
Solving Geometric Construction Problems
Supported by Theorem Proving

Vesna Marinković1, Predrag Janičić1, and Pascal Schreck2

1 Faculty of Mathematics, University of Belgrade, Serbia
2 ICube, UMR CNRS 7357, Université de Strasbourg, France

Abstract. Over the last sixty years, a number of methods for automated
theorem proving in geometry, especially Euclidean geometry, have been
developed. Almost all of them focus on universally quantified theorems.
On the other hand, there are only few studies about logical approaches
of geometric constructions. Consequently, automated proving of ∀∃ theo-
rems, that correspond to geometric construction problems, have seldom
been studied. In this paper, we present a formal logic framework de-
scribing the traditional four phases process of geometric construction
solving. It leads to automated production of constructions with corre-
sponding human readable correctness proofs. To our knowledge, this is
the first study in that direction. In this paper we also discuss algebraic ap-
proaches for solving ruler-and-compass construction problems. There are
famous problems showing that it is often difficult to prove non-existence
of constructible solutions for some tasks. We show how to put into prac-
tice known methods based on algebra and, in particular, field theory, to
prove RC-constructibility in the case of problems from Wernick’s list.

1 Introduction

In spite of a long tradition of straightedge and compass constructions 3 , au-
tomation and mechanization of solving of geometric construction problems has
been barely touched in computer science. As far as we know, except for works
described in [23, 5, 25, 20, 14], for a geometric treatment, and in [6, 29], for an
algebraic point of view, results the closest to this subject are about geometric
constraint solving in CAD [1, 22, 4, 8] (see [16] for a recent survey), but there, the
challenges are quite different [25, 24]. Moreover, most of the existing methods for
solving construction problems do not consider proving correctness of solutions.
Consider, for instance, the method designed by Gulwani [14]: this method is
derived from general methods for testing and synthesizing pieces of software. It
finds a formal construction by using a probabilistic approach of having a partic-
ular solution which serves to guide a search in a big space of formal functional
terms. For such a method, a proof of correctness is really needed.

3 The English word ruler designates a tool with measurement in opposition to straight-
edge. In this paper, however, we will conform to the habits and use the terms
ruler-and-compass constructibility or resolvability, in short RC-constructibility or
RC-resolvability, for straightedge and compass constructibility or resolvability [29].

Some studies about the foundations of geometry also consider geometric con-
structions in order to define constructive geometry through the elimination of
quantifiers and the use of functional symbols (see [30, 31] for instance). But
the contexts are very different: we consider here RC-constructions within the
classical Euclidean plane, while in constructive geometry the aim is to define a
logical framework where all considered objects correspond to ground functional
terms (or in other words, the ground set of its initial model is the set of points
RC-constructible from {O, I}).

This limited interest is even more surprising given that solving geometric
construction problems links two important fields of computer science applied to
geometry:

– automated theorem proving, with geometry as one of the most successful
domains since the seminal work by Gelerntner [11];

– dynamic geometry software, which provoked huge changes in educational
practices in geometry by effective visualizations and rewarding experimen-
tations.

Moreover, both these fields have deep connections with construction prob-
lems. A lot of methods for automated theorem proving in geometry rely on basic
geometric constructions, and constructions performed within dynamic geometry
tools typically correspond to RC-constructions. Still, links between automated
solving of construction problems with automated theorem proving or dynamic
geometry software have been hardly explored.

From the logical point of view, solving a geometric construction problem re-
quires proving a theorem of the form ∀X∃Y.Ψ(X,Y) in an intuitionist way. The
witness for Y that is found during such proof represents a construction of a solu-
tion and must involve only points that are RC-constructible from the set X. In
other words, the task is, given a declarative specification of the required figure
Ψ(X,Y), to provide a corresponding— possibly equivalent—procedural specifi-
cation based on available construction steps. Both directions of this equivalence
have to be proved as we will discuss in more details in this paper.

This transformation of a declarative statement into a procedural specification
within a formal framework relies on formalization of the tools allowed to perform
the construction. Usually, ruler and compass are considered and operations like
intersection of lines and circles can be used. However, the folklore of geometric
constructions also consider many variations, for instance, by forbidding either
ruler or compass, by restricting operations by some tools (for example, collapsible
compass or blocked compass), or by allowing new tools like tool for tracing the
MacLaurin trisectrix or Origamis. Some of these sets of tools are equivalent to
ruler and compass, while MacLaurin trisectrix and Origamis are more powerful.
In this paper, we restrict ourselves to RC-constructibility which definition is
recalled here:

Definition 1. Given a finite set of points B = {B0, . . . , Bm} in the Euclidean
plane, a point P is RC-constructible from the set B if there is a finite set of
points {P0, . . . , Pn} such that P = Pn and every point Pi (0 ≤ i ≤ n) is either

a point from B or is obtained as the intersection of two lines, or of a line and a
circle, or of two circles, themselves obtained as follows:

– any considered circle has its center in the set {P0, . . . , Pi−1} and its radius
is equal to the distance PjPk for some j < i and k < i;

– any considered line passes through two points from the set {P0, . . . , Pi−1}

For problems involving parameters, the solution is in fact a way to construct
all solutions. Already in the early 40s, Lebesgue was calling this a program of
construction [18].

It is important to note that sometimes there is no solution for a given con-
struction problem. The absence of solutions does not necessarily mean that there
is no solutions in the Euclidean plane, but no solution of the problem can be con-
structed using only ruler and compass. Examples are famous classical problems
like the circle quadrature problem. It is often difficult to prove such impossibility
theorems. Let us note that it suffices to find a counter-example to prove that a
problem is RC-unconstructible.

In this paper, we will focus on triangle construction problems and one par-
ticular corpus of such problems – Wernick’s list [28]. This corpus consists of
triangle construction problems with located points, and for each, the task is,
given some points X to construct a triangle ABC such that the points X meet
the condition Ψ(X,A,B,C). We first discuss a geometrical approach for solving
construction problems, with classical ,,four-phases solutions“ and then algebraic
approach, both for proving constructibility and unconstructibility. Within the
geometry part, we will comment on our wider project: automation of the solving
process, accompanied by machine verifiable proofs.

2 Geometrical Approach

In this section we give a rigorous, first-order logic description of classical form
of solutions of construction problems. To our knowledge, surprisingly, this is
the first such description, despite the fact that construction problems have been
around for two and a half millennia. Our rigorous description serves as a basis for
a semi-automatic methodology for solving construction problems and generat-
ing their solutions, supported by automated theorem provers and formal proofs
within proof assistants. To our knowledge, automated and formal proving in the
context of automated solving of construction problems were never treated so far.

2.1 Goal

As said above, for a construction problem, roughly said, the task is to prove
constructively a theorem of the following form (where X and Y denote vectors
of objects—points, lines, rays, etc):

∀X∃Y.Ψ(X,Y) (1)

The above subsumes two claims: that the problem is solvable and that a partic-
ular construction (that witnesses ∃Y.Ψ(X,Y)) is correct.

Within the problem description, there could be given some constraints im-
posed on the given objects X. Not all construction problems have solutions:
some problems do not have solutions and some problems have solutions only
under some additional conditions, not known in advance. So, instead of (1), one
typically has to discover Φ(X) (for the given Ψ(X,Y)) and to prove:

∀X.(Φ(X)⇒ ∃Y.Ψ(X,Y)) (2)

The above claims that solution exists under some conditions. But one may claim
even more:

∀X.(Φ(X)⇒ ∃Y.Ψ(X,Y) ∧ ¬Φ(X)⇒ ¬∃Y.Ψ(X,Y)) (3)

The above gives a complete characterization of resolvability: it states that solu-
tion exists under some conditions Φ and solution does not exist otherwise. The
problem is that often conditions for resolvability cannot be expressed only in
terms of the given objects X, but have to involve some auxiliary objects (used
within the construction).

In solving specific classes of construction problems, some goal conditions may
be assumed. For instance, in solving triangle construction problems, an implicit
goal condition is that the constructed points A, B, and C are not collinear.

2.2 Constructible Cases and Four-Phases Solutions

Before going to theory, let us bring our esteemed readers back to school and
remind them that traditionally, finding a solution of a construction problem
passes through the following four phases [7]:

Analysis: One starts from the assumption that certain geometrical objects sat-
isfy the conditions of the problem Ψ(X,Y) (see Section 2.1) and proves
properties Plans(X,Y) that enable construction (geometric loci and theo-
rems are used for producing candidates for solutions).

Construction: A construction is based on the analysis, that is, on the procedural
(ruler-and-compass) counterpart to the specification Ψ(X,Y).

Proof: It has to be proved that, the constructed figure meets the conditions
Ψ(X,Y) (possibly under some preconditions).

Discussion: The discussion should state sufficient and necessary conditions for
solutions to exist, and should also consider how many possible solutions to
the problem there exist. Ideally, the number of solutions should be expressed
effectively in the function of mutual relations of the given elements, but
sometimes it is sufficient to express it implicitly in the function of the relation
of the figures obtained during the construction.

In previous works on geometric construction or geometric constraint solving
the first two phases are often set in the foreground, while the last two are hardly
mentioned (while they are seldom easy to achieve).

In the following text, we will give an account of all solution phases while,
for illustrating them, we will use one running example (the problem 4 from
Wernick’s list): Given points A, B, and G, construct a triangle ABC, such that
G is the centroid of ABC. For this problem, Ψ(X,Y) is ¬collinear(A,B,C) ∧
centroid(G,A,B,C), i.e., the task is to prove:

∀A,B,G.(?⇔ ∃C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C)))

where centroid(G,A,B,C) states that G is the centroid of the triangle ABC
and ? is a condition, not known in advance that characterizes resolvability of the
problem.

Analysis
The purpose of analysis is to detect knowledge sufficient for a procedural

specification Plans(X,Y ′) for a given declarative specification Ψ(X,Y). More
precisely, analysis consists of a sequence of proofs of statements of the following
form, for k = 1, . . . , n:4

∀X,Y ′.(Φa(X) ∧ Ψ(X,Y) ∧Def (X,Y ′) ∧
k−1∧
i=1

Reli(X,Y
′
i)⇒ Relk(X,Y ′k)) (4)

where:

– Y ′ is a sequence of variables y1, . . . , yn such that Y ⊆ Y ′ (informally, Y ′ \Y
are auxiliary points to be constructed and used in the construction, along
the objects from Y);

– Y ′k is a sequence of variables y1, . . . , yk;
– yn belongs to Y ;
– Φa(X) represents some constraints on the given objects (possibly >, if there

are no constraints);
– Def (X,Y ′) introduces properties of Y ′ \ Y ;
– Relk(X,Y ′k) is a formula that corresponds to an effective way for constructing
yk by ruler and compass using X and Y ′k−1.5

Let us denote
∧n

i=1Reli(X,Y
′
i) by Cons(X,Y ′). From the above sequence of

theorems, the following theorem follows:

∀X,Y ′.(Φa(X) ∧ Ψ(X,Y) ∧Def (X,Y ′)⇒ Cons(X,Y ′)) (5)

In order to enable a construction as an effective procedure, it is needed to turn
implicit relationship Reli(X,Y

′
i) (for i = 1 to n) into the form

∨Ki

k=1 yi =
RCi,k(X,Y ′i) [24, 9], which expresses the way(s) in which yi can be obtained

4 In later stages of the solution, the given condition Φa(X) may be extended to some
condition Φ for which (3) holds.

5 This formula may involve disjunctions corresponding to different ,,cases“ for X and
Y . For instance, (A 6= B ∧midpoint(C,A,B)) ∨ (A = B ∧ C = A)

from X and Y ′i using ruler and compass.6 Here, Ki denotes a number of differ-
ent ways in which yi can be constructed. This number has to be finite, although
some ways may alow infinite choices. For example, it may be the case that yi is
the intersection point of two lines p and q or an arbitrary point on the line r. It
must hold:

∀X,Y ′.(Reli(X,Y ′i)⇔
Ki∨
k=1

yi = RCi,k(X,Y ′i)) (6)

Since Cons(X,Y ′) denotes
∧n

i=1Reli(X,Y
′
i), it also holds:

∀X,Y ′.(Cons(X,Y ′)⇔
n∧

i=1

Ki∨
k=1

yi = RCi,k(X,Y ′i)) (7)

If we denote by Planj(X,Y
′) the conjunction

∧n
i=1 yi = RCi,ki

(X,Y ′i), for some
k ∈ {1, . . . ,Ki} for each i = 1, . . . , n then, by distributivity, we obtain some J
disjuncts as individual construction plans:

∀X,Y ′.(Cons(X,Y ′)⇔
J∨

j=1

Planj(X,Y
′)) (8)

If we denote
∨J

j=1 Planj(X,Y
′) by Plans(X,Y ′), from the above formula and

(5), we have:

∀X,Y ′.(Φa(X) ∧ Ψ(X,Y) ∧Def (X,Y ′)⇒ Plans(X,Y ′)) (9)

Since we are interested in effective constructions of solutions expressed by
Plans(X,Y ′), and if we are careful to introduce only needed auxiliary objects in
Y ′\Y , then it is necessary that they can be defined for every solution. Expressing
this obligation for Def, we have the following requirement:

∀X,Y.(Φa(X) ∧ Ψ(X,Y)⇒ ∃Y ′ \ Y.Def (X,Y ′)) (10)

There is a subtle issue with Plans(X,Y ′) — it has to be precise enough to
enable the construction, but also it has to be strong enough to prove that the
constructed figure indeed meets the specification.

Because of the specific goal, the analysis is more a search process than a
proving process. It can be implemented as a search process, while at the end, it
can produce a required formula.

6 Strictly speaking, functions RCi,k may involve more than only ruler and compass.
For instance, it may be the case that only one intersection point of two circles can be
picked (e.g. ,,that is different from the point. . . “, ,,that is not on the same side. . . “,
etc). Also, some of RCi,k may be non-deterministic, for instance ,,pick a point on
the line . . . “.

A

B

G

B1

C

Fig. 1. Illustration for the solution for the running example

Example 1. Let sratio(P,Q,R, S,m, n) mean that
−−→
PQ/

−→
RS = m/n. Letmidpoint(B1, A,C)

denote that B1 is the midpoint of the segment AC. The first derivation step for
our running example is (Figure 1):

∀A,B,G,B1, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧midpoint(B1, A,C)

⇒ sratio(B,B1, B,G, 3, 2))

and the second derivation step is:

∀A,B,G,B1, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧midpoint(B1, A,C)

∧ sratio(B,B1, B,G, 3, 2)

⇒ sratio(A,C,A,B1, 2, 1))

These two steps combined give:

∀A,B,G,B1, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧midpoint(B1, A,C)

⇒ sratio(B,B1, B,G, 3, 2) ∧ sratio(A,C,A,B1, 2, 1))

Here, Φa(A,B,G) is (there may be some preconditions added within the proof
phase)> (meaning that there are no constraints on A,B,G), Def (A,B,C,G,B1)
is midpoint(B1, A,C), and Cons(A,B,C,G,B1) is sratio(B,B1, B,G, 3, 2) ∧
sratio(A,C,A,B1, 2, 1).

Let sratioF be a partial function such that Q = sratioF (P,R, S,m, n) if
−−→
PQ/

−→
RS = m/n. In our running example, there are no different ways for con-

struction, so each Ki equals 1. Then the following holds:

∀A,B,G,B1, C.

(sratio(B,B1, B,G, 3, 2) ∧ sratio(A,C,A,B1, 2, 1))

⇒ (B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1))

and the direct consequence of the previous two formulae is:

∀A,B,G,B1, C.

(¬collinear(A,B,C) ∧ centroid(G,A,B,C) ∧midpoint(B1, A,C)

⇒ B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1))

From the formula (10) we get:

∀A,B,C,G.
(¬collinear(A,B,C) ∧ centroid(G,A,B,C))⇒ ∃B1.(midpoint(B1, A,C))

Construction
The analysis yields the formula enabling effective constructions. For each

j ∈ {1, . . . , J}, Planj(X,Y ′) yields one construction plan of the form:

– Objects X are given (as free objects);
– For i = 1 to n

construct yi as yi = RCi,k(X,Y ′i) (for some k ∈ {1, . . . ,Ki})

Compound construction steps can also be used (say, construction of the mid-
point) so it should be proved that each of RCi,k is expressible using ruler and
compass.

Example 2. The construction, derived from the formula sratio(B,B1, B,G, 3, 2)
∧ sratio(A,C,A,B1, 2, 1) is as follows:

– The points A, B, G are given (as free points);
– B1 = sratioF (B,B,G, 3, 2);
– C = sratioF (A,A,B1, 2, 1).

Proof
Within the proof phase, we have to prove correctness for each construction

plan Planj(X,Y
′). We have to prove:

∀X.Y ′.(Φa(X)∧? ∧ Planj(X,Y ′)⇒ Ψ(X,Y)) (11)

where ? is some condition still to be discovered.
Automated theorem provers for geometry typically handle procedural rep-

resentations of a geometric construction and can deal with conjectures of the
above form. We first try to prove the conjecture:

∀X.Y ′.(Φa(X) ∧ Planj(X,Y ′)⇒ Ψ(X,Y)) (12)

If the conjecture is proved by the prover, the prover can return also some NDG
conditions (note that in general case this NDG is not necessarily the weakest
condition under which the conjecture holds) so only a weaker statement is proved:

∀X,Y ′.(Φa(X) ∧NDG(X,Y ′) ∧ Planj(X,Y ′)⇒ Ψ(X,Y)) (13)

Example 3. We want to prove:

∀A,B,G,B1, C.

(? ∧B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1)

⇒ centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

where ? denotes some set of conditions expressed only in terms of points A, B
and G, still to be discovered.

Let us first focus on the centroid(G,A,B,C) part. Let us suppose that our
theorem provers support sratioF , but does not support centroid and that we
have the following definition of centroid:

∀A,B,C,A1, B1.

(A1 = sratioF (B,B,C, 1, 2) ∧B1 = sratioF (A,A,C, 1, 2)∧
G = intersec(AA1, BB1)⇒ centroid(G,A,B,C))

We can pass the following conjecture to an automatic (e.g., algebraic) prover:

∀A,B,G,B1, C,A
′
1, B

′
1, G

′.

(B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1)∧
A′1 = sratioF (B,B,C, 1, 2) ∧B′1 = sratioF (A,A,C, 1, 2)∧
G′ = intersec(AA′1, BB

′
1)⇒ G = G′)

For instance, the above theorem is proved by the prover based on Wu’s
method, implemented within OpenGeoProver [19]. The prover proves the above
conjecture, but returns non-degeneracy conditions ,,line AA′1 is not parallel with
line BB′1, and points A and A′1 are not identical“ (¬parallel(AA′1, BB′1) ∧ A 6=
A′1), so we actually proved:

∀A,B,G,B1, A
′
1, B

′
1, C.

¬parallel(AA′1, BB′1) ∧A 6= A′1∧
B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1)∧
A′1 = sratioF (B,B,C, 1, 2) ∧B′1 = sratioF (A,A,C, 1, 2)

⇒ centroid(G,A,B,C)

We also need to prove that points A, B and C are not collinear (under some
conditions). It is easily proved (by the ArgoCLP prover [27]) that:

∀A,B,C,G,B1.

(collinear(A,B,C) ∧B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1)

⇒ collinear(A,B,G))

and its contraposition gives:

∀A,B,C,G,B1.

(¬collinear(A,B,G) ∧B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1)

⇒ ¬collinear(A,B,C))

From the previous theorems, we have:

∀A,B,G,B1, A
′
1, B

′
1, C.

¬parallel(AA′1, BB′1) ∧A 6= A′1 ∧ ¬collinear(A,B,G)∧
(B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1)∧
A′1 = sratioF (B,B,C, 1, 2) ∧B′1 = sratioF (A,A,C, 1, 2)

⇒ centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

Discussion
Recall that, in general, we want to state sufficient and necessary conditions

for a solution to exist (and to counter the number of solutions). Ideally, within
discussion we should prove a statement of the form (3). For simplicity, we will
assume that Plans(X,Y ′) has only one disjunct (i.e., only one construction
plan), but the following consideration can be easily generalized for cases with
more than one disjunct.

From the analysis we have:

∀X,Y ′.(Φa(X) ∧ Ψ(X,Y) ∧Def (X,Y ′)⇒ Plans(X,Y ′)) (14)

but also:

∀X.(∃Y ′.(Φa(X) ∧ Ψ(X,Y) ∧Def (X,Y ′))⇒ ∃Y ′.P lans(X,Y ′))) (15)

From the above formula and from (10) we get:

∀X.(∃Y.(Φa(X) ∧ Ψ(X,Y))⇒ ∃Y ′.P lans(X,Y ′)) (16)

and

∀X.(Φa(X)⇒ (∃Y.Ψ(X,Y)⇒ ∃Y ′.P lans(X,Y ′))) (17)

On the other hand, from the proof we have:

∀X,Y ′.(Φa(X) ∧NDG(X,Y ′) ∧ Plans(X,Y ′)⇒ Ψ(X,Y)) (18)

and hence:

∀X.(∃Y ′.(Φa(X) ∧NDG(X,Y ′) ∧ Plans(X,Y ′))⇒ ∃Y.Ψ(X,Y)) (19)

and also:

∀X.(Φa(X)⇒ (∃Y ′.(NDG(X,Y ′) ∧ Plans(X,Y ′)⇒ ∃Y.Ψ(X,Y))) (20)

Therefore, we have necessary (17) and sufficient (20) conditions for ∃Y.Ψ(X,Y)
(under the preconditions Φa(X)). However, they are not equal, so we still don’t
have a complete characterization of solvability. We can try do discover7 a formula
Φd(X) such that

∀X.(Φa(X)⇒ (Φd(X)⇒ ∃Y ′(NDG(X,Y ′) ∧ Plans(X,Y ′))) (21)

If it holds that

∀X.(Φa(X)⇒ (∃Y.Ψ(X,Y)⇒ Φd(X))) (22)

then Φa(X) ∧ Φd(X) is the required formula Φ(X), and we finally have the
theorem (3).

Note that in some cases we can discharge some of conjuncts ndg(X,Y ′) of
NDG(X,Y ′). For instance, one conjunct may imply an other one, so the latter
can be omitted. Also, if:

∀X,Y ′.(Plans(X,Y ′)⇒ ndg(X,Y ′)) (23)

then we can eliminate ndg(X,Y ′) from NDG(X,Y ′) in (18). In some cases, this
way we can eliminate all of NDG(X), and then Φ(X) can be equal >.

In some cases, Φd involves also some Y ′, but here we consider only a simple
case. In addition, as history teaches us, in some cases this cannot be done using
only means of synthetic geometry. (For some unsolvable problems, synthetic
approach can be used using reduction, as discussed in Section 2.3).

The above gives a characterization of solvability. Concerning the number of
solutions, in solvable case the number of solutions is the product of n numbers
of possible choices for each of yi (see Analysis).

Example 4. From the analysis we have:

∀A,B,G,B1, C.

(centroid(G,A,B,C) ∧midpoint(B1, A,C) ∧ ¬collinear(A,B,C)

⇒ B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1))

and

∀A,B,G.
∃B1, C.(centroid(G,A,B,C) ∧midpoint(B1, A,C) ∧ ¬collinear(A,B,C))

⇒ ∃B1, C.(B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1))

and, thanks to (11):

∀A,B,G.
∃C.(centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

⇒ ∃B1, C.(B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1))

7 One can try a finite number of predicates over X.

From the proof, using the following lemma:

∀A,B,C,G,A′1, B′1.
(¬collinear(A,B,C) ∧A′1 = sratioF (B,B,C, 1, 2) ∧B′1 = sratioF (C,C,A, 1, 2)

⇒ ¬parallel(AA′1, BB′1) ∧A 6= A′1)

we obtain:

∀A,B,G,B1, C.

(B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1) ∧ ¬collinear(A,B,G)

⇒ centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

and also:

∀A,B,G.
∃B1, C.(B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1)∧
¬collinear(A,B,G))

⇒ ∃C.(centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

From the above theorem, and the theorem:

∀A,B,G,B1, C.

¬collinear(A,B,G)

⇒ ∃B1, C.(B1 = sratioF (B,B,G, 3, 2) ∧ C = sratioF (A,A,B1, 2, 1))

we obtain:

∀A,B,G.
¬collinear(A,B,G)⇒ ∃C.(centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

which is one direction of the statement we want to prove. For the choice Φd(A,B,G) =
¬collinear(A,B,G), we can prove the formula (22):

∀A,B,G.
∃C.(centroid(G,A,B,C) ∧ ¬collinear(A,B,C))⇒ ¬collinear(A,B,G))

Therefore, we have proved:

∀A,B,G.
¬collinear(A,B,G)⇔ ∃C.(centroid(G,A,B,C) ∧ ¬collinear(A,B,C))

2.3 Unconstructible Cases and Reduction

Using geometrical means, it can be proved that a figure is RC-unconstructible
(i) if the specification is inconsistent (so there is no required figure in Euclidean
plane, no matter how it can be produced); (ii) if the problem can be reduced to
another problem (typically, some canonical RC-unconstructible problem), known
to be unsolvable using ruler and compass. Here is a simple example of the latter
approach, based on one Archimedes’s construction.

Example 5. Given three non-collinear points A, B and O, construct points X
and Y such that (see Figure 2):

– OX ∼= OB,
– XY ∼= OB,
– points B, X and Y are collinear, and
– points A, O and Y are collinear

A O

B

Y

X

βα

Fig. 2. Example of a RC-unconstructible problem

Using elementary geometry it can be proved that the angle α = ∠AOB is
three times angle β = ∠AY B. Thus, if this problem is RC-solvable, so is the
trisection of an angle. But it is well known that in general one cannot divide an
angle in three using only straightedge an compass.

2.4 Mechanization

Mechanization of the solving process described in Section 2.2 is the subject of our
current work. Our ultimate goal is producing machine verifiable (within the proof
assistant Isabelle [21]) solutions for construction problems from Wernick’s list.
This complex task requires synergy of a tool for solving construction problems,
algebraic automated theorem provers, synthetic automated theorem provers, and
proof assistants, aided by some human’s guidance (and dynamic geometry tools
for visualization). In this section we report on the current state.

Analysis. The analysis is performed by our ArgoTriCS tool for solving con-
struction problems [20]. Based on a small number of definitions, lemmas and
construction steps, it can solve almost all solvable problems from Wernick’s list
(66 out of 72). In addition, it can detect if the problem is redundant or locus
dependent, and in these cases a point belonging to the geometric loci of points
is chosen arbitrarily and construction continues. Also, the problem is tested for
symmetry to some of the previous problems according to the available definitions
and lemmas. A solution trace from ArgoTriCS (which also contains a subset of

definitions, lemmas and construction steps needed) is translated into a sequence
of theorems (4) and the theorem (5). These conjectures (along with relevant
axioms/lemmas) are fed to our coherent-logic based automated theorem prover
ArgoCLP that is capable of producing machine verifiable proofs [27]. At the mo-
ment, ArgoTriCS can automatically produce input files for ArgoCLP (consisting
of the set of relevant axioms, the set of relevant lemmas and the theorem to
be proved) only for a subset of all considered construction problems and this
is the subject of the current work. Since ArgoCLP does not support functional
symbols, the formula (6) and subsequent formulae have to be proved manually
in Isabelle, and this is also the subject of current work. Also, it should be proved
that each of used construction steps is expressible using ruler and compass but
at the moment we use them all as primitive steps.

Construction. The construction is automatically exported from ArgoTriCS to
our dynamic geometry tool GCLC where it can be visualized and stored in a
number of formats, inluding LATEX, EPS, SVG. This part of our framework is
completed.

Proof. ArgoTriCS automatically exports proof specification which can be passed
to two different automated theorem provers – OpenGeoProver [19] and the
provers integrated into GCLC tool [15]. These tools return as an output a proof
object, and the set of non-degenerate (NDG) conditions. The central theorem
(of the form (12)) is proved by one of these provers. Since there is no trusted
link between these provers and Isabelle, we use these theorems as axioms within
Isabelle.

Discussion. NDG conditions obtained from the provers may involve some aux-
iliary objects. Statements needed for translating these conditions into ones that
involve only given objects are proved using ArgoCLP. Simple consequences that
do not belong to coherent logic are proved within Isabelle manually (as they
cannot be proved by ArgoCLP). For attempts at discovering a sufficient and
necessary conditions for solution to exist (¬colin(A,B,G) in the running exam-
ple), we test a finite number of predicates over the set of given points. Also, we
check if come conjunct of NDG implies some other one. Finally, the final proof
is glued together within Isabelle by simple steps (still to be automated, currently
they are performed manually).

Overall, in our formalized solutions of construction problems, there are two
important gaps. One of them is the link to external algebraic provers. Conjectures
proved within the Proof phase are proved using algebraic provers, but there is
no trusted link between them and Isabelle. Therefore, the conjectures proved by
external algebraic provers we use as axioms. Currently, there are some limited
formalizations of algebraic provers for geometry within proof assistants [13, 12],
but not for Isabelle. For theorems proved by ArgoCLP we have formal Isabelle
proofs. The second gap is between our proofs and the typical geometrical axioms

(e.g., Tarski’s or Hilbert’s axioms). In our proofs we use high-level geometry
lemmas as axioms. They can be proved from basic axioms (e.g., Tarski’s or
Hilbert’s axiom) but it is extremely complex task and beyond the scope of this
paper. Only recent advances provide (in Coq) formally proved high-level lemmas
from the basic axioms [3, 2].

3 Algebraic Approach

Mathematical progress in algebra in the beginnings of the nineteenth century
enabled solving of many geometric construction problems that were open since
the ancient Greeks. When considering construction problems, two aspects have
to be distinguished: constructibility and construction. In both cases algebraic
methods can have significant role but algebraic tools are famous for their success
in proving RC-unconstructibility. Actually, it is theoretically possible to extract
a construction from a proof of RC-constructibility but it is often impracticable
and when it is effectively possible, it is often pedagogically useless.

3.1 Classical results

In the introduction, we recall the definition of the constructibility of points, lines
and circle from a set of points B also called base points which correspond more
or less to the notion of free points in dynamic geometry. We define now RC-
constructibility of numbers: a number is said RC-constructible from set B if it is
a coordinate of a RC-constructible point. As a convention, it is said that a point
or a number is RC-constructible when B = {(0, 0), (1, 0)}. For instance, any
rational number is RC-constructible; given cos(α) for some number α, cos(α/3)
is RC-unconstructible in general (this fact is known as the impossibility of the
trisection of an angle using only straightedge and compass).

A fundamental example is given by the classical operations —addition, sub-
traction, multiplication, division and square radical extraction— which can all
be translated in terms of RC-construction. The converse is true: a number is
RC-constructible from points of set B if and only if it is expressible with the
five operations operating on the coordinates of points in B. This fact is closely
related to field theory which in turn gave a theoretical decision procedure for
RC-constructibility problems [18].

Field theory allows to link numbers and polynomials: an algebraic number
over a field, usually Q is a solution of a polynomial equation. A fundamental
result is that to any algebraic number over K α is associated a monic irreducible
polynomial P ∈ K[X], called the minimal polynomial of P and K(α) ∼ K[X]/P .
The degree of P is the degree of the extension [K(α) : K] which is also called
the degree of α (over K). Then, the main tool for proving RC-unconstructibility
lies in Wantzel’s result:

Theorem 1 (Wantzel 1837). Each RC-constructible number is algebraic over
Q and its degree is equal to 2k for some k ∈ N.

This theorem can be used to prove that 3
√

2 is not RC-constructible since
polynomial X3 − 2 is irreducible over Q. But also to prove that problem #90
of Wernick’s list is not RC-constructible as, for some choice for the coordinates,
it is equivalent to solve the irreducible polynomial equation (obtained by using
resultants and factorization within Maxima):

2x5A + 45x4A + 372x3A + 1368x2A + 2160xA + 972 = 0

Note that the reciprocal of Wantzel’s theorem is false: for instance the roots
of the irreducible polynomial X4 + 2X − 2 are not RC-constructible. There are
several theorems of algebra which fully determine RC-constructibility:

Theorem 2 (Galois). Let α be an algebraic number over Q or an extension
of Q and P be its minimal polynomial; α is RC-constructible if and only if the
degree of splitting field of P is a power of 2.

This theorem has a more practical formulation:

Theorem 3. A number α is RC-constructible if and only if it exists some alge-
braic number r1, . . . , rn = α such that [Q(r1) : Q] = 2, [Q(ri+1) : Q(ri)] = 2 for
every i = 1, . . . , n− 1.

The method proposed by Gao & Chou in [10] exploit this latter one.
As far as we know, there are two automatic implemented methods for deciding

RC-constructibility (but, in the mathematic literature there are several papers
dealing with resolution by radicals of polynomial equations, see for instance [17]).
The first one comes from a book of H. Lebesgue about geometric construction
problems [18] and it has been implemented by G. Chen in 1992 [6]. The second
one is described in papers presented in the second ADG workshop and published
in Journal of CAD ([29]).8 For the sake of completeness, we show in the next
section how algebraic method can be used to prove RC-unconstructibility of a
problem.

We present two examples coming from famous Wernick’s list [28], and we
solve them by a classical method: thanks to a Computer Algebra System (CAS
in short), we obtain one or more triangular systems, if possible irreducible. There
are various methods to triangularize a polynomial system: one can either using
successive resultants, or computing Gröbner bases with a lexicographic order,
or computing the Ritt’s characteristic sets. Here, we use the Maple package
RegularChains and particularly the Triangularize function. Then, we study the
polynomial equations as polynomials with a single variable using here Wantzel’s
theorem or Gao & Chou’s method.

3.2 Unconstructible Case

Wernick’s problem #122. In this problem, points G, Ta and Tb are given,
and the task is to construct a triangle T = (A,B,C) such that points G,

8 The technical report can be found here:
http://www.mmrc.iss.ac.cn/pub/mm15.pdf/gao.pdf.

Ta and Tb are respectively the centroid, the foot of the inner-bisector from
A and the inner-bisector from B of T . To our knowledge, the status (con-
structible/unconstructible) or this problem is still unknown (one of 15 unsolved
Wernick’s problems).

Without loss of generality, we choose a reference system in order to fix the
coordinates: let Tb have coordinates (0, 0) and let Ta have coordinates (4, 0). On
one hand, if we want to prove RC-constructibility, or even to produce a construc-
tion, the coordinates of G must be parameters. On the other hand, if we only
want to check RC-unconstructibility, we can choose arbitrary coordinates for G.
Here, we choose the coordinates (2, 1) for G. If we are unlucky, it could happen
that even if the problem is not RC-constructible in general, in this particular
case it is. Let us see what happen here.

First, we classically translate the geometric problem in an algebraic formula-
tion consisting in a polynomial system S. There is of course some issues like, for
instance, the fact that we represent both internal and external bisectors when
using algebraic formulation, but we do not discuss these points here (see [26]).
Then, we have to triangularize S: to this end, we use regular chains method that
is implemented in Maple. For the triangulation of the polynomial system corre-
sponding to the statement, we choose the ordering xC , yC , xB , yB , xA, yA for
the variables. We find two irreducible systems which corresponds to non degen-
erate cases, say S1 and S2: this means that under the non degeneracy conditions
S ⇔ S1 ∨S2 and it is enough to show that none of these systems corresponds to
a RC-constructible problem (if one of these systems was RC-constructible, then
we could construct some solutions of the problem)

In the first one, we have the irreducible polynomial equation:

4y4A − 12y3A − 51y2A + 192yA − 144 = 0

and for the second one:
7295401y6A − 30894038y5A + 107596129y4A − 127795968y3A − 3722832y2A
+ 24966144yA + 4064256 = 0
The two polynomials are irreducible and Wantzel theorem ensures that the sec-
ond one is not RC-solvable. But there is more work to do for the first equation
as it is of degree 22. Using the formula of Gao & Chou [29], we have to see if the
polynomial:

8g34h2g
2 + (2h1h38h0)gh0h

2
3 + 4h0h2h

2
1 = 0

has rational solutions, where x4 + h3x
3 + h2x

2 + h1x+ h0 is the minimal monic
irreducible polynomial we want to test: here, we have h3 = −12/4, h2 = −51/4,
h1 = 192/4 and h0 = 144/4 and we get the polynomial:

8g3 + 51g2 − 144

Then, using the factor command, we prove that this polynomial is irreducible
and thus that the problem is RC-unconstructible. Notice that this method can
also be used to find a construction when the problem is RC-constructible, but
usually the construction is impracticable and not in the spirit of classical RC-
constructions.

3.3 Constructible Case

Wernick’s problem #116. In this problem, points G, Ha and H are given and
the task is to construct a triangle T = (A,B,C) such that points G, Ha and
H are respectively the centroid, the feet of the altitude from point A and the
orthocenter of triangle T ,

It is easy to construct the line BC, Ma and A and O using the fact that G
is the center of the homothety with ratio −1/2 transforming O into H. We left
the construction to the reader.

Let us consider the algebraic version. Let the given points have the following
coordinates: H(0, 0), Ha(1, 0), G(a, b), where a and b are some real numbers. We
have then to solve the system:

xA(xB − xC) + yA(yB − yC) = 0
xB(xC − xA) + yB(yC − yA) = 0
(xA − 1)(xC − 1) + yAyC = 0
(1− xB)(yC − yB)− yB(xB − xC) = 0
3a− xA − xB − xC = 0
3b− yA − yB − yC = 0

H Ha a

b1

bc G

v3

J

d1

e

a3

f

A A2

g
v9v12

h

b3

b1

ij

b2

k

D

n1

E

a1

bx31

c1

P

bx3e1

Ma

R
j1

b2x9
l

ax12

p

B2

b29mH′n

d2

q

C1 F

r

I

s

K

d

L

yBx2

yB
t

B

C

c2
a2

b2

f1

N

Fig. 3. Performing algebraic computations with geometry (details where the attentive
reader can see, for instance, the extraction of a square root d2 → d)

After triangularization, we have only one non degenerate system:

xC − 1 = 0
yC + yB − 3b = 0
−1 + xB = 0
y2B − 3b.yB + 3a− 3 = 0
2− 3a+ xA = 0
yA = 0

which yields two, one or zero solutions depending on the discriminant of the
fourth equations. The two solutions correspond to each other by permuting B
and C. This problem is then obviously constructible since we are able to perform
all the operations with straightedge and compass. Such a construction is depicted
on Fig.3 made with GeoGebra, where parameters a and b correspond to free
points constrained to be on the x-axis and y axis respectively. But that solution
usually is not the solution that the teacher wanted. However, it is not difficult
to algebraically verify that the solutions provided by the triangular system are
solutions to the problem. Of course, you have to be confident in your CAS.

4 Conclusions and Future Work

We presented a geometrical and an algebraic perspective on solving construction
problems using ruler and compass. We showed that many steps of this process
can be automated and supported by proofs which can be formalized within proof
assistants.

For our future work, we are planning to complete, as much as possible, au-
tomation of solving for problems from Wernick’s corpus, but also for other classes
of construction problems. We are planning to integrate this automated process
into dynamic geometry systems, having in mind applications in education. We
are also planning to implement proving unconstructibility by reduction.

References

1. B. Aldefeld. Variations of geometries based on a geometric-reasoning method.
Computer-Aided Design, 20(3):117–126, 1988.

2. Pierre Boutry, Julien Narboux, Pascal Schreck, and Gabriel Braun. Using small
scale automation to improve both accessibility and readability of formal proofs
in geometry. In submitted to International Workshop on Automated Deduction in
Geometry ADG14, page submitted. Universidade de Coimbra, 2014.

3. Gabriel Braun and Julien Narboux. From tarski to hilbert. In Tetsuo Ida and
Jacques D. Fleuriot, editors, Automated Deduction in Geometry, volume 7993 of
Lecture Notes in Computer Science, pages 89–109. Springer, 2012.

4. William Buoma, Ioannis Fudos, Christoph Hoffman, Jiazhen Cai, and Robert
Paige. A Geometric Constraint Solver. In CAD 27, pages 487–501, 1995.

5. Michel Buthion. Un programme qui résoud formellement des problèmes de con-
structions géométriques. RAIRO Informatique, (3), 1979.

6. Guoting Chen. Les constructions à la règle et au compas par une méthode
algébrique. Technical Report Rapport de DEA, Université Louis Pasteur, 1992.

7. Mirjana Djorić and Predrag Janičić. Constructions, instructions, interactions .
Teaching Mathematics and its Applications, 23(2):69–88, 2004.

8. Jean-François Dufourd, Pascal Mathis, and Pascal Schreck. Geometric construction
by assembling solved subfigures. Artificial Intelligence Journal, 99(1):73–119, 1998.

9. Caroline Essert-Villard, Pascal Schreck, and Jean-François Dufourd. Sketch-based
pruning of a solution space within a formal geometric constraint solver. Artif.
Intell., 124(1):139–159, 2000.

10. Xiao-Shan Gao and Shang-Ching Chou. Solving geometric constraint systems. ii.
a symbolic approach and decision of rc-constructibility. Computer-Aided Design,
30(2):115–122, 1998.

11. Herbert Gelernter. Realization of a geometry theorem proving machine. In Pro-
ceedings of the International Conference Information Processing, pages 273–282,
Paris, June 15-20 1959.

12. Jean-David Génevaux, Julien Narboux, and Pascal Schreck. Formalization of wu’s
simple method in coq. In Certified Programs and Proofs (CPP 2011), volume 7086
of Lecture Notes in Computer Science, pages 71–86. Springer, 2011.

13. Benjamin Grégoire, Löıc Pottier, and Laurent Théry. Proof certificates for algebra
and their application to automatic geometry theorem proving. In Thomas Sturm
and Christoph Zengler, editors, Automated Deduction in Geometry, volume 6301
of Lecture Notes in Computer Science, pages 42–59. Springer, 2008.

14. Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Synthesizing geom-
etry constructions. In Programming Language Design and Implementation, PLDI
2011, pages 50–61. ACM, 2011.

15. Predrag Janičić. Geometry Constructions Language. Journal of Automated Rea-
soning, 44(1-2):3–24, 2010.

16. Christophe Jermann, Gilles Trombettoni, Bertrand Neveu, and Pascal Mathis. De-
composition of Geometric Constraint Systems: a Survey. International Journal of
Computational Geometry and Applications, 16(5-6):379–414, 2006. CNRS Math-
STIC.

17. Susan Landau and Gary L. Miller. Solvability by radicals is in polynomial time.
Journal of Computer and System Sciences, 30(2):179–208, April 1985. invited
publication.

18. Henri Lebesgue. Leçons sur les constructions géométriques. Gauthier-Villars, Paris,
1950. in French, re-edition by Editions Jacques Gabay, France.

19. Filip Marić, Ivan Petrović, Danijela Petrović, and Predrag Janičić. Formalization
and implementation of algebraic methods in geometry. In Pedro Quaresma and
Ralph-Johan Back, editors, Proceedings First Workshop on CTP Components for
Educational Software, Wroc law, Poland, 31th July 2011, volume 79 of Electronic
Proceedings in Theoretical Computer Science, pages 63–81. Open Publishing Asso-
ciation, 2012.

20. Vesna Marinković and Predrag Janičić. Towards understanding triangle construc-
tion problems. In J. et.al. Jeuring, editor, Intelligent Computer Mathematics -
CICM 2012, volume 7362 of Lecture Notes in Computer Science. Springer, 2012.

21. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, 2002. Lecture Notes in Computer
Science Tutorial 2283.

22. J. Owen. Algebraic solution for geometry from dimensional constraints. In Proceed-
ings of the 1th ACM Symposium of Solid Modeling and CAD/CAM Applications,
pages 397–407. ACM Press, 1991.

23. Joseph M. Scandura, John H. Durnin, and Wallace H. Wulfeck II. Higher order
rule characterization of heuristics for compass and straight edge constructions in
geometry. Artificial Intelligence, 5(2):149–183, 1974.

24. Pascal Schreck. Robustness in CAD Geometric Constructions. In IV 2001, 111-116.
25. Pascal Schreck. Modélisation et implantation d’un système à base de connaissances

pour les constructions géométriques. Revue d’intelligence artificielle, 8(3):223–247,
1994.

26. Pascal Schreck and Pascal Mathis. Rc-constructibility of problems in wernick’s and
connelly’s lists. In submitted to International Workshop on Automated Deduction
in Geometry ADG14, page submitted. Universidade de Coimbra, 2014.

27. Sana Stojanović, Vesna Pavlović, and Predrag Janičić. A coherent logic based ge-
ometry theorem prover capable of producing formal and readable proofs. In Pascal
Schreck, Julien Narboux, and Jürgen Richter-Gebert, editors, Automated Deduc-
tion in Geometry, volume 6877 of Lecture Notes in Computer Science. Springer,
2011.

28. William Wernick. Triangle constructions vith three located points. Mathematics
Magazine, 55(4):227–230, 1982.

29. Xiao-Shan Gao X.S. and Shang-Ching Chou. Solving geometric constraint systems
ii. a symbolic approach and decision of rc-constructibility. Computer-Aided Design,
30:115–122, 1998.

30. Victor Pambuccian. Axiomatizing geometric constructions. Journal of Applied
Logic, 6,1:24–46, 2008.

31. Michael Beeson. Logic of Ruler and Compass Constructions, In S. Barry Cooper
and Anuj Dawar and Benedikt Löwe, editors, Proceedings of the 8th Conference
on Computability in Europe, volume 7318 of Lecture Notes in Computer Science.
Springer, 2012.

5 Appendix

Here we present a list of theorems proved within Isabelle and the list of axioms
used:

5.1 The list of axioms

ax_GL04a: "sratio_2_3 A B C D ==> sratio_3_2 C D A B"

ax_GL04b: "sratio_1_2 A B C D ==> sratio_2_1 C D A B"

ax_GL05: "sratio_1_2 A B A C ==> sratio_1_2 C B C A"

ax_L56: "centroid G A B C /\ midpoint B1 A C ==> sratio_2_3 B G B B1"

ax_D4a: "inc A MA /\ inc A1 MA /\ inc B MB /\ inc B1 MB /\ sratio_1_2 B A1 B C

/\ sratio_1_2 C B1 C A /\ centroid G A B C ==> (inc G MA /\ inc G MB)"

ax_D4b: "inc A MA /\ inc A1 MA /\ inc B MB /\ inc B1 MB /\ sratio_1_2 B A1 B C

/\ sratio_1_2 C B1 C A /\ inc G MA /\ inc G MB ==> centroid G A B C"

ax_D22a: "sratio_1_2 C B1 C A ==> midpoint B1 A C"

ax_D22b: "midpoint B1 A C ==> sratio_1_2 C B1 C A "

ax_sratio_1_2_false: "sratio_1_2 PO1 PO2 PO3 PO4 /\

not_sratio_1_2 PO1 PO2 PO3 PO4 ==> False"

ax_sratio_3_2_false: "sratio_3_2 PO1 PO2 PO3 PO4 /\

not_sratio_3_2 PO1 PO2 PO3 PO4 ==> False"

ax_sratio_2_3_false: "sratio_2_3 PO1 PO2 PO3 PO4 /\

not_sratio_2_3 PO1 PO2 PO3 PO4 ==> False"

ax_eq_point_false: "eq_point PO1 PO2 /\

not_eq_point PO1 PO2 ==> False"

ax_eq_point_false1: "(eq_point PO1 PO2 ==> False) ==>

not_eq_point PO1 PO2"

ax_collinear_false: "collinear PO1 PO2 PO3 /\

not_collinear PO1 PO2 PO3 ==> False"

ax_collinear_false1: "(collinear PO1 PO2 PO3 ==> False) ==>

not_collinear PO1 PO2 PO3"

ax_parallel_false1: "(parallel PO1 PO2 PO3 PO4 ==> False) ==>

not_parallel PO1 PO2 PO3 PO4"

ax_ogp_proof: "sratio_3_2 B B1 B G /\ sratio_2_1 A C A B1 /\

sratio_1_2 B A1’ B C /\ sratio_1_2 C B1’ C A /\

not_eq_point A A1’ /\ not_parallel A A1’ B B1’

==> centroid G A B C"

ax_constr_sratio_3_2: "not_eq_point C D ==>

(\<exists> (B::point). sratio_3_2 A B C D)"

ax_constr_sratio_2_1: "not_eq_point C D ==>

(\<exists> (B::point). sratio_2_1 A B C D)"

ax_constr_sratio_1_2: "not_eq_point C D ==>

(\<exists> (B::point). sratio_1_2 A B C D)"

ax_eq_points_collinear: "eq_point C A ==> collinear A B C"

5.2 The list of theorems

Analysis

lemma Thm_analysis_step_1:

assumes "not_collinear A B C" and "centroid G A B C"

and "midpoint B1 A C"

shows "(sratio_3_2 B B1 B G)"

lemma Thm_analysis_step_2:

assumes "not_collinear A B C" and "centroid G A B C"

and "midpoint B1 A C" and "sratio_3_2 B B1 B G"

shows "(sratio_2_1 A C A B1)"

lemma Thm_analysis_all_steps:

assumes "not_collinear A B C" and "centroid G A B C"

and "midpoint B1 A C"

shows "(sratio_3_2 B B1 B G & sratio_2_1 A C A B1)"

lemma Thm_analysis_distinct_points:

assumes "not_collinear A B C"

shows "not_eq_point C A"

lemma Thm_analysis_existence_of_definitions:

assumes "not_collinear A B C" and "centroid G A B C"

shows "(\<exists> (B1::point). midpoint B1 A C)"

Proof

lemma Thm_proof_1:

assumes "sratio_3_2 B B1 B G" and "sratio_2_1 A C A B1"

and "collinear A B C"

shows "collinear A B G"

lemma Thm_proof_1c:

assumes "sratio_3_2 B B1 B G" and "sratio_2_1 A C A B1"

and "not_collinear A B G"

shows "not_collinear A B C"

lemma Thm_DistinctPoints1:

assumes "sratio_3_2 B B1 B G"

and "sratio_2_1 A C A B1"

and "not_collinear A B G"

shows "not_eq_point B C"

lemma Thm_DistinctPoints2:

assumes "sratio_3_2 B B1 B G"

and "sratio_2_1 A C A B1"

and "not_collinear A B G"

shows "not_eq_point C A"

lemma Thm_proof_construction:

assumes "sratio_3_2 B B1 B G" and "sratio_2_1 A C A B1"

and "sratio_1_2 B A1’ B C" and "sratio_1_2 A B1’ A C"

and "not_parallel A A1’ B B1’" and "not_eq_point A A1’"

and "not_collinear A B G"

shows "(centroid G A B C \<and> not_collinear A B C)"

Discussion

lemma Thm_discussion_exist1:

assumes " (\<exists> (B1::point) (C::point).

centroid G A B C & midpoint B1 A C & not_collinear A B C)"

shows " (\<exists> (B1::point) (C::point).

sratio_3_2 B B1 B G & sratio_2_1 A C A B1)"

lemma Thm_discussion_exist2:

assumes " (\<exists> (C::point).

centroid G A B C & not_collinear A B C)"

shows " (\<exists> (B1::point) (C::point).

sratio_3_2 B B1 B G & sratio_2_1 A C A B1)"

lemma Thm_discussion_2a:

assumes "eq_point A A1’" and "sratio_1_2 B A1’ B C"

and "sratio_1_2 C B1’ C A"

shows "(collinear A B C)"

lemma Thm_discussion_2ac:

assumes "not_collinear A B C" and "sratio_1_2 B A1’ B C"

and "sratio_1_2 C B1’ C A"

shows "(not_eq_point A A1’)"

lemma Thm_discussion_2b:

assumes "parallel A A1’ B B1’"

and "sratio_1_2 B A1’ B C"

and "sratio_1_2 C B1’ C A"

shows "(collinear A B C)"

lemma Thm_discussion_2bc:

assumes "not_collinear A B C"

and "sratio_1_2 B A1’ B C"

and "sratio_1_2 C B1’ C A"

shows "(not_parallel A A1’ B B1’)"

lemma Thm_discussion_construction:

assumes "sratio_3_2 B B1 B G"

and "sratio_2_1 A C A B1"

and "not_collinear A B G"

shows "(centroid G A B C \<and> not_collinear A B C)"

lemma Thm_discussion_final1:

assumes "(\<exists> (C::point).

centroid G A B C \<and> not_collinear A B C)"

shows "not_collinear A B G"

lemma Thm_discussion_final2:

assumes "not_collinear A B G"

shows "(\<exists> (C::point).

centroid G A B C \<and> not_collinear A B C)"

