one or two non-isomorphic CC systems, depending
on whether the two mirrored CC systems are isomorphic (such CC systems
are called achiral [7]). Because of the similarity of the two concepts, existing
methods for enumeration of order types (as well as publicly available databases)
can be employed for enumeration of CC systems and vice versa.

The enumeration of order types seems to be much better covered in the liter-
ature than the enumeration of CC systems. One of the first and the most impor-
tant work on enumeration of order types is done by Aichholzer et al. [5], where
this problem is reduced to the problem of enumeration of non-isomorphic ar-
rangements of straight lines by a suitable duality transformation. This problem
is, in turn, reduced to the problem of enumeration of pseudoline arrangements
(i.e. a relaxed version of the problem where simple curves may be used instead
of straight lines), which is then solved using the method of wiring diagrams

1It is known from the literature that all CC systems of up to 8 points are geometrically
realizable [5]. The smallest non-realizable CC system consists of nine points, and is constructed
from the pseudoline arrangement that violates Pappus’ theorem [6].
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[11]. Since some pseudoline arrangements may not be stretchable (i.e. cannot
be transformed to an equivalent straight line arrangement), the corresponding
order types may not be geometrically realizable (hence the name abstract order
types). The authors further consider realizability of the obtained abstract order
types to obtain the list of all realizable order types up to the size of 10. The
same authors extended their work in [12], where they have provided a complete
enumeration of all (abstract and realizable) order types of size 11, using the same
method based on the wiring diagrams for pseudoline arrangement enumeration,
and the set of enhanced methods for construction of geometric realizations of
the obtained abstract order types.

The enumeration of abstract order types of size 11 is considered again re-
cently by Scheucher et al. [13]. Their method is based on augmentation of
already enumerated order types of smaller size, in the way that the signotope
axioms remain satisfied. Their method has shown excellent performance, enu-
merating all abstract order types of size 11 in just about 20 CPU hours. The
problem of realizability of obtained abstract order types is not considered in
their work. The obtained database of abstract order types of size 11 is then
used to prove that there are no 11-universal sets of size 11, which is done with
the help of a SAT solver.

The problem of enumeration of non-isomorphic CC systems have been also
studied in the literature, but to a much lesser extent. For example, Knuth [4]
gives quite a thorough analysis of the problem, and gives asymptotic behaviour
of the number of non-isomorphic CC systems (exponential in n2). He also
shows the tight connection between CC systems and primitive sorting networks,
showing that the number of non-isomorphic CC systems is equal to the number
of ,,weakly equivalent reflection networks”. He presents the numbers of non-
isomorphic CC systems with up to 9 points. A decade later, the number of non-
isomorphic CC systems of size 10 is published in [7]. In this work, the techniques
based on halving lines are used to enumerate all pseudoline arrangements of size
10 (which correspond to abstract order types). Using the number of achiral CC
systems of size 10, they obtain the number of all non-isomorphic CC systems of
size 10.

Aside from the published work, some data recently made public by Scheucher
and Rote suggest the numbers of abstract order types up to the size 132, as well
as the numbers of mirror-symmetric abstract order types (that is, the number
of achiral CC systems) up to the size 133. These numbers allow us to easily
calculate the number of non-isomorphic CC systems up to the size 13, using the
formula Cn = 2Dn−Rn, where Cn is the number of CC systems of size n, Dn is
the number of abstract order types of size n, and Rn is the number of achiral CC
systems of size n (thus we have C11=4 686 329 954, C12 = 1 382 939 012 729,
and C13 = 732 955 581 630 129, confirming our results for C11 and C12). As far
as we know, these numbers were not officially published so far.

SAT solving has recently been applied to efficient solving of several problems
in discrete finite geometry (e.g., [2, 14, 15, 13]). Marić used a SAT solver to
confirm the Erdös-Szekeres Happy-Ending conjecture for polygons with at most
6 points [2], and Balko and Valtr used a SAT solver to refute the conjecture of

2https://oeis.org/A006247
3http://oeis.org/A325628
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Peters and Szekeres (a stronger variant of Erdös and Szekers conjecture). Beside
mentioned work of Scheucher et al. [13], another interesting application is given
by Scheucher in [14]. In this work, with computer assistance, it is shown that
every set of 17 points in general position in a plane admits two disjoint 5-holes.
The allowable configurations of points are encoded using signotope axioms, and
additional constraints are added to forbid disjoint 5-holes. The unsatisfiability
result for the set of 17 points proves the conjecture.

Outline of the paper. In Section 2 we give some background on Faradžev-
Read type algorithms, SAT solvers and CC systems. In Section 3 we describe
our algorithm and prove its correctness. In Section 4 we give some details of its
C++ implementation and show experimental results. In Section 5, we provide
a more detailed comparison of our work to other relevant approaches in the
literature. Finally, in Section 6 we draw some conclusions and describe some
directions of further work.

2. Preliminaries

In this section we describe some background on Faradžev-Read algorithm,
SAT solving and CC systems.

2.1. Faradžev-Read algorithm

Faradžev-Read algorithm is a very general scheme for exhaustive isomorph-
free enumeration of combinatorial objects, developed independently by Faradžev
[8] and Read [9], and applied on many different problems (e.g., [16, 17]).

Let us assume that each considered combinatorial object has the associated
size (for instance, this can be the number of nodes in a graph, or the number
of elements in a finite set). Let Sn denote the set of all objects of size n. We
also assume an equivalence relation ∼ on Sn. We say that two objects x and y
are isomorphic with respect to ∼ if and only if x ∼ y. The goal is to form a list
Ln of objects from Sn containing exactly one representative of each equivalence
class of ∼.

The approach used by Faradžev and Read is based on augmentation of ob-
jects of smaller size. Let us assume that we have already constructed a list
Ln−1 of all non-isomorphic objects of size n − 1. The list Ln−1 is traversed,
and an appropriate augmenting operation is applied to each element x ∈ Ln−1,
producing (zero or more) objects of size n. Each such object is appended to Ln

if and only if it is not isomorphic to any of the objects already present in Ln.
A naive method would be to compare this new object to all objects already in
Ln, but this is usually too expensive, since the number of objects in Ln may
grow very fast. In order to cope with that problem, the notion of canonicity is
introduced – for each equivalence class we choose one canonical representative,
and there should exists an effective method for checking whether some object
is the canonical representative (canonical object) of its class or not. Assuming
the list Ln−1 contains exactly all canonical objects of size n − 1, we can form
the list Ln by augmenting the canonical objects from Ln−1, where only the
augmented objects that pass the canonicity test are appended to Ln. In order
to make such enumeration exhaustive, the following property of the augmenting
operation must hold:
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Property 1: each canonical object y of size n can be obtained by augmenting
some canonical object x of size n−1 (otherwise there would certainly exist some
canonical objects of size n that would not be added to Ln).

If the same canonical object y of size n can be obtained by augmentation
of more than one object of size n − 1, the problem of duplicates in Ln may
arise. Again, checking whether the object is already in Ln before the addition
may be too time consuming, so it is important to avoid it. For this reason, we
further assume that there exists a linear order over the objects of the same size
n, denoted by ≺n (or ≺, if the size is clear from the context). Now each newly
constructed canonical object of size n is appended to Ln only if it is greater
(with respect to ≺n) than the last object already in the list Ln. This way, we
avoid comparing the newly constructed object to all objects present in Ln, and
also guarantee that the constructed list Ln will be sorted in the ascending order
with respect to ≺n, avoiding duplicates. However, this approach may spoil the
exhaustiveness, unless the following properties hold:
Property 2: if x and y are canonical objects of size n, and x ≺ y, and if x′ and
y′ are, respectively, the smallest canonical objects of size n− 1 (with respect to
≺n−1) from which x and y can be obtained by augmentation, then x′ � y′.
Property 3: if y1, y2, . . . , yk is the sequence of objects of size n obtained by
repeated augmentation of some fixed object x of size n − 1, then y1 ≺ y2 ≺
. . . ≺ yk.

These two properties guarantee that the newly generated object y of size n
that passed canonicity test is not already present in Ln if and only if y′ ≺ y,
where y′ is the last object in Ln. Indeed, if y′ ≺ y, then we know that y is not
present in Ln, since Ln is sorted in the ascending order. On the other hand, if
y � y′, then we know that y is already present in Ln, since we know that the
object y must have been constructed for the first time before y′, because of the
Property 2 and Property 3, and the fact that Ln−1 is sorted in the ascending
order.

The general Faradžev-Read algorithm scheme is given in Algorithm 1. It is
parameterized by two procedures: is canonical(x) which is used for canonicity
testing, and augment(x) which represents the augmenting operation. These two
procedures, as well as the linear order ≺ are specific to the concrete type of
objects being enumerated and must satisfy the above three properties.

In a special case, when each canonical object y of size n can be obtained
by augmentation of only one canonical object x of size n − 1, only Property
1 should be satisfied, and the linear order ≺ is not needed. In that case, the
simplified version of Faradžev-Read algorithm scheme given in Algorithm 2 may
be used.

Algorithm 1 and 2 operate in a breadth-first search (BFS) manner. Since the
whole list Ln is stored in memory at once, this can be very memory consuming.
A depth-first search (DFS) based variant of Faradžev-Read algorithm is given in
Algorithm 3. In essence, the algorithm does not form the lists Lm of canonical
objects of size m < n. Instead, for each canonical object x of size m < n it
creates the list of its augmentations [y1, . . . , yk], and for each of them which
passes the canonicity test, recursively invokes the same procedure. Canonical
objects of size n are collected and returned in the list Ln.
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Require: Ln−1 is an exhaustive list of canonical objects of size n − 1, sorted
in the ascending order wrt. ≺

Require: is canonical(x) returns true iff x is the canonical representative of
its class

Require: augment(x) returns the sorted list of all objects of size n that can be
obtained by augmenting the object x of size n− 1

Ensure: Ln is an exhaustive list of canonical objects of size n, sorted in the
ascending order wrt. ≺
begin
Ln = [ ] {Ln is initially empty}
for all x ∈ Ln−1 do

[y1, . . . , yk] = augment(x)
for all y ∈ [y1, . . . , yk] do
{Let y′ be the last object added to Ln}
if is canonical(y) ∧ y′ ≺ y then
Ln = Ln, y

end

Algorithm 1: faradzev readis canonical,augment,≺(Ln−1)

Require: Ln−1 is an exhaustive list of canonical objects of size n− 1
Require: is canonical(x) returns true iff x is the canonical representative of

its class
Require: augment(x) returns the list of all objects of size n that can be ob-

tained by augmenting the object x of size n− 1
Ensure: Ln is an exhaustive list of canonical objects of size n

begin
Ln = [ ] {Ln is initially empty}
for all x ∈ Ln−1 do

[y1, . . . , yk] = augment(x)
for all y ∈ [y1, . . . , yk] do

if is canonical(y) then
Ln = Ln, y

end

Algorithm 2: faradzev read simpleis canonical,augment(Ln−1)

2.2. SAT solvers

In this section we assume the standard syntax and semantics of proposi-
tional logic [18]. Let P be a set of propositional atoms. A literal is either a
propositional atom p from P or its negation ¬p. A clause is a disjunction of
literals. Because of the commutativity and associativity of the disjunction, we
may consider clauses as sets of literals. A propositional formula in conjunctive
normal form (CNF formula) is a conjunction of clauses. For the similar reason,
the CNF formula may be considered as a set of clauses.

A valuation v over P is a (partial) assignment of boolean values to the
propositional atoms of P . A valuation can be naturally extended to literals
over P : if p is true in v, then the literal ¬p is false in v, and vice-versa. Since
the valuation may be partial, some atoms (and literals) may be undefined in v.
The valuation v may be identified with the set of literals that are true in v. For
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Require: x is a canonical object of size m
Ensure: Ln is an exhaustive list of canonical objects of size n that are descen-

dants of x
begin
Ln = [ ] {Ln is initially empty}
[y1, . . . , yk] = augment(x)
for all y′ ∈ [y1, . . . , yk] do

if is canonical(y′) then
if m+ 1 = n then
Ln = Ln ∪ {y′}

else
Ln = Ln ∪ faradzev read dfs(y′,m+ 1, n)

return Ln

end

Algorithm 3: faradzev read dfs(x,m, n)

instance, if P = {p, q, r} and p is true, q is false, and r is undefined in v, such
valuation may be represented by the set of literals {p,¬q}.

Problem of boolean satisfiability (or SAT problem) is the problem of checking
if there exists a valuation that satisfies a given CNF formula. A CNF formula
is satisfied in a valuation v if all its clauses are true in v (i.e. all its clauses
contain at least one literal that is true in v). SAT problem is the one of the
most famous NP-complete problems [19], and also the problem with a great
number of applications in different domains [18].

The software systems that implement decision procedures for SAT problem
are called SAT solvers. Most of the state-of-the-art SAT solvers are based on
CDCL algorithm (conflict driven clause learning) [20], which is an improved
version of DPLL algorithm from 1962 [21]. DPLL algorithm tries to incremen-
tally build a satisfying valuation, by adding literals one by one to the partial
valuation stack, and backtracking when the current partial valuation falsifies
some clause of the formula being solved. The algorithm also incorporates meth-
ods of inference, such as unit propagation and pure literal. CDCL algorithm
additionally includes conflict analysis based on resolution, non-chronological
backtracking, clause learning and restarting. Finally, efficient implementation
techniques such as two-watched-literal scheme for fast exploration of the clause
database and smart branching heuristics are also an important part of mod-
ern SAT solvers [22]. Thanks to all the algorithmic and implementational im-
provements, modern SAT solvers are able to solve problems with thousands of
propositional atoms involved, and hundreds of thousands of clauses.

A variation of the basic SAT problem, known as All-SAT, is the problem of
enumeration of all satisfying valuations for a given CNF formula. The simplest
way to enumerate all solutions in case of pure DPLL-based solver is to explicitly
backtrack the solver whenever it finds a complete satisfying valuation. In case
of CDCL SAT solvers, the simplest way is to add the blocking clause each time
a satisfying valuation v is found: such clause consists of all literals that are false
in v. That way, solver is forced to search for a different solution after being
restarted. There are also more efficient approaches that avoid addition of long
blocking clauses that tend to slow down the solver, some of them are presented
in [23].
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2.3. CC system

In this section we introduce a notion of an abstract CC system, first defined
by Donald Knuth [4]. Assume an universe P whose elements are called points,
and a ternary relation ccw, satisfying the following axioms:

Ax0: ∀pqr. ccw(pqr)⇒ p 6= q ∧ q 6= r ∧ p 6= r

Ax1: ∀pqr. ccw(pqr)⇒ ccw(qrp)

Ax2: ∀pqr. ccw(pqr)⇒ ¬ccw(prq)

Ax3: ∀pqr. p 6= q ∧ p 6= r ∧ q 6= r ⇒ ccw(pqr) ∨ ccw(prq)

Ax4: ∀pqrt. ccw(pqt) ∧ ccw(qrt) ∧ ccw(rpt)⇒ ccw(pqr)

Ax5: ∀pqrts. ccw(tsp) ∧ ccw(tsq) ∧ ccw(tsr) ∧ ccw(tpq) ∧ ccw(tqr)⇒ ccw(tpr)

Any such structure P = (P, ccw) is called a CC system. The most natural
model of the above axioms is a non-empty set P of points in a plane in a
general position (meaning that there are no three collinear points in P ), where
the predicate ccw is defined as follows:

ccw(pqr) ⇔

∣∣∣∣∣∣
xp yp 1
xq yq 1
xr yr 1

∣∣∣∣∣∣ > 0

assuming that (xp, yp), (xq, yq) and (xr, yr) are the coordinates of the points p,
q and r, respectively. In this interpretation, ccw(pqr) denotes that the triple
(p, q, r) is counter-clockwise oriented in the plane (hence the name of the pred-
icate ccw).

Two CC systems P1 = (P1, ccw1) and P2 = (P2, ccw2) are isomorphic if
there is a bijective function π : P1 → P2 such that for each three distinct points
p,q and r in P1 it holds that ccw1(pqr)⇔ ccw2(π(p)π(q)π(r)).

3. Enumeration of non-isomorphic finite CC systems

In this section, an instance of the Faradžev-Read algorithm scheme for enu-
meration of non-isomorphic CC system of finite sizes is described. First, a
compact way for representing finite CC systems is defined. Such representa-
tions will be called configurations. In order to shrink the search space, we will
analyze the structures of CC systems in more details. The results of such anal-
ysis will enable us to focus on a special class of configurations, which will be
called regular configurations. We will also define the notion of canonical config-
urations, which will be regular configurations that correspond to the canonical
representatives of the isomorphism classes of CC systems. Then we will present
the algorithm for checking the canonicity of a configuration in an efficient way.
Finally, we will describe the augmenting operation, which will be implemented
by utilizing an All-SAT solver.

3.1. Finite CC systems and their configurations

In case of finite CC systems, we will always assume that the points are
denoted by the natural numbers 0, 1, . . . , n− 1, where n is the number of points
in the system. In other words, we will always assume the CC systems of the
form P = (Pn, ccw), where Pn = {0, 1, . . . , n − 1}. This means that distinct
finite CC systems of the same size differ only in the way their ccw predicates
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are defined, and in order to represent a finite CC system (as a combinatorial
object), it is sufficient to represent its ccw predicate. In the following text we
formally define the representation that is used in this work.

Let us denote the set of all triples pqr (where pqr is just a shorthand notation
for (p, q, r)) of distinct points from Pn by Tn. We say that a triple pqr ∈ Tn is
normalized, if p < q < r. The set of all normalized triples of Pn will be denoted

by Nn. It holds that |Nn| =
(
n
3

)
= n·(n−1)·(n−2)

6 . We denote by normalize(pqr)
the triple p′q′r′ obtained from pqr by sorting its points in the ascending order.
The triple pqr is positive if it can be obtained from normalize(pqr) by cycling
its points, and negative otherwise. For instance, triples 012, 120 and 201 are
positive, and 021, 102 and 210 are negative (the normalized form of all six
triples is 012). From Ax1-Ax3, it follows that if a triple pqr is positive, then
ccw(pqr) ⇔ ccw(p′q′r′), and if pqr is negative, then ccw(pqr) ⇔ ¬ccw(p′q′r′),
where p′q′r′ = normalize(pqr). In both cases, the ccw-value of a triple is reduced
to the ccw-value of its normalized form.

For a fixed CC system P of n points, we define its configuration as a function
c : Nn → {0, 1} defined as follows:

c(pqr) =

{
1, if ccw(pqr)
0, if ¬ccw(pqr)

From the above discussion it follows that the configuration of a CC sys-
tem fully defines its ccw predicate (and, therefore, the CC system itself), so
we can identify finite CC systems with their configurations. We say that the
configuration c is of size n if it corresponds to a CC system of n points.

We further define a linear order (Nn, <) over normalized triples by using
reverse lexicographic comparison in the following way: p1q1r1 < p2q2r2 iff:

� r1 < r2, or
� r1 = r2 and q1 < q2, or
� r1 = r2 and q1 = q2 and p1 < p2

For instance, for the CC system of 5 points (denoted by 0, 1, 2, 3, 4), the
normalized triples are ordered in the following fashion: 012, 013, 023, 123, 014,
024, 124, 034, 134, 234. Notice that the order is such that for each point p, the
triples containing p are placed after all the triples composed of the points smaller
than p are exhausted. By position(pqr) we denote the index of the position of
the normalized triple pqr in the above linear order, assuming that the indexing
is zero-based. It can be easily shown that position(pqr) =

(
r
3

)
+
(
q
2

)
+
(
p
1

)
.

Having in mind the order of normalized triples, configurations of size n may
be written as binary strings of length

(
n
3

)
, where the i-th bit (counted from left to

right, starting from zero) corresponds to the value c(pqr), where position(pqr) =
i (e.g. leftmost bit corresponds to c(012), the next bit corresponds to c(013)),
etc). Such string will also be denoted by c, and its i-th bit by ci. Notice
that not all binary strings of length

(
n
3

)
correspond to legal configurations,

since the axioms Ax4 and Ax5 of CC systems may be violated. We say that a
configuration is feasible if the ccw predicate it defines satisfies the axioms of CC
systems. We will denote the set of all feasible configurations of size n by Sn.

If a configuration c of size n is given as a binary string, then its prefix c′

of length
(
n−1
3

)
corresponds to a configuration of size n − 1 of the CC system

obtained by removing the point n − 1 from the CC system determined by c,
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due to the defined order of normalized triplets (i.e. the first
(
n−1
3

)
positions in

c correspond to the triplets not containing the point n − 1 which we removed
from the system). We say that c′ is the parent configuration of c, and also that
c is a child configuration of c′. Obviously, each configuration has unique parent,
while it may have more than one child configurations.

Lemma 3.1. If c is a feasible configuration of size n, then its parent c′ is a
feasible configuration of size n− 1.

Proof. Since c is a feasible configuration of size n, it satisfies all the axioms of
CC systems for the points 0, 1, . . . , n − 1. Its prefix of length

(
n−1
3

)
represents

the configuration c′ of size n− 1 obtained from c by removing the point n− 1,
so it still satisfies all the axioms of CC systems for the points 0, 1, . . . , n − 2.
Thus, it is a feasible configuration.

Two configurations c1 and c2 of size n are isomorphic if the CC systems
they define are isomorphic. Isomorphisms between configurations correspond to
permutations of the set of points {0, 1, . . . , n − 1} that are homomorphic with
respect to the ccw predicate.

Lemma 3.2. Two configurations c1 and c2 of size n are isomorphic if and only
if there exists a permutation π of Pn = {0, 1, . . . , n− 1}, such that:

c1(pqr) =

{
c2(normalize(π(p)π(q)π(r))), if π(p)π(q)π(r) is positive
1− c2(normalize(π(p)π(q)π(r)), otherwise

Proof. Let P1 = (Pn, ccw1) and P2 = (Pn, ccw2) be the CC systems that cor-
respond to the configurations c1 and c2, respectively. By definition, if c1 and
c2 are isomorphic, then there exists a permutation π of the set Pn such that
ccw1(pqr) ⇔ ccw2(π(p)π(q)π(r)) for any triple pqr. Assume that pqr is a nor-
malized triple, and let p′q′r′ = normalize(π(p)π(q)π(r)). If π(p)π(q)π(r) is
positive, then ccw2(π(p)π(q)π(r)) ⇔ ccw2(p′q′r′), and if π(p)π(q)π(r) is nega-
tive, then ccw2(π(p)π(q)π(r)) ⇔ ¬ccw2(p′q′r′). The lemma now follows from
the definition of a configuration.

Lemma 3.3. For each configuration c of size n and for each permutation π of
the set Pn = {0, 1, . . . , n − 1} there exists a unique configuration c′ of size n
such that π is the isomorphism from c to c′.

Proof. Let P1 = (Pn, ccw1) be the CC system determined by the configuration
c, and let P2 = (Pn, ccw2) be the CC system such that for all triples pqr it holds:

ccw2(pqr)⇔ ccw1(π−1(p)π−1(q)π−1(r))

where π−1 is the inverse of the permutation π. The permutation π will be the
isomorphism from P1 to P2, since for each triple pqr, and their images p′ = π(p),
q′ = π(q) and r′ = π(r) it holds:

ccw1(pqr) ⇔ ccw1(π−1(p′)π−1(q′)π−1(r′))
⇔ ccw2(p′q′r′)
⇔ ccw2(π(p)π(q)π(r))

It is easy to see that the above definition of the ccw2 predicate is the only
possible definition such that π is a homomorphism between P1 and P2, hence
the uniqueness. The configuration c′ will be the configuration corresponding to
the CC system P2.
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The configuration c′ obtained from c by applying the permutation π will be
denoted by cπ.

3.2. Checking canonicity

The isomorphism relation partitions the set of all feasible configurations Sn

into the isomorphism classes. For each isomorphism class, we must choose its
canonical representative. One way to do it is to choose the configuration that
corresponds to the lexicographically smallest binary string in the class. In that
case, in order to prove the canonicity of a configuration c, it is sufficient to prove
that for any permutation of points π, the configuration cπ is not lexicograph-
ically smaller than c. The problem with this approach is that the number of
such permutations is n!, which grows exponentially with n. Therefore, it would
be beneficial if we could reduce the number of permutations that need to be
tested.

A general approach is to find some properties that are invariant under iso-
morphism relation and than to consider only the permutations that maintain
such invariant properties. For example, node input and output degrees are in-
variant under graph isomorphisms, so only permutations of nodes that maintain
their degrees need to be considered when checking graph canonicity. An invari-
ant that we found useful for checking canonicity of CC systems is the structure
of their nested convex hulls [2].

3.2.1. Configuration hull structures and regular configurations

Assume a CC system P = (P, ccw) and a non-empty set of points S ⊆ P .
The convex hull of S is the list of distinct points H = [p0, p1, . . . , pk] from S such
that for each pair of consecutive points pi, pi+1 (and also for the pair pk, p0) and
for each point r ∈ S distinct from these two points it holds that ccw(pipi+1r)
(and also ccw(pkp0r)). It can be shown that every finite set of points always
has a convex hull [4, 2]. Specially, if S is a singleton set, or has two elements,
its convex hull is S itself, by definition. Otherwise, the convex hull of S has at
least three points.

After we find the convex hull H0 of a finite set S, we can proceed to find the
convex hull H1 of the set S\H0, then the convex hull H2 of the set S\(H0∪H1),
etc. This process can continue until the empty set is reached. Convex hulls
H0, H1, H2, . . . ,Hm obtained in that way are called the nested convex hulls of
the set S (notice that S = H0 tH1 t . . .tHm). If we denote by hi the number
of points in the hull Hi, then the list [h0, h1, . . . , hm] is called the hull structure
of the set S. Notice that hi ≥ 3 for i < m, while hm may be any number greater
than zero.

Assume now a finite CC system P = (Pn, ccw) of size n. Let H0, . . . ,Hm

be the nested convex hulls of the set Pn = {0, 1, . . . , n− 1} (that is, the nested
convex hulls of the entire CC system). Let [h0, . . . , hm] be its hull structure.
The CC system P is regular if H0 contains the points 0, 1, . . . , h0 − 1 (in any
order), H1 contains the points h0, . . . , h0 + h1 − 1 (in any order), H2 contains
the points h0 + h1, . . . , h0 + h1 + h2 − 1, etc. For instance, if the hull structure
of a system of 10 points is [4, 3, 3], then the system is regular if its convex hull
H0 contains the points 0, 1, 2, 3 (in any order), the next hull H1 contains points
4, 5, 6 (in any order), and the remaining points 7, 8, 9 make the innermost hull
H2 (again, in any order). A configuration c is regular if it represents a regular
CC system.
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Figure 1: Nested convex hulls with the structure [5, 4, 3, 2].

The important fact about regular CC systems is given in the following
lemma.

Lemma 3.4. Every finite CC system is isomorphic to some regular CC system
of the same size.

Proof. Let P = (Pn, ccw) is an arbitrary CC system of size n, and let
H0, H1, . . . ,Hm be the list of its nested convex hulls. As before, we denote
its hull structure as [h0, . . . , hm]. We can construct the permutation π such
that points of H0 are mapped to the points 0, 1, . . . , h0−1, the points of H1 are
mapped to the points h0, h0 + 1, . . . , h0 + h1 − 1, etc. The obtained CC system
will be a regular CC system.

A consequence of Theorem 3.4 is that we may consider only regular config-
urations, since each equivalence class of Sn has at least one regular member.
Unfortunately, the lexicographically smallest configuration of a class does not
have to be regular. For this reason, we change the definition of the canoni-
cal representative: the configuration is canonical if it is the lexicographically
smallest regular configuration of its class.

A permutation is regular with respect to a regular configuration c, if it
transforms c to another regular configuration c′. The next lemma claims that
regular permutations just permute the points within each of the nested hulls of
the CC system represented by c.

Lemma 3.5. A permutation π is a regular permutation with respect to a regular
configuration c of the hull structure [h0, h1, . . . , hm] if and only if π is of the form
π = π0π1 . . . πm, where πi is a permutation of the points of the nested hull Hi.

Proof. If π is of the form π0π1 . . . πm, then for each hullHi, its points stay in that
hull with only their order being permuted, so the configuration cπ is regular.
Conversely, if π is a regular permutation with respect to c, then c′ = cπ is
a regular configuration. It is easy to see that isomorphisms preserve the hull
structure of a configuration. This means that c′ will have the same hull structure
[h0, h1, . . . , hm]. Let H ′0, H

′
1. . . . ,H

′
m be the nested hulls of c′. Since c′ is regular,

for each i, Hi and H ′i will be composed of the same points, possibly in different
order. Therefore, the permutation π is a composition of permutations of the
individual hulls.
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Therefore, in order to check whether a regular configuration c is canonical,
we should lexicographically compare it to all configurations of the form cπ,
where π is a regular permutation with respect to c. If c has the hull structure
[h0, h1, . . . , hm], then the number of regular permutations is h0! · h1! · . . . · hm!.
Compared to n! = (h0 + h1 + . . . + hm)!, it is usually much smaller number of
permutations to check.

We shall apply the Faradžev-Read algorithm so that for each n we maintain
the list Ln of canonical (regular) configurations. In order to guarantee the
algorithm correctness, we must ensure Property 1, i.e., that each canonical
regular configuration of size n can be obtained by augmenting some canonical
regular configuration of size n − 1. First we prove that the parent of a regular
configuration is also regular, as the following lemma claims.

Lemma 3.6. Let c be a regular configuration of size n with the hull structure
[h0, h1, . . . , hm]. Then its parent c′ is a regular configuration of size n− 1 with
the hull structure [h0, h1, . . . , hm−1] if hm > 1, or [h0, h1, . . . , hm−1], if hm = 1.

Proof. Recall that the parent configuration c′ correspond to the CC system
with the point n− 1 removed. Since c is regular, the point n− 1 belongs to the
innermost hull, so its removal only changes that hull, while other hulls stay the
same, and the system stays regular.

We will refer to the hull structure of the parent configuration as the parent
hull structure. On the other hand, if we have a regular configuration c′ of size
n−1, its child configuration c of size n will be regular if and only if (1) the point
n − 1 is added to the innermost hull of c′, or (2) is added as a new, singleton
hull inside the innermost hull of c′ (provided that the innermost hull of c′ has at
least three points). Therefore, if the hull structure of c′ is [h0, h1, . . . , hm], then
the hull structure of child configurations must be either [h0, h1, . . . , hm + 1] or
[h0, h1, . . . , hm, 1] (the second one is permitted only if hm ≥ 3). We refer to these
hull structures as the child hull structures of the hull structure [h0, h1, . . . , hm].

Now we prove that the parent of canonical configuration must also be canon-
ical (ensuring the Property 1).

Lemma 3.7. If a configuration c is a canonical configuration of size n, then its
parent configuration c′ is a canonical configuration of size n− 1.

Proof. Since c is canonical, and thus regular by definition, according to Theorem
3.6, the parent configuration c′ is also a regular configuration. Therefore, it
suffices to prove that c′ is the lexicographically smallest regular configuration
in its class.

Assume the opposite, that there exists a regular permutation π′ of the set
{0, 1, . . . , n − 2} (with respect to c′) such that c′π′ is lexicographically smaller
than c′. Let π be the permutation of the set {0, 1, . . . , n− 1} such that π(p) =
π′(p) for each p < n − 1, and π(n − 1) = n − 1. Then π will be a regular
permutation with respect to c and c′π′ will be the parent configuration of the
configuration cπ. Therefore, cπ will be a regular configuration lexicographically
smaller than c, which contradicts the fact that c is a canonical configuration.

3.2.2. Optimizing the canonicity test

So far we have established that to test the canonicity of a regular config-
uration c, we must compare c to all the configurations of the form cπ, where
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π is a regular permutation with respect to c. Assume that the structure of c
is [h0, h1, . . . , hm], and that its nested hulls are H0, H1, . . . ,Hm. Each regular
permutation permutes only the points within the nested hulls, so it can be de-
composed as π = π0π1 . . . πm, where πi is a permutation of the points within
the hull Hi. At the first glance, it seems that all h0! ·h1! · . . . ·hm! combinations
of these hull permutations should be checked, seeking a permutation that yields
a lexicographically smaller configuration and disproving the canonicity of c, but
it turns out that this could be further optimized.

Checking regular permutations incrementally. The key idea is to analyze all reg-
ular permutations incrementally, using a branch-and-bound algorithm for early
pruning of the permutations that cannot produce a smaller configuration and
disprove canonicity of c. Namely, since c is regular, due to the ordering of con-
figuration triples, the prefix of c of length

(
h0

3

)
is only affected by permutations

of the outermost hull H0. For each permutation π0 of H0 we compare the prefix
cπ0 of length

(
h0

3

)
to the prefix of c of the same length.

� If the prefix cπ0 is lexicographically smaller, we already know that c is
not canonical (as the permutation π0 could trivially be extended to a full
regular permutation π that would give a lexicographically smaller regular
configuration).

� If the prefix of cπ0 is lexicographically greater, then π0 cannot be extended
to a full regular permutation π such that cπ is lexicographically smaller
than c, so all regular permutations that begin with π0 can be skipped
when trying to disprove the canonicity of c.

� Only if the two prefixes are equal, then we proceed by extending π0 by
checking permutations π1 of H1. Such permutations π0 of H0 that fix the
prefix of c of the length

(
h0

3

)
are called 0-automorphisms.

We can go further with this approach. In general, an i-automorphism of
the configuration c is a permutation π0π1 . . . πi such that π0π1 . . . πi−1 is an
(i − 1)-automorphism of c, and πi is a permutation of Hi such that the prefix
of cπ0π1 . . . πi of length

(
h0+h1+...+hi

3

)
is identical to the prefix of c of the same

length. Notice that for a fixed (i − 1)-automorphism π0π1 . . . πi−1, there may
be no i-automorphisms that extend it.

When checking canonicity of c, for each (i− 1)-automorphism π0π1 . . . πi−1
of c all permutations πi of the hull Hi are analyzed by comparing prefixes of
length

(
h0+...+hi

3

)
of cπ0 . . . πi and c.

� If the permutation π0 . . . πi gives lexicographically smaller prefix, then the
configuration c is not canonical.

� If it gives a lexicographically larger prefix, then its extensions cannot dis-
prove canonicity of c and need not be analyzed.

� Otherwise π0 . . . πi is an i-automorphism and it is further examined by
considering the permutations of Hi+1.

At the final stage, m-automorphisms of c correspond to regular permutations
of the form π = π0π1 . . . πm such that cπ = c. We simply call such regular per-
mutations automorphisms of c. The set of automorphisms of a configuration c

14



is always non-empty, since the identity permutation is always an automorphism.
Automorphisms do not disprove the canonicity of c.

Cyclic permutations of the outermost hull. The outermost hull has some special
properties and it turns out that not all its h0! permutations need to be explicitly
analyzed. Namely, the points of the outermost hull H0 can always be permuted
such that the prefix of the obtained configuration of the length

(
h0

3

)
contains

all zero bits, which is the lexicographically smallest prefix of that length. For
instance, such case is when H0 = [h0−1, h0−2, . . . , 1, 0]. Therefore, all canonical
configurations have prefixes containing of

(
h0

3

)
zeroes, and the 0-automorphisms

are exactly the cyclic permutations of H0. Other permutations of H0 need not
be considered, since they make this prefix greater.

Child hull structure. Further optimization comes from the fact that during
Faradžev-Read enumeration we do not check canonicity of arbitrary configu-
rations, but only those obtained by adding the innermost point to a parent con-
figuration, that has already been checked and shown to be canonical. Checking
canonicity of such child configurations with m nested hulls is faster if we know all
its (m−1)-automorphisms in advance, and it turns out that we can easily learn
those during canonicity check of the parent. Namely, child configurations have
similar hull structures as their parents (with all nested hulls identical, except the
innermost), so all i-automorphisms, for 0 ≤ i < m, of a child configuration c are
the same as the i-automorphisms of its parent configuration c′. Since parents
are canonical, only permutations that could possibly disprove the canonicity of
a child configuration c are extensions of their (m− 1)-automorphisms by some
permutation πm of Hm. We can optimize the canonicity testing if for each
canonical parent configuration c′ with the structure [h0, h1, . . . , hm′ ], we learn
and store all its m′-automorphisms and (m′ − 1)-automorphisms.

� If its child c has the structure [h0, h1, . . . , hm] = [h0, h1, . . . , hm′ + 1], then
its (m−1)-automorphisms will be the same as the (m′−1)-automorphisms
of c′. We only have to check their extension by permutations of the inner-
most hull Hm′ ∪ {n− 1}.

� If the child c has the structure [h0, h1, . . . , hm] = [h0, h1, . . . , h
′
m, 1], then

(m− 1)-automorphisms of c will be the same as the m′-automorphisms of
c′. For each of them, there is only one regular permutation π of c that
extends it, since its Hm hull consists only of the point n − 1, so it must
be π(n− 1) = n− 1.

In both cases, if c turns out to be canonical, we store its (m − 1)-
automorphisms and m-automorphisms to facilitate checking canonicity of its
further extensions.

Since the number of i-automorphisms of configurations with several nested
hulls rapidly drops (often to one), this technique very quickly reduces the num-
ber of permutations that are checked to just a handful.

Permuting individual hulls. The final optimization considers enumeration of
the permutations of the individual hulls. Assume we have a fixed (i − 1)-
automorphism π0π1 . . . πi−1 and we want to check the permutations of the hull
Hi. There are hi! such permutations, but we do not have to examine all of
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them. Instead, we can again construct permutations incrementally. The hull
Hi consists of the points s, s+ 1, . . . , s+hi− 1, where s = h0 +h1 + . . . +hi−1,
and the configuration cπ0 . . . πi−1 is already defined on all normalized triples
pqr, such that p < q < r < s, since the (i − 1)-automorphism π0π1 . . . πi−1 is
fixed. We incrementally construct πi by first fixing π−1i (s), then π−1i (s+1), and
so on (we choose each value of Hi in turn). At each step the partially defined
permutation πi of the hull Hi extends the fixed prefix of the resulting configura-
tion cπ0π1 . . . πi. For instance, fixing the value π−1i (s) defines the configuration
cπ0π1 . . . πi on all normalized triples pqs.

� If the fixed prefix becomes lexicographically greater than the prefix of c of
the same length, we can backtrack and try another value for the current
point.

� On the other hand, if the fixed prefix becomes lexicographically smaller,
then we already know that c is not canonical, and we do not have to
further extend πi.

� Only if the prefix stays equal to the corresponding prefix of c, we further
extend the permutation πi.

A complete permutation πi will be reached only in the case of an i-
automorphism.

The overall algorithm is shown in Algorithm 4. The case when the struc-
ture of c is [h0] is considered first (in that case only the all-zero configuration
is canonical, and its automorphisms are cyclic permutations). Otherwise, we
use (m − 1)-automorphisms inherited from the parent configuration. For each
(m − 1)-automorphism π, we check whether it can be extended by a permuta-
tion πm of Hm so that cππm is lexicographically smaller than c. This is done
by the auxiliary procedure search smaller configuration(). If it turns out
that there is no such permutation, this auxiliary procedure returns false, and
we proceed with the next (m − 1)-automorphism. In that case, the auxiliary
procedure also records m-automorphisms of c that extends π, if any.

The procedure search smaller configuration() is presented in more de-
tails in Algorithm 5. It is a recursive procedure that incrementally builds the
permutation πm of Hm, as previously explained. Its first argument π is an
(m− 1)-automorphism of the configuration c. The recursion goes on s, which is
the next point for which the value π−1(s) should be fixed. The S is the set of the
remaining values that can be assigned to π−1(s) (initially Hm). The procedure
first looks for the values r ∈ S that, when assigned to π−1(s), makes the prefix
of cπ lexicographically smaller (which means that c is not canonical). In the
same loop, the procedure records the values r ∈ S that keep the prefix equal
(the equals list in Algorithm 5). If we did not find an extended permutation
π′ that makes the prefix smaller, we try to further extend the permutations
from equals in a recursive fashion. When a complete permutation π′ is reached
(i.e. when s = n− 1), if it is in equals, it is stored as an m-automorphism of c.

3.3. Augmenting configurations using SAT solvers

Let Ln−1 be the list of all canonical configurations of size n − 1. The
Faradžev-Read algorithm augments the elements of Ln−1 in turn, and then
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Require: c is a regular configuration of size n with hull structure [h0, . . . , hm]
Ensure: the procedure returns true iff c is canonical

begin
if m = 0 then
{c consists of H0 only}
if c is all-zero configuration then
m automorhpisms(c) = cyclic permutations(n)
return true

else
return false

{(m− 1)-automorphisms of c are inherited from the parent configuration c′}
for all (m− 1)-automorphism π of c do
s = h0 + . . .+ hm−1
if search smaller configuration(π, s,Hm, c) then

return false
return true
end

Algorithm 4: is canonical(c)

the augmented objects are checked for canonicity. In our case, the augmenting
operation will be based on the parent-child relationship between the configura-
tions – each canonical configuration from Ln−1 is augmented to the list of all its
regular children. Thanks to Theorem 3.7, each canonical configuration is a child
of a canonical parent, so Property 1 needed in a general Faradžev-Read algo-
rithm scheme is satisfied. Moreover, each configuration has exactly one parent,
which allows us to use the simplified version of Faradžev-Read scheme (Algo-
rithm 2). This means that we do not have to define the order on configurations,
nor we have to prove other two properties mentioned in Section 2.1.

Configurations are essentially Boolean lists, constrained by CC system ax-
ioms that are Boolean constraints. Therefore, finding all augmenting configura-
tions is essentially a Boolean constraint satisfaction problem. The augmenting
operation will be implemented by utilizing an All-SAT solver. Namely, if we
assign a propositional atom Apqr to each normalized triple pqr, then each con-
figuration c can be identified with the valuation vc such that Apqr is true in vc if
and only if c(pqr) = 1. Now it is sufficient to encode the CC axioms and other
necessary constraints as propositional clauses, and the satisfying valuations of
such CNF formula will correspond to the augmented configurations.

Assume that c is a canonical configuration of size n−1 with the hull structure
[h0, h1, . . . , hm] that should be augmented. As said before, its regular children
may have one of the following two hull structures: [h0, h1, . . . , hm + 1] (the
point n− 1 is added to the innermost hull) and [h0, h1, . . . , hm, 1] (the point is
added as a new singleton hull inside the innermost hull). The second case is
permitted only if hm ≥ 3. Each of these two cases is considered in turn, and the
union of the obtained sets of children is return as the result. In both cases, the
CNF formula must encode the CC axioms (since the resulting configurations
must be feasible), the constraints that fix c as the parent configuration, and the
constraints that fix the structure of the child configurations.
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Require: π is a partial permutation of the set Pn = {0, 1, . . . , n− 1} such that
π(p) is defined for all p ∈ Hk, k < m, and π−1(q) is defined for all q < s

Require: s is the next point for which π−1(s) should be fixed
Require: S is the set of available values from Hm that may be assigned to
π−1(s)

Require: c is a regular configuration
Ensure: the procedure returns true iff the fixed prefix of cπ becomes lexico-

graphically smaller than the prefix of c of the same length
begin
{The list equals will contain the extended permutations π′ that keep the fixed
prefix of cπ′ equal to the corresponding prefix of c}
equals = [ ]
for all r ∈ S do
{Extending π by fixing the value that maps to s}
π′ = π
π′−1(s) = r
{<lex compares only the relevant prefixes of cπ′ and c}
if cπ′ <lex c then

return true {found smaller configuration}
else if c <lex cπ

′ then
{do nothing; permutations π′ that make the prefix lexicographically
greater are skipped}

else
equals.push((π′, r)) {Store permutations π′ that keep the prefix equal}

if s+ 1 = n then
{Recursion exit: the complete permutation π′ is reached}
if equals not empty then
{if equals is not empty, it contains π′ – an m-automorphism of c}
m automorhpisms(c).append(π′)

return false
{If the permutation is not complete, we try to extend it recursively}
for all (π′, r) ∈ equals do

if search smaller configuration(π′, s+ 1, S \ {r}, c) then
return true

return false
end

Algorithm 5: search smaller configuration(π, s, S, c)

Parent configuration encoding. In order to fix c as the parent configuration, for
each pqr ∈ Nn−1, we have the unit clause {Apqr} if c(pqr) = 1, and the unit
clause {¬Apqr}, otherwise. We denote this set of clauses as Fparent.

Axiom Ax4 encoding. Only the axioms Ax4 and Ax5 should be encoded,
since the axioms Ax0-Ax3 are implicitly integrated into the definition of the
configuration. When the axiom Ax4 is concerned, recall that this axiom
claims that for each quadruple of distinct points p, q, r, t it must hold that
ccw(pqt) ∧ ccw(qrt) ∧ ccw(rpt) ⇒ ccw(pqr). Notice that for each set of four
distinct points we actually have 4! quadruples, depending on the permutation
of points, and as many axiom instances. Fortunately, we do not have to en-
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code all of them. Namely, according to Knuth [4], assuming p < q < r < t,
it is sufficient to consider only two cases: ccw(pqt) ∧ ccw(qrt) ∧ ccw(rpt) ⇒
ccw(pqr) and ccw(prt) ∧ ccw(rqt) ∧ ccw(qpt) ⇒ ccw(prq). Translated to
clauses (and normalized triples), we obtain {¬Apqt,¬Aqrt, Aprt, Apqr} and
{¬Aprt, Aqrt, Apqt,¬Apqr}. It is also sufficient to consider only quadruples that
contain the point n − 1, since all quadruples not containing n − 1 are part of
the parent configuration c and, therefore, already satisfy the axiom Ax4. Since
we assumed p < q < r < t, this means that we can fix t = n − 1. We denote
this set of clauses as Fax4.

Axiom Ax5 encoding. Recall that the axiom Ax5 claims that for each quin-
tuple of distinct points p, q, r, t, s it must hold that ccw(tsp) ∧ ccw(tsq) ∧
ccw(tsr) ∧ ccw(tpq) ∧ ccw(tqr) ⇒ ccw(tpr). Again, according to Knuth
[4], instead of considering all 5! permutations for each set of five points,
it is sufficient to consider only quintuples such that p < q < r, and for
each such quintuple it is sufficient to consider only two axiom instances:
ccw(tsp)∧ccw(tsq)∧ccw(tsr)∧ccw(tpq)∧ccw(tqr)⇒ ccw(tpr), and ccw(tsp)∧
ccw(tsq) ∧ ccw(tsr) ∧ ccw(tpq) ∧ ccw(trq) ⇒ ccw(trp). The clauses obtained
depend on the normalization of triples. For instance, if p < q < r <
t < s, we will have the clauses: {¬Apts,¬Aqts,¬Arts,¬Apqt,¬Aqrt, Aprt}, and
{¬Apts,¬Aqts,¬Arts,¬Apqt, Aqrt,¬Aprt}. Other cases are similar. As before,
it is sufficient to consider only quintuples that contain the point n − 1. Since
p < q < r, it must hold r = n − 1, or s = n − 1, or t = n − 1. We denote this
set of clauses as Fax5.

Child hull structure encoding. In hulls of the child have the structure
[h0, h1, . . . , hm + 1], we must first encode that the point n − 1 is inside the
hulls H0, H1, . . . ,Hm−1. For each hull Hi (i < m), and each two consecutive
points p, q ∈ Hi, we have the unit clause {Apq(n−1)}, if p < q, or {¬Aqp(n−1)}, if
q < p. Then, we must encode that the point n−1 is added to the innermost hull
Hm of the parent configuration. That is, there must be exactly one pair of con-
secutive points p, q ∈ Hm such that ¬ccw(pq(n − 1)). If Hm = [p0, p1, . . . , pk],
this fact can be encoded with the clause {¬ccw(p0p1(n − 1)),¬ccw(p1p2(n −
1)), . . . ,¬ccw(pkp0(n− 1))} (at least one negative literal is true), and with the
set of binary clauses of form {ccw(pipi+1(n− 1)), ccw(pjpj+1(n− 1))} (at most
one of the negative literals is true). The exact encoding of the clauses depends
on the normalization of triples. For instance, if p0 < p1 < . . . < pk, then
we have the clause {¬Ap0p1(n−1),¬Ap1p2(n−1), . . . ,¬Apk−1pk(n−1), Ap0pk(n−1)},
the set of clauses {Apipi+1(n−1), Apjpj+1(n−1)}, where 0 ≤ i < j < k, and the
set of clauses {¬Ap0pk(n−1), Apjpj+1(n−1)}, where 0 ≤ j < k. Other cases are
considered similarly. We denote the described set of clauses as Finner.

In case of the structure [h0, h1, . . . , hm, 1], we must encode that the point
n− 1 is inside the hulls H0, H1, . . . ,Hm. This is done by unit clauses, similarly
as before. We denote the described set of clauses as Finside.

The augmenting operation is given in Algorithm 6. It is assumed that we are
equipped with an All-SAT solver that has the method solve(F ) which returns
the set of all valuations satisfying the set of clauses F . The function decode(V )
construct the list of child configurations that correspond to the obtained satis-
fying valuations V . This list is returned as the list of augmented configurations.
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Require: c is a canonical configuration of size n − 1 of the structure
[h0, h1, . . . , hm]

Ensure: the returned list L contains all regular children of c
begin
{ First we enumerate the children of the structure [h0, h1, . . . , hm + 1] }
F = Fparent ∪ Fax4 ∪ Fax5 ∪ Finner

V = solver.solve(F ) { V is the set of satisfying valuations of F }
L = decode(V ) { function decode() maps the valuations from V to the corre-
sponding configurations }
{ Then, we enumerate the children of the structure [h0, h1, . . . , hm, 1], if hm ≥
3 }
if hm < 3 then

return L
F = Fparent ∪ Fax4 ∪ Fax5 ∪ Finside

V = solver.solve(F )
L = L ∪ decode(V )
return L
end

Algorithm 6: augment(c)

4. Implementation and results

The algorithm described in previous section is implemented in C++ program-
ming language.4 With the default settings, the implementation just prints the
number of non-isomorphic configurations of a given size, but the appropriate
compilation options may be given in order to print all canonical configurations
(as strings) to the standard output. In this section we provide details about the
implementation and the obtained results.

4.1. SAT solvers used

By default, the implementation uses a simple, DPLL-based SAT solver im-
plemented from scratch as a part of this project. Just like modern CDCL SAT
solvers [20], out solver is implemented in an iterative fashion, using the stack
of literals that supports backtracking (unlike the classical DPLL [21] which is
based on recursion). The solver also implements two-watched-literals scheme
[22]. All-SAT capability is implemented by applying backtrack explicitly when-
ever a complete satisfying valuation is constructed (except when the current
decision level is zero, which means that we just have enumerated the last satis-
fying valuation). The solver also implements the clause database simplification,
which is crucial for efficiency, since the problems we are solving include a great
number of unit clauses.

Unlike state-of-the-art solvers, our solver does not include non-chronological
backtracking, conflict analysis, clause learning, restarting, etc. We believe that
such algorithmic improvements would not be much useful in our setting, since
the SAT problems we are solving are relatively easy, compared to the hard indus-
trial SAT instances, where such techniques are indispensable. Such observations

4The implementation is available at: https://github.com/milanbankovic/convex
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are based on the relatively small number of conflicts and decisions needed to
complete the solving (e.g. for n = 10, the average number of conflicts and the
average number of decisions per invocation of the solver were both 1.01). On
the other hand, since the solver is invoked once for each canonical configuration
that should be augmented, we actually have to solve a quite large number of
relatively easy All-SAT problems. For this reason, the most important property
is that the solver must be lightweight, meaning that its data structures can be
efficiently created and reinitialized when needed. Such reinitialization must take
into account the fact that the problems we are solving share a great portion of
the clause database (such as Ax4 and Ax5 clauses), which should not be ini-
tialized from scratch each time the solver is invoked. Instead, we initialize such
clauses only once, when the solver is first created. During the simplification,
the clauses that become true at the zero decision level due to the unit clauses
are deactivated (i.e. transferred from the watch lists to the inactive lists), but
not destroyed. When the solver is invoked again for the next problem, we just
reactivate those clauses that need to be reactivated (based on the new set of
unit clauses that are present in the next CNF formula).

We also experimented with the state-of-the-art CDCL-based SAT solver
picosat [24]. It is an incremental solver, meaning that clause sets can be
inserted and removed efficiently. It also supports All-SAT, by addition of the
blocking clause. These two properties were promising enough to try it. Unfortu-
nately, it turned out that its usage slowed down the implementation significantly.
We believe that the reason is the ,,heaviness” of a CDCL-based solver such as
picosat: it contains very complex algorithms and data structures that are well
suited in solving individual, very hard SAT problems, but it is not meant to be
invoked million of times to solve relatively easy SAT problems.

Another third-party solver we tried is the BDD-based All-SAT solver de-
scribed in [23]. This solver was also promising due to its advanced All-SAT
capabilities, but the results were similarly disappointing as with picosat. The
reasons seem to be the same.

4.2. The easy cases (n ≤ 10)

For n ≤ 10, we confirmed the previously published results ([4, 7]) quite
easily with our implementation, and the running times are shown in Table 1.
The results are obtained on the computer equipped with 48 instances of AMD
Opteron 6168 processor (1.9GHz), and 96Gb of RAM, but running in a single
processor, sequential mode. The results obtained by using our implementation
of DPLL based All-SAT solver are compared to those obtained by using picosat

and BDD-based All-SAT solver.

4.3. The case n = 11

The number of non-isomorphic CC systems of size 11 obtained by our algo-
rithm is 4 686 329 954, and the running time was 153 990 seconds (or almost 42
hours), using our implementation of DPLL-based All-SAT solver. We did not
try the picosat and BDD-based All-SAT variants, due to their proven inferior
performance for smaller n.
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n Count Time (DPLL) Time (picosat) Time (BDD)

3 1 0.006 0.006 0.006
4 2 0.006 0.006 0.016
5 3 0.006 0.006 0.018
6 20 0.007 0.009 0.023
7 242 0.019 0.066 0.071
8 6 405 0.337 1.033 0.639
9 316 835 7.203 61.247 20.480
10 28 627 261 707 11 247 1 859

Table 1: The results for n ≤ 10. Times are given in seconds

4.4. Parallelization of the implementation and the case n = 12

Attacking the case n = 12 was a quite ambitious task, because of the great
number of parent configurations of size 11 that should be augmented (more than
4.6 · 109). If BFS version was used, in case of n = 12, we would have to store
more than 4.6 billion canonical configurations of size 11 in the memory (together
with the associated hull structures and automorphisms), before we start enu-
meration of canonical configurations of size 12, which would certainly consume
the most of the available memory (even on the machine with 96Gb of RAM).
Therefore, we used the DFS version, whose memory consumption was negligible.
The Algorithm 3 is initially called with x being the only canonical configuration
of size 3, m = 3 and n is the required size of the configurations that are being
enumerated. With the DFS based approach, the memory complexity problem
is resolved, but the time complexity still makes the n = 12 case practically in-
tractable (the expected running time for a sequential version of the algorithm,
on a single processor is estimated to be more than a year). Fortunately, the al-
gorithm may be efficiently parallelized, since different configurations of the same
size may be processed independently. That is, in Algorithm 3, each recursive
call of the function faradzev read dfs() may be invoked as an independent
task and scheduled for the execution on one of the available threads from the
thread pool. The main challenge here is an efficient load-balancing. In our im-
plementation, we rely on the Intel’s Thread-Building-Blocks (TBB)5, which is a
multi-threaded library that permits different ways of parallelization within the
shared memory model. The forall loop from Algorithm 3 is implemented using
the parallel reduce TBB construct, which partitions the list [y1, . . . , yk] (tak-
ing into account the load-balancing requirements and the number of available
working threads), processes each partition in parallel by different threads, and
then assembles the final list Ln (the reduction, in TBB’s terminology).

To test the parallel version of the algorithm, we first invoked it for n = 11,
using all 48 available processors. The required time was around 78 minutes,
which is more than 32 times faster than the sequential version. Notice that the
speedup is not linear, which could be explained by the additional time needed
to split the work, and to assemble the obtained partial results.

Finally, we invoked the parallel version of the algorithm for n = 12, again

5http://www.threadingbuildingblocks.org
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using all the available processors. The required time was 19 days, 1 hour and
25 minutes. The obtained number of non-isomorphic CC systems of size 12 is
1 382 939 012 729. The results of parallel execution are summarized in Table 2.

n Count Time

11 4 686 329 954 78
12 1 382 939 012 729 27 445

Table 2: The results for parallel execution. Times are given in minutes

4.5. Enumeration of order types using our implementation

Our implementation can be easily adapted to enumerate abstract order types
instead of CC systems. For this purpose, it is sufficient to additionally compare
each augmented configuration c with the configurations obtained by permuting
the corresponding mirrored configuration (i.e. the configuration obtained from c
by inverting each of its bits). In order to employ the homomorphism principle in
the same fashion as before, the concept of mirrored automorphism is introduced
– a mirrored automorphism is a permutation that, when applied to the mirrored
configuration of c, produces c itself. Such mirrored automorphisms are stored
for each canonical configuration c, together with its own automorphisms, and
then used for the canonicity testing.

Using our implementation (in sequential mode), the abstact order types of
size 10 are enumerated in 380 seconds, which is about half the time needed for
enumeration of CC systems of the same size. This was somewhat expected,
since the number of order types is almost twice smaller (there are 14 320 182
order types of size 10). The same holds for n = 11, where the sequential
implementation enumerated all 2 343 203 071 order types in 1310 minutes, or
almost 22 hours. This is comparable to the result reported in [13], where the
same enumeration is obtained in about 20 hours. On the other hand, the parallel
implementation (running the same hardware as before) enumerated order types
of size 11 in about 36 minutes, which is again about half the time needed for
parallel enumeration of CC systems of the same size. This means that ”order
types / CC systems” time consumption ratio is about 0.5, for both sequential
and parallel implementations. For this reason, we believe that the order types
of size 12 could be obtained in about 10 days using our parallel implementation
(and our hardware), although we did not performed such enumeration.

5. Comparison to other approaches

Our approach to enumeration of non-isomorphic CC systems is based on aug-
mentation of CC systems of smaller size, and checking the obtained augmented
CC systems for canonicity, in a Faradžev-Read’s fashion. In its simplified form
(Algorithm 2), Faradžev-Read’s method is similar to other approaches used for
exhaustive enumeration of combinatorial objects, and some of them have been
already employed for enumeration of order types. In the following text, we
present such existing approaches and compare them to our algorithm in more
details.

23



Order type enumeration by Scheucher et al. The work of Scheucher et al. [13]
is the most relevant work to compare with, since it has many similarities with
our approach. For instance, enumeration of order types of size n is done by
augmentation of already enumerated order types of n − 1, just like in our ap-
proach. The augmentation is performed by adding a new extremal point to the
order type being augmented in all possible ways. The obtained order type is
first sorted around the newly added point, and as such is appended to the list if
and only if its representation (in the form of lambda matrix ) is lexicographically
minimal among the equivalent representations (with respect to relabeling and
mirroring). Notice that this approach, in some sense, also combines augmen-
tation and checking for canonicity. This makes the approach quite similar to
Faradžev-Read’s method, although not explicitly mentioned by the authors.

The main difference between the work given in [13] and our approach is in the
representation of order types (CC systems, respectively). In [13], the authors use
standard representation of order types in the form of lambda matrix. The value
of λ(i, j) represents the number of points k /∈ {i, j} such that ccw(ijk) holds.
It is well-known fact [25] that the orientation of all triples can be reconstructed
from the information given in the lambda matrix, which makes lambda matrices
a compact way to represent order types (or CC systems). Since the lambda
matrix of an order type depends on the labeling, the canonical representation
is taken to be the lexicographically smallest lambda matrix (compared row-by-
row). This corresponds to one of the natural labelings, that is, labelings in which
one of the points in the convex hull of the point set is labeled as 0th point, and
other points are then sorted around that point, in clockwise order. This means
that, in order to check for canonicity, it is sufficient to compare the given natural
labeling to other natural labelings of the same set of points. In our approach,
we have used binary string representations (which we called configurations)
encoding the triplets orientations. In order to limit the number of permutations
to be checked during the canonicity test, we analyzed the structures of the
nested convex hulls of the point sets and applied the homomorphism principle
to such structures.

Another important difference is in the axiomatization that is used during
the augmentation phase. If we assume that a natural labeling is used, then it
can be proven [14] that we can also assume that the points are also ordered by
ascending x-coordinates. In that case, the signotope axioms can be used: for
each four points i < j < k < l it holds that the orientation of the triples in
the sequence ijk, ijl, ikl, jkl is changed at most once. Now the abstract order
types of given size correspond to orientation mappings that satisfy the signotope
axioms. In [13], the signotope axioms are enforced to all order types obtained
by augmentation. In our approach, we have used Knuth’s axioms [4] for the
same purpose.

The final difference is that our algorithm uses All-SAT solver for augmen-
tation, while in [13], the authors use their own recursive procedure that incre-
mentally defines the orientation of triples containing the newly added point in
all possible ways, such that signotope axioms remain satisfied. It is worth men-
tioning that the use of SAT solver in the context of signotope axioms is also
possible, and is used, for instance, in [14].

Enumeration by Aichholzer et al. In [5, 12], authors enumerate abstract order
types using quite different approach based on wiring diagrams [11]. Namely,
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abstract order types of size n correspond to topologically different pseudoline
arrangements – that is, arrangements of n simple curves, where each two curves
cross exactly once. The order of these crossings determines the corresponding
order type. A wiring diagram is a realization of a pseudoline arrangement in
an Euclidean plane, consisting of lines that are mostly horizontal, except when
they cross with other lines. The enumeration of abstract order types is now
reduced to the enumeration of different wiring diagrams, satisfying the suitable
set of constraints. For this purpose, the method given in [25] is used.

The main part of work in [5, 12] considers the realizability of abstract order
types (which we do not consider in our work). In that context, a similar concept
of augmentation is used. Namely, if an order type of size n is realizable, then all
its sub-order types of size n−1 are also realizable. That means that, in order to
find a realization of a given order type of size n, we may look for a realization
of some of its sub-order types of size n − 1 (within the database of previously
enumerated realizations of order types of size n − 1) and extend it with a new
point. This approach usually works, but not always. In the remaining cases, the
alternative methods were used to find realizations, or to prove non-realizability
(simulated annealing in [5], method of Bokowski and Richter [26] in [12]).

Another interesting part of work given in [12] concerns enumeration of order
types satisfying a given subset property. A subset property is any property that,
if holds for an order type of size n, it also holds for some of its sub-order types
of size n− 1. In that case, any order type of size n satisfying the property can
be obtained by augmenting some order type of size n − 1, satisfying the same
property. This enables the usage of some of the algorithm schemes for exhaus-
tive enumeration based on augmentation (such as Faradžev-Read’s algorithm
scheme). In [12], the reversed search method by Akis and Fukuda [27] is used.
In the reversed search method, there are two important concepts that depend
on a particular problem being tackled. The first is adjacency oracle which is
responsible for enumeration of the objects adjacent to the given object in the
search space graph. In the context of order types enumeration, this oracle would
enumerate all order types constructed by augmentation of a given order type
that satisfy the given subset property. The second concept is parent mapping
which is a function that assigns to each object its unique parent (i.e. choose
one of its adjacent objects in a deterministic fashion). In our setting, since each
order type may be obtained by augmentation of more than one distinct order
types of smaller size, we must determine the one that is its parent among them,
according to some suitable criteria (for instance, the one with lexicographically
smallest lambda matrix). The enumeration of objects starts from some initial
objects called sinks (in our context, these might be order types of some small
size that satisfy the given subset property). The tree (or forest, in case of multi-
ple sinks) is constructed in depth-first fashion, by enumerating adjacent objects
of the current object x and adding these objects to the tree as children of x if
and only if x is recognized as their parent.

Compared to Faradžev-Read’s method, the reversed search method is more
general, and it can be applied to enumeration problems where the notion of
isomorphism is not defined, or not important (for instance, for enumeration of
spanning trees in a given graph). At the first glance, Faradžev-Read’s algorithm
(in its depth-first variant) might be considered as an instance of the reversed
search method, where adjacency is defined with the augmentation operation, fil-
tered by the canonicity test. On the other hand, the parent of each object x of
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size n will be the smallest canonical object of size n− 1 (with respect to the de-
fined total ordering) from which the object x can be obtained by augmentation.
However, it is important to notice that, while such instance of reversed search
algorithm would indeed simulate Faradžev-Read’s algorithm scheme, there is
one important difference. Namely, in Faradžev-Read’s algorithm, it is not re-
quired to be able to construct the parent object efficiently (that is, to find the
smallest of all potential parents). The decision on whether the object x should
be added to the tree is not based on whether the object from which it is con-
structed by augmentation is its parent, but is based on comparison with the
greatest object of the same size added so far to the tree. In other words, the
reversed search algorithm has the concept of parent, while the Faradžev-Read’s
algorithm has the concept of ordering, which makes the two methods incom-
patible in general. However, since the simplified version of Faradžev-Read’s
algorithm (that we used for enumeration of CC systems) does not use ordering,
it may be considered as an instance of reversed search algorithm scheme.

6. Conclusions and Further Work

We have presented an instance of Faradžev-Read’s algorithm and used it
to enumerate all non-isomorphic CC systems with up to 12 points (using a
multiprocessor computer). Enumerating all non-isomorphic CC systems with
13 or more points currently seems out of reach with the hardware we have at
our disposal.

There are two crucial components of every Faradžev-Read’s algorithm in-
stance: checking canonicity and augmenting objects.

By finding a suitable invariant – the nested convex hull to which a point be-
longs to, by analyzing only regular configurations and by incrementally building
permutations we have managed to optimize the canonicity test so that the pro-
filing for n = 10 shows that the time it takes is only around 14% of the overall
running time. Since the number of automorphisms reduces as the number of
points increases and hulls become more nested, we estimate that for n = 11,
and n = 12 the time for checking canonicity is quite negligible.

Analyzing only regular configurations and fixing the structure of child con-
vex hulls also significantly speeds up the augmentation procedure. Its efficiency
turns up to be crucial, as our profiling shows that it consumes more than 75%
of the overall runtime. Due to the fact that the orientation of triples is es-
sentially a Boolean value, constrained by CC system axioms that are Boolean
constraints, already in CNF form, augmentation is reduced to All-SAT problem.
We have applied a custom-made, lightweight SAT solver that showed better per-
formance compared to state-of-the-art All-SAT solvers (due to the fact that the
current problem requires solving a very large number of similar, relatively easy
SAT problems, and not just one very hard SAT problem). It remains to test
if introducing non-chronological backtracking and lemma learning (but without
compromising the solver’s lightweightness) would speed up the enumeration.
Mixing combinatorial enumeration algorithms based on augmentation (such as
Faradžev-Read’s scheme) with all-SAT solving seems to be a promissing direc-
tion, and we advocate that it might give good results in other domains.
Funding: This work was partially supported by the Serbian Ministry of Science
[grant number 174021].
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Polygons with at Most 6 points, Journal of Automated Reasoning 62 (3)
(2019) 301–329.

[3] G. Szekeres, L. Peters, Computer solution to the 17-point Erdős-Szekeres
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