

Formalization of a Strategy for the KRK Chess

Endgame

Marko Maliković

Faculty of Humanities and Social

Sciences

University of Rijeka

Slavka Krautzeka bb, 51000 Rijeka,

Croatia

marko.malikovic@ffri.hr

Mirko Čubrilo

Faculty of Organization and

Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin,

Croatia

mirko.cubrilo@foi.hr

Predrag Janičić

Faculty of Mathematics

University of Belgrade

Studentski trg 16, 11000 Belgrade,

Serbia

janicic@matf.bg.ac.rs

Abstract. Chess has been always a challenging

subject of various computer analyses and

methodologies, and they often brought more general

advances in the related computer science fields, such

as search strategies, AI planning, data-mining, etc.

However, interactive theorem proving has hardly

been applied to chess. In this paper we present our

formalization, within the Coq proof assistant, of one

fragment of the chess game - KRK chess ending and

several conjectures relevant for this endgame. We

show that most of the considered notions and

conjectures can be expressed in a simple theory such

as linear arithmetic. In addition, in this paper we

present a formalization of Bratko's strategy for the

KRK endgame. The presented formalization will serve

as a key step towards formal correctness proof for

Bratko's strategy.

Keywords. Interactive theorem proving, Coq,

automated theorem proving, linear arithmetic, chess

endgames, KRK chess endgame

1 Introduction

Over the last years interactive theorem proving has

been successfully used for proving a number of

complex theorems and for building a corpus of

verified mathematical and computer science

knowledge. These efforts lead to a „database of all

important, established mathematical knowledge,

strictly formalized and with all proofs having been

checked automatically“ [1]. Interactive theorem

proving is typically aimed at pure mathematics and at

computer science, but other reasoning tasks can be

also subject of formal analysis and interactive

theorem proving. Chess, as a prototype of an intellect

game, is one example of such domain. Chess has

always been a challenging subject of various

computer analyses and methodologies, and they often

brought more general advances in the related

computer science fields, such as search strategies, AI

planning, data-mining, etc. However, interactive

theorem proving has hardly been applied to chess. In

this paper we present our formalization of one

fragment of the chess game (one chess ending) within

the Coq proof assistant. Within the task of formalizing

chess, we had two motivating goals:

- To show that the game of chess can be suitable

described within a relatively simple theory such as

linear arithmetic. Moreover, strategies for chess

endings and their correctness can also be

described, to large extent, in terms of linear

arithmetic. Such a description of chess and chess

strategies can be used as a basis for formalization

within a proof assistant such as Coq.

- To explore practical potentials of automation

available within a proof assistant such as Coq,

primarily automation related to decidable theories

such as linear arithmetic.

We point out that, as for many other problems

treated by interactive theorem proving, proving

correctness of chess endgames is not safety critical.

Still, it is plausible to have machine verifiable proofs

for such domains too because:

- machine verifiable proofs often reveal flaws in

known informal proofs;

- machine verifiable proofs provide building blocks

that can be used for other conjectures in the same

domain or even in some other domains;

- machine verifiable proofs are becoming a golden

standard for all mathematical proofs;

- newly constructed proofs and the growing body of

formally proved conjectures help further

developing of the technology of interactive

theorem proving.

In formalizing and proving correct an endgame

strategy, there are three stages, each with their own

specifics and challenges:

- formalization of relevant chess rules;

- formalization of the strategy itself;

- formalization and proving of the correctness

conjecture.

Within this paper, we will address the first two of

the above stages.

We are not aware of other formalizations of chess

strategies within a proof assistant. There is a work on

retrograde chess analysis within Coq but it does not

consider chess strategies [19].

The rest of the paper is organized as follows: in

Section 2 we give a brief background information on

interactive theorem proving, Coq, linear arithmetic

and chess endgame strategies. In Section 3, we outline

the considered endgame strategy and present some

analysis of its performance. In Section 4 we present

our formalization of the relevant chess rules, in

Section 5 we present our formalization of the

considered chess endgame strategy and in Section 6

we draw final conclusions and discuss potential

further work.

2 Background

In this section we give a background relevant for the

presented work. First we briefly discuss interactive

theorem proving and the system Coq, then linear

arithmetic and how it can be automated in Coq, and

finally the chess game and chess endgame strategies.

2.1 Interactive Theorem Proving and Coq

Interactive theorem proving is a process of the

development of formal mathematical proofs by

interaction between a computer and a human. In this

interaction, the computer is equipped with a proof

assistant tool (i.e., “an interactive theorem prover”)

that checks and guides steps performed by the human,

by verifying each proof step with respect to the given

underlying logic. The importance of interactive

theorem proving comes from the fact that “traditional

proofs” most often are not proofs at all, because of the

many missing fragments, informal arguments, etc.

Interactive theorem proving uncovered many flaws in

many mathematical proofs. On the other hand, proofs

constructed within proof assistants are verbatim and

detailed, and typically much longer than “traditional

proofs” [3]. When checking proofs, correctness of

proof assistants themselves is also critical. Proof

assistants often have a very small kernel that checks

all derivations, according to de Bruijn criterion [2].

This small core can consist of just tens of lines of

code and can be manually verified.

Interactive theorem proving gets more and more

popular and the body of formalized both classical and

modern mathematical and computer science

knowledge is increasing. There are also significant

theorems proved for the first time thanks to proof

assistants. Some of the most popular modern proof

assistants are Coq, Isabelle, HOL Light, PVS, Mizar,

ACL2, etc [26].

The Coq system [5], [23] is implemented in

Objective Caml and works within the theory of the

calculus of inductive constructions (CIC). This theory

is a typed λ calculus with polymorphism, dependent

types and a primitive notion of inductive types. Coq

also provides a dependently typed functional

programming language. However, since Coq follows

the propositions-as-types, proofs-as-programs Curry-

Howard interpretation, the distinction between

programming and proving is blurred. In Coq, a tactic,

described in the language Ltac, is a program which

expresses the sequence of the basic logical steps. Coq

has over 150 tactics that assist the user in developing

a formal proof. Proofs in Coq are mainly built in

interactive fashion, but there are various decision

procedures and tactics based on automatic theorem

proving that provide automation. Coq has been used

in a wide range of domains and for proving a number

of complex conjectures - for instance, for the four

colour theorem [13], the fundamental theorem of

algebra [12], for implementing and proving correct

methods for automatically proving theorems in

geometry [17], for proving correctness of a compiler

[18], etc. Coq has been used in formalizing reasoning

tasks not in pure mathematics or computer science,

like solving sudoku problems or solving 22 Rubik’s

cube.
1

2.2 Linear Arithmetic

Linear arithmetic (or Presburger arithmetic) is a

fragment of Peano arithmetic that uses only addition

(and not multiplication). In linear arithmetic,

multiplication by a constant number is allowed, and

nx is just a shorthand for x+x+…+x where x occurs n

times. For subtraction it holds x ‒ y = 0 if x < y. In

contrast to the whole of arithmetic, linear arithmetic is

decidable [20]. This theory is rather simple, but still

expressible enough for many applications in computer

science [4].

There are several decision procedures for linear

arithmetic [16]. Like decision procedures for other

theories, there are several methods to add decision

procedures for linear arithmetic to Coq [14], [6], [7].

This task usually require a substantial engineering

efforts and a deep understanding of the internals of

the decision procedure. One of the approaches is to

1 http://www-sop.inria.fr/marelle/Laurent.Thery/me.html

implement the decision procedure in Ltac or in

Ocaml
2
, so that for each input instance it produces a

proof term that can be checked by Coq. This approach

is used by the romega tactic, by Crégut [11], [23].

This tactics provides decision procedure for

quantifier-free linear arithmetics over natural

numbers. It generates Coq proof terms from traces

obtained from the Omega test [21].

2.3 Chess and Chess Endgame Strategies

We assume that the reader is familiar with the chess

rules, so we do not describe them here. KRK denotes

the chess ending with white player having a king and

a rook, and black player having only a king.

Chess endgames (including KRK, as one of the

simplest) are often studied by exhaustive analysis and

in the context of tablebases. An endgame tablebase is

an ordered list of all positions in the endgame with

interesting values precalculated [10]. First endgame

tablebases were constructed by Thompson [24].

Building a chess tablebase is typically based on

retrograde analysis: first, all mate positions are listed,

then all positions that can lead to those positions, etc.

Building a tablebase does not require deep insights or

complex algorithms, but can be computationally or

memory expensive for some endgames. Also,

tablebases sometimes reveal chess knowledge that is

not considered by or relevant for typical chess

players. For instance, tablebases can detect positions

with optimal strategy leading to mate only after 250

moves. Such revelations obtained by tablebases may

be intriguing, but actually they don’t provide much of

typical chess knowledge and insights: “current state of

the art of machine-learning programs is that many ad

hoc recipes are produced. Moreover, they are hardly

intelligible to human experts. In fact, the database

itself is a long list of ad hoc recipes” [25]. This

motivates work on constructing strategies for specific

endings and automated analysis of tablebases based

on machine learning and data mining and extraction

of human understandable knowledge of winning

strategies [15], [10]. Automatically extracted

strategies still cannot compete with human

constructed strategies.

3 Bratko’s Strategy for KRK

Bratko’s strategy for white for the KRK ending can be

outlined as follows [8], [9]:

1. Look for a way to mate black in two moves;

2. If the above is not possible, then look for a way to

further constrain the area on the chess board to

which the black king is confined by white rook;

3. If the above is not possible, then look for a way to

move the king closer to the black king so as to

help the rook in squeezing the black King;

2 Ocaml is the implementation language of Coq.

4. If none of the above pieces of advice 1, 2, 3

works, then look for a way of maintaining the

present achievements in the sense of 2 and 3 (i.e.

make a waiting move);

5. If none of 1, 2, 3 or 4 is attainable then look for a

way of obtaining a position in which the rook

divides the two kings either vertically or

horizontally.

Actually, the strategy has a number of hidden

details [8], [9] and this shows that it is very difficult

to have a simple winning strategy (not to mention an

optimal strategy) even for a simple ending such as

KRK. Some details of the strategy will be given in

Section 5.

Bratko’s strategy is the subject of analysis in this

paper. It is correct, i.e., from any position with white

to move, following Bratko’s strategy white wins. The

correctness can be proved in different ways. Bratko

gave one high-level proof of correctness of his

strategy but that proof is informal [9].

Our goal was to formalize the strategy – make this

first critical step towards formally proving that the

strategy is correct. The formal proof can follow

Bratko’s informal proof, but it is expected that many

missing steps will have to be filled or some flaws

corrected. Note that Bratko’s strategy is not optimal

and we do not address the optimality issue within our

formalization.

4 Formalization of Chess Rules

In order to have suitable machine verifiable

correctness proof for a chess endgame strategy, it is

critical to have a simple and intuitive core that defines

the chess rules and the strategy itself. Namely, once

the proofs are constructed, they are verified by the

proof assistant and are not subject of any doubt. What

could cause some doubt is the formulation of the

central conjecture, which boils down to basic

definitions. Thus, it is essential to have the chess rules

(and also Bratko’s strategy) defined in a simple,

concise, intuitive, and convincing way. In this section

we will discuss some design decisions and will focus

only on the fragment of the game relevant for the

KRK ending. Our design decisions were largely

motivated (apart from the quest for simplicity) by our

aim to automate as much reasoning as possible. We

will show that the chess rules can be simply described

in terms of linear arithmetic over natural numbers
3

which would be beneficial since a significant portion

of the proving process can be automated by decision

procedures for linear arithmetic. In the rest of the

material, if not explicitly stated otherwise, it is

assumed that the underlying theory is linear arithmetic

3 Of course, chess rules and endgame strategy can be described in
terms of even simpler theories, for instance - propositional logic.

However, we find that linear arithmetic better suits the needs -

within it all conditions can be represented in a compact and
intuitive way.

over natural numbers. We will not give the full

formalization in Coq, but only some of its fragments,

for illustration.

Chessboard and positions. There are several options

for describing the chessboard and chess positions,

including the following two natural options:

1. represent the chessboard as an 88 array (or as a

list of lists in Coq) with each element containing a

distinguished value for empty field or for a

specific chess piece of specific color (this

approach was uses in the earlier work in

retrograde chess analysis [19]);

2. associate each piece (possibly) on the board with a

pair of its coordinates.

The former approach could be more suitable for

the full chess game but the latter one turns to be much

more suitable for a restricted variant of the game –

with only three pieces, as in the KRK ending.

Namely, instead of dealing with values of 64 squares

of the chessboard, only six values are considered. In

addition, if one aims at exploiting a decision

procedure for linear arithmetic, in the first approach

he/she would have to get rid of lists in conjectures

before trying to prove them. For the latter approach,

extensions from one chess endgame to another, or to a

full game are possible, but not very elegant (since

variables for each new chess piece have to be

introduced).

In the following text, the second approach for

representing the chessboard will be assumed. A

position is defined as a record type which is a

common type for a bundle of objects: the coordinates

of the white king (WKx,WKy), the coordinates of the

white rook (WRx,WRy), the coordinates of the black

king (BKx,BKy), and the value OnTurn on which

player is on turn that can be W=1 or B=2. The notion

of position is represented in Coq as follows:

Record Position := position {WKx : nat; WKy : nat; WRx : nat; WRy :
nat; BKx : nat; BKy : nat; OnTurn : nat}.

Although the white can theoretically castle in

some positions, this information is not maintained

(and castling is not considered as a legal move). Also,

information relevant for the „fifty-moves rule“ are not

maintained.
4

It has to be ensured that in each position, the value

for each coordinate is between 1 and 8. In linear

arithmetic over natural numbers, however, it is more

suitable (and is less computationally demanding) to

use zero-based representation of rows and columns,

so constraints for all coordinates in one position

should be only that they are less than or equal to 7,

which can be represented in Coq as follows:

4 Still, as said, within the correctness proof for Bratko’s strategy it
is shown that the “fifty-moves rule” is obeyed.

Definition ChessboardDimension (P : Position) := WKx P <= 7 /\
WKy P <= 7 /\ BKx P <= 7 /\ BKy P <= 7 /\ WRx P <= 7 /\ WRy P <= 7.

Coordinates (WKx,WKy) are always associated to

some position P (e.g, WKx P) but, for simplicity, in

the following informal text (not in Coq code, of

course), we will often skip writing the relevant

position P.

Legal positions. The constraints on legal positions can

be represented in terms of linear arithmetic. For

instance, the white king and the white rook cannot be

on the same square:

Definition NotOnSameSquare (P : Position) :=
WKx P <> WRx P \/ WKy P <> WRy P.

Also, the rule that the two kings cannot be on the

same or adjacent squares can be expressed as:

Definition NotKingNextKing (P : Position) := WKx P > BKx P + 1 \/
BKx P > WKx P + 1 \/ WKy P > BKy P + 1 \/ BKy P > WKy P + 1.

For defining legal positions, a condition that the

black king is attacked by the white rook:

Definition BlackKingAttacked (P : Position) :=
WRx P = BKx P /\ (WKx P <> WRx P \/ WKx P = WRx P /\ (WKy P <=
BKy P /\ WKy P <= WRy P \/ BKy P <= WKy P /\ WRy P <= WKy P))
\/
WRy P = BKy P /\ (WKy P <> WRy P \/ WKy P = WRy P /\ (WKx P <=
BKx P /\ WKx P <= WRx P \/ BKx P <= WKx P /\ WRx P <= WKx P)).

A position P is legal if all coordinates of all pieces

are less than or equal to 7, if the white king and the

white rook are not on the same square, if the two

kings are not on the same or adjacent squares and if

the black king is not attacked when the white is on

turn:

Definition LegalPosition (P : Position) :=
ChessboardDimension P /\
NotOnSameSquare P /\
NotKingNextKing P /\
~(BlackKingAttacked P /\ OnTurn P = W).

However, there are still some subtle issues

concerning legal positions. Let us consider the

position on Fig. 1.

 # # # #

 # # # #

 # # # #

È # # # #
Å é # #

Figure 1. An example of illegal position

According the above definition, this position is

legal only if the white is not on turn. But, if the black

is on turn, what was the last move of the white? It can

be easily checked that there was no legal move of the

white that could have led to the current position, so

the given position is impossible. Because of such

situations (subject to retrograde chess analysis [19]),

it is difficult to concisely define legal positions. The

correct definition would be that a position is legal if it

reachable from the initial chess position, but such

definition is practically useless.

Nonetheless, the above definition of the legal

position is sufficient for the purposes of the presented

work because we consider a strategy of white,

therefore only the initial positions in which the white

is on turn.

Legal moves. The rules for moving pieces can also be

simply described in terms of linear arithmetic. They

are divided into: (i) parts specifying movements rules

themselves; (ii) a constraint that all other pieces

remained on their original positions if not captured by

the moving piece; (iii) a condition that the current

player is indeed on turn and that another player is on

turn after the move; (iv) the achieved position is legal.

As an illustration, we give the part (i) specifying

movement rules for the white king:

Definition MoveWhiteKing (P1 P2 : Position) :=
WKx P2 - WKx P1 <= 1 /\ WKx P1 - WKx P2 <= 1 /\
WKy P2 - WKy P1 <= 1 /\ WKy P1 - WKy P2 <= 1 /\
(WKx P1 <> WKx P2 \/ WKy P1 <> WKy P2).

and the part (i) specifying that after a move of the

white king all other pieces remained on their original

positions:

Definition OtherAfterMoveWhiteKing (P1 P2 : Position) :=
BKx P2 = BKx P1 /\ BKy P2 = BKy P1 /\
WRx P2 = WRx P1 /\ WRy P2 = WRy P1.

A definition of a legal move of the white king

(involving notions outlined above) is as follows:

Definition LegalMoveWhiteKing (P1 P2 : Position) :=
MoveWhiteKing P1 P2 /\
OtherAfterMoveWhiteKing P1 P2 /\
OnTurn P1 = W /\
OnTurn P2 = B /\
LegalPosition P2.

Note that, following the representation of the

chessboard, movement rules for both kings have to be

specified - the related definition LegalMoveBlackKing

is analogous to the above one.

Mate, stalemate and draw. Positions that are mate,

stalemate or draw are defined simply using the

introduced definitions. For instance, a position P is

mate (black is mated) if black is checked and black

has no legal moves:

Definition Mate (P : Position) := BlackKingAttacked P /\
OnTurn P = B /\ forall P’ : Position, ~ LegalMoveBlack P P’.

Stalemate is defined similarly:

Definition Stalemate (P : Position) := ~BlackKingAttacked P /\
OnTurn P = B /\ forall P’ : Position, ~LegalMoveBlack P P’.

Draw (that occurs if the white rook has been

captured) and the terminating position are defined as

follows:

Definition Draw (P : Position) := OnTurn P = W /\ BKx P = WRx P /\
BKy P = WRy P.

Definition GameEnd (P : Position) :=
Mate P \/ Stalemate P \/ Draw P.

The above definition of mate is simple and

intuitive, but there is one drawback. Within the first

step of Bratko’s strategy, it is required to check if the

position is mate-in-two-moves. This check can be

represented by a definition simulating minimax

search, i.e., a definition that involves alternation of

quantifiers. Of course, that is legitimate, but would

disable automation in proving conjectures involving

this definition i.e. using of a procedure for quantifier-

free fragment of linear arithmetic. That is why we

derived an explicit definition of mate-in-two-moves –

step by step, firstly by explicitly defining mate, mate-

in-one-ply, mate-in-two-plies, and mate-in-three-plies

positions. In order to simplify this task, we used

symmetries, so mating situations were explicitly

described one for one edge or one corner. As an

example, we give definitions of concrete mating

situations and the explicit definition of mate

(Symmetric defines eight sorts of symmetries between

two chess positions):

Definition MateEdgeOneCase (P : Position) :=
BKx P = 0 /\ WKx P = 2 /\ BKy P = WKy P /\ WRx P = 0 /\ WRy P >=
WKy P + 2 /\ ChessboardDimension P /\ OnTurn P = B.

Definition MateCornerOneCase (P : Position) :=
BKx P = 0 /\ BKy P = 0 /\ WKx P = 2 /\ WKy P = 1 /\ WRx P = 0 /\
WRy P = 2 /\ ChessboardDimension P /\ OnTurn P = B.

Definition MateConcrete (P : Position) := exists PS : Position,
(MateEdgeOneCase PS \/ MateCornerOneCase PS) /\
Symmetric P PS.

In the above definition, instead of the condition

LegalPosition P the weaker condition

ChessboardDimension P is used. It is sufficient for

our purposes, discussed below.

The last definition of mate (MateConcrete) is non-

trivial and involves concrete positions and

symmetries. Hence, because of quest for simplicity

we don’t want to use it as an alternative for the first,

implicit definition. Instead, we proved that the explicit

mate implies the implicit mate (it can be proved that

the opposite also holds, but that is not required for

proving the strategy correct):

Lemma MateConcreteIsValid :
forall P : Position, MateConcrete P -> Mate P.

Moreover, we prove that mate, mate-in-one-ply,

mate-in-two-plies, and mate-in-three-plies positions

are related in the expected way:

Lemma
MateInOnePlyConcreteLeadsToMateConcrete :
forall P1 : Position, MateInOnePlyConcrete P1 -> exists P2 :
Position, LegalMoveWhiteRook P1 P2 /\ MateConcrete P2.

Lemma
MateInTwoPliesConcreteLeadsToMateInOnePlyConcrete :
forall P1 : Position, MateInTwoPliesConcrete P1 -> forall P2 :
Position, LegalMoveBlack P1 P2 -> MateInOnePlyConcrete P2.

Lemma
MateInThreePliesConcreteLeadsToMateInTwoPliesConcrete :
forall P1 : Position, MateInThreePliesConcrete P1 -> exists P2 :
Position, LegalMoveWhite P1 P2 /\ MateInTwoPliesConcrete P2.

A simple consequence of the above lemmas is that

in mate-in-one-ply or mate-in-three-plies position the

white can mate.

5 Formalization of Bratko’s KRK

Strategy

Formalization of Bratko’s strategy for KRK poses

new challenges for formalization within linear

arithmetic. For instance, the strategy extensively uses

the notion of “room”, i.e., the area of the chessboard

in which the black king is and that is guarded by the

white rook (see Fig. 2).

 # # # #
é # #
 # # # #
Å #
 # È # # #

 # # # #

Figure 2. Room area

The area is rectangular and its area equals m ∙ n,

where m and n are lengths of its sides. In some steps

of the strategy, the rook has to move in such a way

that this area decreases but this cannot be expressed in

terms of linear arithmetic (because of multiplication).

However, a simple insight still enables using linear

arithmetic: if the rook moves, only one of m and n

changes, and since the formula (implicitly universally

quantified):

 uzyxuzyxuyzx

is valid in linear arithmetic, it is sufficient, in this

case, to consider the area as m + n, not as m ∙ n.

The formalization of Bratko’s strategy includes

details hidden in the strategy overview given in

Section 3. For example, Room and the condition that

white has to reduce this Room is defined as follows:

Definition Room (P : Position) :=
match (WRx P - BKx P) + (BKx P - WRx P) with
| 0 => 15
| _ => match (WRy P - BKy P) + (BKy P - WRy P) with

| 0 => 15
| _ => match BKx P - WRx P with

| 0 => match BKy P - WRy P with
| 0 => WRx P + WRy P
| _ => WRx P + (7 - WRy P)
end

| _ => match BKy P - WRy P with
| 0 => (7 - WRx P) + WRy P
| _ => (7 - WRx P) + (7 - WRy P)
end

end
end

end.

Definition NewRoomSmaller (P1 P2 : Position) :=
Room P1 > Room P2.

We don’t explain other components of the strategy

in detail, but most of them should be easily

understandable from the explanations given in the

previous text:

Definition MateIn2 (P1 : Position) :=

MateInOnePlyConcrete P1 \/ MateInThreePliesConcrete P1.

Definition SqueezeCond (P1 : Position) :=

~MateIn2 P1 /\ (exists P2 : Position, LegalMoveWhiteRook P1 P2
= SqueezeMove P1 P2 /\ (forall P3 : Position, LegalMoveBlack P2
P3 /\ NewRoomSmaller P1 P3 /\ NotWhiteRookExposed P2 /\
WhiteRookDivides P2 /\ ~Stalemate P2)).

Definition ApproachCond (P1 : Position) :=

~MateIn2 P1 /\ ~SqueezeCond P1 /\ (exists P2 : Position,
LegalMoveWhiteKing P1 P2 = ApproachMove P1 P2 /\ (KingDiag
P1 P2 \/ ~KingDiag P1 P2 /\ KingNotDiag P1 P2) /\
ApproachCriticalSquare P1 P2 /\ NotWhiteRookExposed P2 /\
(WhiteRookDivides P2 \/ LPattern P2) /\ (RoomGt3 P2 \/
~WhiteKingEdge P2)).

Definition KeepRoomCond (P1 : Position) :=

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\
(exists P2 : Position, LegalMoveWhiteKing P1 P2 =
KeepRoomMove P1 P2 /\ (KingDiag P1 P2 \/ ~KingDiag P1 P2 /\
KingNotDiag P1 P2) /\ NotWhiteRookExposed P2 /\
WhiteRookDivides P2 /\ WhiteKingAndRookNotDiverging P1 P2
/\ (RoomGt3 P2 \/ ~ WhiteKingEdge P2)).

Definition DivideIn2Cond (P1 : Position) :=

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\
~KeepRoomCond P1 /\ (exists P2 : Position, LegalMoveWhite P1
P2 = DivideIn2Move P1 P2 /\ (forall P3 : Position,
LegalMoveBlack P2 P3 /\ (exists P4 : Position, LegalMoveWhite
P3 P4 /\ WhiteRookDivides P4 /\ NotWhiteRookExposed P4))).

Definition DivideIn3Cond (P1 : Position) :=

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\
~KeepRoomCond P1 /\ ~DivideIn2Cond P1 /\ (exists P2 :
Position, LegalMoveWhite P1 P2 = DivideIn2Move P1 P2 /\
(forall P3 : Position, LegalMoveBlack P2 P3 /\ (exists P4 :
Position, LegalMoveWhite P3 P4 /\ (forall P5 : Position,
LegalMoveBlack P4 P5 /\ (exists P6 : Position, LegalMoveWhite
P5 P6 /\ WhiteRookDivides P6 /\ NotWhiteRookExposed P6))))).

Definition Strategy (P1 P2 : Position) :=
MateIn2 P1 \/
SqueezeMove P1 P2 \/
ApproachMove P1 P2 \/
KeepRoomMove P1 P2 \/
DivideIn2Move P1 P2 \/
DivideIn3Move P1 P2.

6 Conclusions and Future Work

In this paper presented our formalization in Coq of the

KRK chess endgame and Bratko’s strategy for the

white player for this endgame. We showed that, with

some observations, the most of the considered notions

and conjectures can be expressed in a simple theory of

linear arithmetic and it appears that the whole of the

chess game can also be suitably represented in this

theory. Concerning the strategy itself, our

formalization led to some simplifications of it and

revealed some important details neglected or omitted

in the original presentation. For instance, we proved

that the notion of “room” can be expressed with

addition instead of multiplication and we detected that

Bratko’s PROLOG implementation is incorrect for

some positions. Our formalization is, to our

knowledge, the first non-trivial formalized chess

knowledge.

For our future work, in order to prove correctness

of Bratko’s strategy, we plan to use various sorts of

automation and to explore the limits of automation for

linear arithmetic within Coq. We are also planning to

formally, within a proof assistant, analyze other chess

endgames, but also other sorts of chess problems.

References

[1] Anonymous: The qed manifesto, In Proceedings

of the 12th International Conference on

Automated Deduction – CADE-12, volume 814

of Lecture Notes in Computer Science, Springer,

1994, pp. 238-251.

[2] Barendregt, H., Barendsen, E.: Autarkic

computations in formal proofs, Journal of

Automated Reasoning, Vol. 28, No. 3, 2002, pp.

321-336.

[3] Barendregt, H., Wiedijk, F.: The challenge of

computer mathematics, Philosophical

Transactions of the Royal Society, Vol. 363, No.

1835, 2005, pp. 2351-2375.

[4] Barrett, C., Sebastiani, R., Seshia, S. A., Tinelli,

C.: Satisfiability Modulo Theories, volume 185

of Frontiers in Artificial Intelligence and

Applications, chapter 26, IOS Press, 2009, pp.

825-885.

[5] Bertot, Y. Castéran, P.: Interactive Theorem

Proving and Program Development, Springer-

Verlag, 2004.

[6] Besson, F.: Fast reflexive arithmetic tactics the

linear case and beyond, In Types for Proofs and

Programs, International Workshop, TYPES 2006,

volume 4502 of Lecture Notes in Computer

Science, Springer, 2006, pp. 48-62.

[7] Boutin, S.: Using reflection to build efficient and

certified decision procedures, In Abadi, M., Ito,

T. (editors), Proceedings of TACS’97, volume

1281 of Lecture Notes in Computer Science.

Springer-Verlag, 1997.

[8] Bratko, I.: PROLOG Programming for Artificial

Intelligence, Addison-Wesley, 1990.

[9] Bratko, I.: Proving correctness of strategies in the

AL1 assertional language, Information

Processing Letters, Vol. 7, No. 5, 1978, pp. 223-

230.

[10] Breda, G.: Krk chess endgame database

knowledge extraction and compression, Master’s

thesis, Technische Universität Darmstadt, 2006.

[11] Crégut, P.: Une procédure de décision réflexive

pour un fragment de l’arithmétique de

presburger, In Informal proceedings of the 15
th

Journées Francophones des Langages Applicatifs,

Charente-Maritime, 2004.

[12] Geuvers, H. et. al.: The “Fundamental Theorem

of Algebra” Project, available at

http://www.cs.ru.nl/~freek/fta/,

Accessed: 27
th

 April 2008.

[13] Gonthier, G.: Formal Proof–The Four-Color

Theorem, Notices of the American Mathematical

Society, Vol. 55, No. 11, 2008, pp. 1382–1393.

[14] Grégoire, B., Mahboubi, A.: Proving equalities in

a commutative ring done right in coq, In Hurd, J.,

Melham, T. F. (editors), Theorem Proving in

Higher Order Logics, TPHOLs 2005, volume

3603 of Lecture Notes in Computer Science,

Springer, 2005, pp. 98-113.

[15] Guid, M., Mozina, M., Sadikov, A., Bratko, I.:

Deriving concepts and strategies from chess

tablebases, In Advances in Computer Games,

ACG 2009, volume 6048 of Lecture Notes in

Computer Science, Springer, 2010, pp. 195-207.

[16] Janičić, P., Green, I., Bundy, A.: A comparison of

decision procedures in Presburger arithmetic, In

Tošić, R., Budimac, Z. (editors), Proceedings of

the VIII Conference on Logic and Computer

Science (LIRA ‘97), Novi Sad, Yugoslavia,

September 1-4, University of Novi Sad, 1997.

Also available from Edinburgh as DAI Research

Paper No. 872, pp. 91-101.

[17] Janičić, P., Narboux, J., Quaresma, P.: The area

method: a recapitulation, Journal of Automated

Reasoning, 2012. To appear.

[18] Leroy, X.: Formal certification of a compiler

back-end, or: programming a compiler with a

proof assistant, In 33rd symposium Principles of

Programming Languages, ACM Press, 2006, pp.

42-54.

[19] Maliković, M., Čubrilo, M.: What were the last

moves?, International Review on Computers and

Software, Vol. 5, No. 1, 2010, pp. 59-70.

[20] Presburger, M.: Über die Vollständigkeit eines

gewissen Systems der Arithmetik ganzer Zahlen,

in welchem die Addition als einzige Operation

hervortritt, In Sprawozdanie z I Kongresu

metematyków slowiańskich, Warszawa, 1929,

pp. 92-101.

[21] Pugh, W.: The omega test: a fast and practical

integer programming algorithm for dependence

analysis, In ACM/IEEE conference on

Supercomputing, 1991, pp. 4-13.

[22] Stansifer, R.: Presburger’s Article on Integer

Arithmetic: Remarks and Translation, Technical

Report TR 84-639, Department of Computer

Science, Cornell University, September 1984.

[23] The Coq development team: The Coq proof

assistant reference manual, Version 8.3, TypiCal

Project, 2012.

[24] Thompson, K.: Retrograde analysis of certain

endgames, International Computer Chess

Association Journal, Vol. 9, No. 3, 1986, pp. 131-

139.

[25] van den Herik, H. J., Uiterwijk, J. W. H. M., van

Rijswijck, J.: Games solved: Now and in the

future, Artificial Intelligence, Vol. 134, No. 1-2,

2002, pp. 277-311.

[26] Wiedijk, F. (editor): The Seventeen Provers of

the World, volume 3600 of Lecture Notes in

Computer Science, Springer, 2006.

