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Abstract. Chess has been always a challenging 

subject of various computer analyses and 

methodologies, and they often brought more general 

advances in the related computer science fields, such 

as search strategies, AI planning, data-mining, etc. 

However, interactive theorem proving has hardly 

been applied to chess. In this paper we present our 

formalization, within the Coq proof assistant, of one 

fragment of the chess game - KRK chess ending and 

several conjectures relevant for this endgame. We 

show that most of the considered notions and 

conjectures can be expressed in a simple theory such 

as linear arithmetic. In addition, in this paper we 

present a formalization of Bratko's strategy for the 

KRK endgame. The presented formalization will serve 

as a key step towards formal correctness proof for 

Bratko's strategy. 
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1 Introduction 
 

Over the last years interactive theorem proving has 

been successfully used for proving a number of 

complex theorems and for building a corpus of 

verified mathematical and computer science 

knowledge. These efforts lead to a „database of all 

important, established mathematical knowledge, 

strictly formalized and with all proofs having been 

checked automatically“ [1]. Interactive theorem 

proving is typically aimed at pure mathematics and at 

computer science, but other reasoning tasks can be 

also subject of formal analysis and interactive 

theorem proving. Chess, as a prototype of an intellect 

game, is one example of such domain. Chess has 

always been a challenging subject of various 

computer analyses and methodologies, and they often 

brought more general advances in the related 

computer science fields, such as search strategies, AI 

planning, data-mining, etc. However, interactive 

theorem proving has hardly been applied to chess. In 

this paper we present our formalization of one 

fragment of the chess game (one chess ending) within 

the Coq proof assistant. Within the task of formalizing 

chess, we had two motivating goals: 

 

- To show that the game of chess can be suitable 

described within a relatively simple theory such as 

linear arithmetic. Moreover, strategies for chess 

endings and their correctness can also be 

described, to large extent, in terms of linear 

arithmetic. Such a description of chess and chess 

strategies can be used as a basis for formalization 

within a proof assistant such as Coq. 

- To explore practical potentials of automation 

available within a proof assistant such as Coq, 

primarily automation related to decidable theories 

such as linear arithmetic. 

 

We point out that, as for many other problems 

treated by interactive theorem proving, proving 

correctness of chess endgames is not safety critical. 

Still, it is plausible to have machine verifiable proofs 

for such domains too because: 

 

- machine verifiable proofs often reveal flaws in 

known informal proofs; 

- machine verifiable proofs provide building blocks 

that can be used for other conjectures in the same 

domain or even in some other domains; 

- machine verifiable proofs are becoming a golden 

standard for all mathematical proofs; 



- newly constructed proofs and the growing body of 

formally proved conjectures help further 

developing of the technology of interactive 

theorem proving. 

 

In formalizing and proving correct an endgame 

strategy, there are three stages, each with their own 

specifics and challenges: 

 

- formalization of relevant chess rules; 

- formalization of the strategy itself; 

- formalization and proving of the correctness 

conjecture. 

 

Within this paper, we will address the first two of 

the above stages. 

We are not aware of other formalizations of chess 

strategies within a proof assistant. There is a work on 

retrograde chess analysis within Coq but it does not 

consider chess strategies [19]. 

The rest of the paper is organized as follows: in 

Section 2 we give a brief background information on 

interactive theorem proving, Coq, linear arithmetic 

and chess endgame strategies. In Section 3, we outline 

the considered endgame strategy and present some 

analysis of its performance. In Section 4 we present 

our formalization of the relevant chess rules, in 

Section 5 we present our formalization of the 

considered chess endgame strategy and in Section 6 

we draw final conclusions and discuss potential 

further work. 

 

2 Background 
 

In this section we give a background relevant for the 

presented work. First we briefly discuss interactive 

theorem proving and the system Coq, then linear 

arithmetic and how it can be automated in Coq, and 

finally the chess game and chess endgame strategies. 

 

2.1 Interactive Theorem Proving and Coq 
 

Interactive theorem proving is a process of the 

development of formal mathematical proofs by 

interaction between a computer and a human. In this 

interaction, the computer is equipped with a proof 

assistant tool (i.e., “an interactive theorem prover”) 

that checks and guides steps performed by the human, 

by verifying each proof step with respect to the given 

underlying logic. The importance of interactive 

theorem proving comes from the fact that “traditional 

proofs” most often are not proofs at all, because of the 

many missing fragments, informal arguments, etc. 

Interactive theorem proving uncovered many flaws in 

many mathematical proofs. On the other hand, proofs 

constructed within proof assistants are verbatim and 

detailed, and typically much longer than “traditional 

proofs” [3]. When checking proofs, correctness of 

proof assistants themselves is also critical. Proof 

assistants often have a very small kernel that checks 

all derivations, according to de Bruijn criterion [2]. 

This small core can consist of just tens of lines of 

code and can be manually verified. 

Interactive theorem proving gets more and more 

popular and the body of formalized both classical and 

modern mathematical and computer science 

knowledge is increasing. There are also significant 

theorems proved for the first time thanks to proof 

assistants. Some of the most popular modern proof 

assistants are Coq, Isabelle, HOL Light, PVS, Mizar, 

ACL2, etc [26]. 

The Coq system [5], [23] is implemented in 

Objective Caml and works within the theory of the 

calculus of inductive constructions (CIC). This theory 

is a typed λ calculus with polymorphism, dependent 

types and a primitive notion of inductive types. Coq 

also provides a dependently typed functional 

programming language. However, since Coq follows 

the propositions-as-types, proofs-as-programs Curry-

Howard interpretation, the distinction between 

programming and proving is blurred. In Coq, a tactic, 

described in the language Ltac, is a program which 

expresses the sequence of the basic logical steps. Coq 

has over 150 tactics that assist the user in developing 

a formal proof. Proofs in Coq are mainly built in 

interactive fashion, but there are various decision 

procedures and tactics based on automatic theorem 

proving that provide automation. Coq has been used 

in a wide range of domains and for proving a number 

of complex conjectures - for instance, for the four 

colour theorem [13], the fundamental theorem of 

algebra [12], for implementing and proving correct 

methods for automatically proving theorems in 

geometry [17], for proving correctness of a compiler 

[18], etc. Coq has been used in formalizing reasoning 

tasks not in pure mathematics or computer science, 

like solving sudoku problems or solving 22 Rubik’s 

cube.
1
 

 

2.2 Linear Arithmetic 
 

Linear arithmetic (or Presburger arithmetic) is a 

fragment of Peano arithmetic that uses only addition 

(and not multiplication). In linear arithmetic, 

multiplication by a constant number is allowed, and 

nx is just a shorthand for x+x+…+x where x occurs n 

times. For subtraction it holds x ‒ y = 0 if x < y. In 

contrast to the whole of arithmetic, linear arithmetic is 

decidable [20]. This theory is rather simple, but still 

expressible enough for many applications in computer 

science [4]. 

There are several decision procedures for linear 

arithmetic [16]. Like decision procedures for other 

theories, there are several methods to add decision 

procedures for linear arithmetic to Coq [14], [6], [7]. 

This task usually require a substantial engineering 

efforts and a deep understanding of the internals of 

the decision procedure. One of the approaches is to 

                                                 
1 http://www-sop.inria.fr/marelle/Laurent.Thery/me.html 



implement the decision procedure in Ltac or in 

Ocaml
2
, so that for each input instance it produces a 

proof term that can be checked by Coq. This approach 

is used by the romega tactic, by Crégut [11], [23]. 

This tactics provides decision procedure for 

quantifier-free linear arithmetics over natural 

numbers. It generates Coq proof terms from traces 

obtained from the Omega test [21]. 

 

2.3 Chess and Chess Endgame Strategies 
 

We assume that the reader is familiar with the chess 

rules, so we do not describe them here. KRK denotes 

the chess ending with white player having a king and 

a rook, and black player having only a king. 

Chess endgames (including KRK, as one of the 

simplest) are often studied by exhaustive analysis and 

in the context of tablebases. An endgame tablebase is 

an ordered list of all positions in the endgame with 

interesting values precalculated [10]. First endgame 

tablebases were constructed by Thompson [24]. 

Building a chess tablebase is typically based on 

retrograde analysis: first, all mate positions are listed, 

then all positions that can lead to those positions, etc. 

Building a tablebase does not require deep insights or 

complex algorithms, but can be computationally or 

memory expensive for some endgames. Also, 

tablebases sometimes reveal chess knowledge that is 

not considered by or relevant for typical chess 

players. For instance, tablebases can detect positions 

with optimal strategy leading to mate only after 250 

moves. Such revelations obtained by tablebases may 

be intriguing, but actually they don’t provide much of 

typical chess knowledge and insights: “current state of 

the art of machine-learning programs is that many ad 

hoc recipes are produced. Moreover, they are hardly 

intelligible to human experts. In fact, the database 

itself is a long list of ad hoc recipes” [25]. This 

motivates work on constructing strategies for specific 

endings and automated analysis of tablebases based 

on machine learning and data mining and extraction 

of human understandable knowledge of winning 

strategies [15], [10]. Automatically extracted 

strategies still cannot compete with human 

constructed strategies. 

 

3 Bratko’s Strategy for KRK 
 

Bratko’s strategy for white for the KRK ending can be 

outlined as follows [8], [9]: 

 

1. Look for a way to mate black in two moves; 

2. If the above is not possible, then look for a way to 

further constrain the area on the chess board to 

which the black king is confined by white rook; 

3. If the above is not possible, then look for a way to 

move the king closer to the black king so as to 

help the rook in squeezing the black King; 

                                                 
2 Ocaml is the implementation language of Coq. 

4. If none of the above pieces of advice 1, 2, 3 

works, then look for a way of maintaining the 

present achievements in the sense of 2 and 3 (i.e. 

make a waiting move); 

5. If none of 1, 2, 3 or 4 is attainable then look for a 

way of obtaining a position in which the rook 

divides the two kings either vertically or 

horizontally. 

 

Actually, the strategy has a number of hidden 

details [8], [9] and this shows that it is very difficult 

to have a simple winning strategy (not to mention an 

optimal strategy) even for a simple ending such as 

KRK. Some details of the strategy will be given in 

Section 5. 

Bratko’s strategy is the subject of analysis in this 

paper. It is correct, i.e., from any position with white 

to move, following Bratko’s strategy white wins. The 

correctness can be proved in different ways. Bratko 

gave one high-level proof of correctness of his 

strategy but that proof is informal [9]. 

Our goal was to formalize the strategy – make this 

first critical step towards formally proving that the 

strategy is correct. The formal proof can follow 

Bratko’s informal proof, but it is expected that many 

missing steps will have to be filled or some flaws 

corrected. Note that Bratko’s strategy is not optimal 

and we do not address the optimality issue within our 

formalization. 

 

4 Formalization of Chess Rules 
 

In order to have suitable machine verifiable 

correctness proof for a chess endgame strategy, it is 

critical to have a simple and intuitive core that defines 

the chess rules and the strategy itself. Namely, once 

the proofs are constructed, they are verified by the 

proof assistant and are not subject of any doubt. What 

could cause some doubt is the formulation of the 

central conjecture, which boils down to basic 

definitions. Thus, it is essential to have the chess rules 

(and also Bratko’s strategy) defined in a simple, 

concise, intuitive, and convincing way. In this section 

we will discuss some design decisions and will focus 

only on the fragment of the game relevant for the 

KRK ending. Our design decisions were largely 

motivated (apart from the quest for simplicity) by our 

aim to automate as much reasoning as possible. We 

will show that the chess rules can be simply described 

in terms of linear arithmetic over natural numbers
3
 

which would be beneficial since a significant portion 

of the proving process can be automated by decision 

procedures for linear arithmetic. In the rest of the 

material, if not explicitly stated otherwise, it is 

assumed that the underlying theory is linear arithmetic 

                                                 
3 Of course, chess rules and endgame strategy can be described in 
terms of even simpler theories, for instance - propositional logic. 

However, we find that linear arithmetic better suits the needs - 

within it all conditions can be represented in a compact and 
intuitive way. 



over natural numbers. We will not give the full 

formalization in Coq, but only some of its fragments, 

for illustration. 

 

Chessboard and positions. There are several options 

for describing the chessboard and chess positions, 

including the following two natural options: 

 

1. represent the chessboard as an 88 array (or as a 

list of lists in Coq) with each element containing a 

distinguished value for empty field or for a 

specific chess piece of specific color (this 

approach was uses in the earlier work in 

retrograde chess analysis [19]); 

2. associate each piece (possibly) on the board with a 

pair of its coordinates. 

 

The former approach could be more suitable for 

the full chess game but the latter one turns to be much 

more suitable for a restricted variant of the game – 

with only three pieces, as in the KRK ending. 

Namely, instead of dealing with values of 64 squares 

of the chessboard, only six values are considered. In 

addition, if one aims at exploiting a decision 

procedure for linear arithmetic, in the first approach 

he/she would have to get rid of lists in conjectures 

before trying to prove them. For the latter approach, 

extensions from one chess endgame to another, or to a 

full game are possible, but not very elegant (since 

variables for each new chess piece have to be 

introduced). 

In the following text, the second approach for 

representing the chessboard will be assumed. A 

position is defined as a record type which is a 

common type for a bundle of objects: the coordinates 

of the white king (WKx,WKy), the coordinates of the 

white rook (WRx,WRy), the coordinates of the black 

king (BKx,BKy), and the value OnTurn on which 

player is on turn that can be W=1 or B=2. The notion 

of position is represented in Coq as follows: 

 
Record Position := position {WKx : nat; WKy : nat; WRx : nat; WRy : 
nat; BKx : nat; BKy : nat; OnTurn : nat}. 

 

Although the white can theoretically castle in 

some positions, this information is not maintained 

(and castling is not considered as a legal move). Also, 

information relevant for the „fifty-moves rule“ are not 

maintained.
4
 

It has to be ensured that in each position, the value 

for each coordinate is between 1 and 8. In linear 

arithmetic over natural numbers, however, it is more 

suitable (and is less computationally demanding) to 

use zero-based representation of rows and columns, 

so constraints for all coordinates in one position 

should be only that they are less than or equal to 7, 

which can be represented in Coq as follows: 

 

                                                 
4 Still, as said, within the correctness proof for Bratko’s strategy it 
is shown that the “fifty-moves rule” is obeyed. 

Definition ChessboardDimension (P : Position) := WKx P <= 7 /\ 
WKy P <= 7 /\ BKx P <= 7 /\ BKy P <= 7 /\ WRx P <= 7 /\ WRy P <= 7. 

 

Coordinates (WKx,WKy) are always associated to 

some position P (e.g, WKx P) but, for simplicity, in 

the following informal text (not in Coq code, of 

course), we will often skip writing the relevant 

position P. 

 

Legal positions. The constraints on legal positions can 

be represented in terms of linear arithmetic. For 

instance, the white king and the white rook cannot be 

on the same square: 

 
Definition NotOnSameSquare (P : Position) := 
WKx P <> WRx P \/ WKy P <> WRy P. 

 

Also, the rule that the two kings cannot be on the 

same or adjacent squares can be expressed as: 

 
Definition NotKingNextKing (P : Position) := WKx P > BKx P + 1 \/ 
BKx P > WKx P + 1 \/ WKy P > BKy P + 1 \/ BKy P > WKy P + 1. 

 

For defining legal positions, a condition that the 

black king is attacked by the white rook: 

 
Definition BlackKingAttacked (P : Position) := 
WRx P = BKx P /\ (WKx P <> WRx P \/ WKx P = WRx P /\ (WKy P <= 
BKy P /\ WKy P <= WRy P \/ BKy P <= WKy P /\ WRy P <= WKy P)) 
\/ 
WRy P = BKy P /\ (WKy P <> WRy P \/ WKy P = WRy P /\ (WKx P <= 
BKx P /\ WKx P <= WRx P \/ BKx P <= WKx P /\ WRx P <= WKx P)). 

 

A position P is legal if all coordinates of all pieces 

are less than or equal to 7, if the white king and the 

white rook are not on the same square, if the two 

kings are not on the same or adjacent squares and if 

the black king is not attacked when the white is on 

turn: 

 
Definition LegalPosition (P : Position) := 
ChessboardDimension P /\ 
NotOnSameSquare P /\ 
NotKingNextKing P /\ 
~(BlackKingAttacked P /\ OnTurn P = W). 

 

However, there are still some subtle issues 

concerning legal positions. Let us consider the 

position on Fig. 1. 

 
 #  #  #  # 
#  #  #  #  
 #  #  #  # 
#  #  #  #  
 #  #  #  # 

# #  #  #  #  
È #  #  #  # 
Å  é  #  #  

 

Figure 1. An example of illegal position 

 

According the above definition, this position is 

legal only if the white is not on turn. But, if the black 



is on turn, what was the last move of the white? It can 

be easily checked that there was no legal move of the 

white that could have led to the current position, so 

the given position is impossible. Because of such 

situations (subject to retrograde chess analysis [19]), 

it is difficult to concisely define legal positions. The 

correct definition would be that a position is legal if it 

reachable from the initial chess position, but such 

definition is practically useless. 

Nonetheless, the above definition of the legal 

position is sufficient for the purposes of the presented 

work because we consider a strategy of white, 

therefore only the initial positions in which the white 

is on turn. 

 

Legal moves. The rules for moving pieces can also be 

simply described in terms of linear arithmetic. They 

are divided into: (i) parts specifying movements rules 

themselves; (ii) a constraint that all other pieces 

remained on their original positions if not captured by 

the moving piece; (iii) a condition that the current 

player is indeed on turn and that another player is on 

turn after the move; (iv) the achieved position is legal. 

As an illustration, we give the part (i) specifying 

movement rules for the white king: 

 
Definition MoveWhiteKing (P1 P2 : Position) := 
WKx P2 - WKx P1 <= 1 /\ WKx P1 - WKx P2 <= 1 /\ 
WKy P2 - WKy P1 <= 1 /\ WKy P1 - WKy P2 <= 1 /\ 
(WKx P1 <> WKx P2 \/ WKy P1 <> WKy P2). 
 

and the part (i) specifying that after a move of the 

white king all other pieces remained on their original 

positions: 

 
Definition OtherAfterMoveWhiteKing (P1 P2 : Position) := 
BKx P2 = BKx P1 /\ BKy P2 = BKy P1 /\ 
WRx P2 = WRx P1 /\ WRy P2 = WRy P1. 

 

A definition of a legal move of the white king 

(involving notions outlined above) is as follows: 

 
Definition LegalMoveWhiteKing (P1 P2 : Position) := 
MoveWhiteKing P1 P2 /\ 
OtherAfterMoveWhiteKing P1 P2 /\ 
OnTurn P1 = W /\ 
OnTurn P2 = B /\ 
LegalPosition P2. 

 

Note that, following the representation of the 

chessboard, movement rules for both kings have to be 

specified - the related definition LegalMoveBlackKing 

is analogous to the above one. 

 

Mate, stalemate and draw. Positions that are mate, 

stalemate or draw are defined simply using the 

introduced definitions. For instance, a position P is 

mate (black is mated) if black is checked and black 

has no legal moves: 

 
Definition Mate (P : Position) := BlackKingAttacked P /\ 
OnTurn P = B /\ forall P’ : Position, ~ LegalMoveBlack P P’. 

 

Stalemate is defined similarly: 

 
Definition Stalemate (P : Position) := ~BlackKingAttacked P /\ 
OnTurn P = B /\ forall P’ : Position, ~LegalMoveBlack P P’. 

 

Draw (that occurs if the white rook has been 

captured) and the terminating position are defined as 

follows: 

 
Definition Draw (P : Position) := OnTurn P = W /\ BKx P = WRx P /\ 
BKy P = WRy P. 
 
Definition GameEnd (P : Position) := 
Mate P \/ Stalemate P \/ Draw P. 

 

The above definition of mate is simple and 

intuitive, but there is one drawback. Within the first 

step of Bratko’s strategy, it is required to check if the 

position is mate-in-two-moves. This check can be 

represented by a definition simulating minimax 

search, i.e., a definition that involves alternation of 

quantifiers. Of course, that is legitimate, but would 

disable automation in proving conjectures involving 

this definition i.e. using of a procedure for quantifier-

free fragment of linear arithmetic. That is why we 

derived an explicit definition of mate-in-two-moves – 

step by step, firstly by explicitly defining mate, mate-

in-one-ply, mate-in-two-plies, and mate-in-three-plies 

positions. In order to simplify this task, we used 

symmetries, so mating situations were explicitly 

described one for one edge or one corner. As an 

example, we give definitions of concrete mating 

situations and the explicit definition of mate 

(Symmetric defines eight sorts of symmetries between 

two chess positions): 

 
Definition MateEdgeOneCase (P : Position) := 
BKx P = 0 /\ WKx P = 2 /\ BKy P = WKy P /\ WRx P = 0 /\ WRy P >= 
WKy P + 2 /\ ChessboardDimension P /\ OnTurn P = B. 
 
Definition MateCornerOneCase (P : Position) := 
BKx P = 0 /\ BKy P = 0 /\ WKx P = 2 /\ WKy P = 1 /\ WRx P = 0 /\ 
WRy P = 2 /\ ChessboardDimension P /\ OnTurn P = B. 
 
Definition MateConcrete (P : Position) := exists PS : Position, 
(MateEdgeOneCase PS \/ MateCornerOneCase PS) /\ 
Symmetric P PS. 

 

In the above definition, instead of the condition 

LegalPosition P the weaker condition 

ChessboardDimension P is used. It is sufficient for 

our purposes, discussed below. 

The last definition of mate (MateConcrete) is non-

trivial and involves concrete positions and 

symmetries. Hence, because of quest for simplicity 

we don’t want to use it as an alternative for the first, 

implicit definition. Instead, we proved that the explicit 

mate implies the implicit mate (it can be proved that 

the opposite also holds, but that is not required for 

proving the strategy correct): 

 
Lemma MateConcreteIsValid : 
forall P : Position, MateConcrete P -> Mate P. 



 

Moreover, we prove that mate, mate-in-one-ply, 

mate-in-two-plies, and mate-in-three-plies positions 

are related in the expected way: 

 
Lemma 
MateInOnePlyConcreteLeadsToMateConcrete : 
forall P1 : Position, MateInOnePlyConcrete P1 -> exists P2 : 
Position, LegalMoveWhiteRook P1 P2 /\ MateConcrete P2. 
 
Lemma 
MateInTwoPliesConcreteLeadsToMateInOnePlyConcrete : 
forall P1 : Position, MateInTwoPliesConcrete P1 -> forall P2 : 
Position, LegalMoveBlack P1 P2 -> MateInOnePlyConcrete P2. 
 
Lemma 
MateInThreePliesConcreteLeadsToMateInTwoPliesConcrete : 
forall P1 : Position, MateInThreePliesConcrete P1 -> exists P2 : 
Position, LegalMoveWhite P1 P2 /\ MateInTwoPliesConcrete P2. 

 

A simple consequence of the above lemmas is that 

in mate-in-one-ply or mate-in-three-plies position the 

white can mate. 

 

5 Formalization of Bratko’s KRK 

Strategy 
 

Formalization of Bratko’s strategy for KRK poses 

new challenges for formalization within linear 

arithmetic. For instance, the strategy extensively uses 

the notion of “room”, i.e., the area of the chessboard 

in which the black king is and that is guarded by the 

white rook (see Fig. 2). 

 
 #  #  #  # 
#  é  #  #  
 #  #  #  # 
#  #  Å  #  
 # È #  #  # 

# #  #  #  #  
 #  #  #  # 
#  #  #  #  

 

Figure 2. Room area 

 

The area is rectangular and its area equals m ∙ n, 

where m and n are lengths of its sides. In some steps 

of the strategy, the rook has to move in such a way 

that this area decreases but this cannot be expressed in 

terms of linear arithmetic (because of multiplication). 

However, a simple insight still enables using linear 

arithmetic: if the rook moves, only one of m and n 

changes, and since the formula (implicitly universally 

quantified): 

 

 uzyxuzyxuyzx   

 

is valid in linear arithmetic, it is sufficient, in this 

case, to consider the area as m + n, not as m ∙ n. 

The formalization of Bratko’s strategy includes 

details hidden in the strategy overview given in 

Section 3. For example, Room and the condition that 

white has to reduce this Room is defined as follows: 

 
Definition Room (P : Position) := 
match (WRx P - BKx P) + (BKx P - WRx P) with 
| 0 => 15 
| _ => match (WRy P - BKy P) + (BKy P - WRy P) with 

| 0 => 15 
| _ => match BKx P - WRx P with 

| 0 => match BKy P - WRy P with 
| 0 => WRx P + WRy P 
| _ => WRx P + (7 - WRy P) 
end 

| _ => match BKy P - WRy P with 
| 0 => (7 - WRx P) + WRy P 
| _ => (7 - WRx P) + (7 - WRy P) 
end 

end 
end 

end. 
 
Definition NewRoomSmaller (P1 P2 : Position) := 
Room P1 > Room P2. 

 

We don’t explain other components of the strategy 

in detail, but most of them should be easily 

understandable from the explanations given in the 

previous text: 

 
Definition MateIn2 (P1 : Position) := 

MateInOnePlyConcrete P1 \/ MateInThreePliesConcrete P1. 
 
Definition SqueezeCond (P1 : Position) := 

~MateIn2 P1 /\ (exists P2 : Position, LegalMoveWhiteRook P1 P2 
= SqueezeMove P1 P2 /\ (forall P3 : Position, LegalMoveBlack P2 
P3 /\ NewRoomSmaller P1 P3 /\ NotWhiteRookExposed P2 /\ 
WhiteRookDivides P2 /\ ~Stalemate P2)). 

 
Definition ApproachCond (P1 : Position) := 

~MateIn2 P1 /\ ~SqueezeCond P1 /\ (exists P2 : Position, 
LegalMoveWhiteKing P1 P2 = ApproachMove P1 P2 /\ (KingDiag 
P1 P2 \/ ~KingDiag P1 P2 /\ KingNotDiag P1 P2) /\ 
ApproachCriticalSquare P1 P2 /\ NotWhiteRookExposed P2 /\ 
(WhiteRookDivides P2 \/ LPattern P2) /\ (RoomGt3 P2 \/ 
~WhiteKingEdge P2)). 

 
Definition KeepRoomCond (P1 : Position) := 

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\ 
(exists P2 : Position, LegalMoveWhiteKing P1 P2 = 
KeepRoomMove P1 P2 /\ (KingDiag P1 P2 \/ ~KingDiag P1 P2 /\ 
KingNotDiag P1 P2) /\ NotWhiteRookExposed P2 /\ 
WhiteRookDivides P2 /\ WhiteKingAndRookNotDiverging P1 P2 
/\ (RoomGt3 P2 \/ ~ WhiteKingEdge P2)). 

 
Definition DivideIn2Cond (P1 : Position) := 

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\ 
~KeepRoomCond P1 /\ (exists P2 : Position, LegalMoveWhite P1 
P2 = DivideIn2Move P1 P2 /\ (forall P3 : Position, 
LegalMoveBlack P2 P3 /\ (exists P4 : Position, LegalMoveWhite 
P3 P4 /\ WhiteRookDivides P4 /\ NotWhiteRookExposed P4))). 

 
Definition DivideIn3Cond (P1 : Position) := 

~MateIn2 P1 /\ ~SqueezeCond P1 /\ ~ApproachCond P1 /\ 
~KeepRoomCond P1 /\ ~DivideIn2Cond P1 /\ (exists P2 : 
Position, LegalMoveWhite P1 P2 = DivideIn2Move P1 P2 /\ 
(forall P3 : Position, LegalMoveBlack P2 P3 /\ (exists P4 : 
Position, LegalMoveWhite P3 P4 /\ (forall P5 : Position, 
LegalMoveBlack P4 P5 /\ (exists P6 : Position, LegalMoveWhite 
P5 P6 /\ WhiteRookDivides P6 /\ NotWhiteRookExposed P6))))). 

 



Definition Strategy (P1 P2 : Position) := 
MateIn2 P1 \/ 
SqueezeMove P1 P2 \/ 
ApproachMove P1 P2 \/ 
KeepRoomMove P1 P2 \/ 
DivideIn2Move P1 P2 \/ 
DivideIn3Move P1 P2. 

 

6 Conclusions and Future Work 
 

In this paper presented our formalization in Coq of the 

KRK chess endgame and Bratko’s strategy for the 

white player for this endgame. We showed that, with 

some observations, the most of the considered notions 

and conjectures can be expressed in a simple theory of 

linear arithmetic and it appears that the whole of the 

chess game can also be suitably represented in this 

theory. Concerning the strategy itself, our 

formalization led to some simplifications of it and 

revealed some important details neglected or omitted 

in the original presentation. For instance, we proved 

that the notion of “room” can be expressed with 

addition instead of multiplication and we detected that 

Bratko’s PROLOG implementation is incorrect for 

some positions. Our formalization is, to our 

knowledge, the first non-trivial formalized chess 

knowledge. 

For our future work, in order to prove correctness 

of Bratko’s strategy, we plan to use various sorts of 

automation and to explore the limits of automation for 

linear arithmetic within Coq. We are also planning to 

formally, within a proof assistant, analyze other chess 

endgames, but also other sorts of chess problems. 
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