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Abstract. We present a formalization of modern SAT solvers and their properties in a
form of abstract state transition systems. SAT solving procedures are described as transi-
tion relations over states that represent the values of the solver’s global variables. Several
different SAT solvers are formalized, including both the classical DPLL procedure and its
state-of-the-art successors. The formalization is made within the Isabelle/HOL system and
the total correctness (soundness, termination, completeness) is shown for each presented
system (with respect to a simple notion of satisfiability that can be manually checked).
The systems are defined in a general way and cover procedures used in a wide range of
modern SAT solvers. Our formalization builds up on the previous work on state transition
systems for SAT, but it gives machine-verifiable proofs, somewhat more general specifica-
tions, and weaker assumptions that ensure the key correctness properties. The presented
proofs of formal correctness of the transition systems can be used as a key building block
in proving correctness of SAT solvers by using other verification approaches.

1. Introduction

The problem of checking propositional satisfiability (SAT) is one of the central problems
in computer science. It is the problem of deciding if there is a valuation of variables under
which a given propositional formula (in conjunctive normal form) is true. SAT was the first
problem that was proved to be NP-complete [Coo71] and it still holds a central position in
the field of computational complexity. SAT solvers, procedures that solve the SAT problem,
are successfully used in many practical applications such as electronic design automation,
software and hardware verification, artificial intelligence, and operations research.

Most state-of-the-art complete SAT solvers are essentially based on a branch and back-
track procedure called Davis-Putnam-Logemann-Loveland or the DPLL procedure [DP60,
DLL62]. Modern SAT solvers usually also employ (i) several conceptual, high-level algo-
rithmic additions to the original DPLL procedure, (ii) smart heuristic components, and (iii)
better low-level implementation techniques. Thanks to these, spectacular improvements in
the performance of SAT solvers have been achieved and nowadays SAT solvers can decide
satisfiability of CNF formulae with tens of thousands of variables and millions of clauses.
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The tremendous advance in the SAT solving technology has not been accompanied
with corresponding theoretical results about the solver correctness. Descriptions of new
procedures and techniques are usually given in terms of implementations, while correctness
arguments are either not given or are given only in outlines. This gap between practical
and theoretical progress needs to be reduced and first steps in that direction have been
made only recently, leading to the ultimate goal of having modern SAT solvers that are
formally proved correct. That goal is vital since SAT solvers are used in applications that
are very sensitive (e.g., software and hardware verification) and their misbehaviour could
be both financially expensive and dangerous from the aspect of security. Ensuring trusted
SAT solving can be achieved by two approaches.

One approach for achieving a higher level of confidence in SAT solvers’ results, suc-
cessfully used in recent years, is proof-checking [ZM03, GN03, Gel07, WA09, DFMS10].
In this approach, solvers are modified so that they output not only sat or unsat answers,
but also justification for their claims (models for satisfiable instances and proof objects
for unsatisfiable instances) that are then checked by independent proof-checkers. Proof-
checking is relatively easy to implement, but it has some drawbacks. First, justification for
every solved SAT instance has to be verified separately. Also, generating unsatisfiability
proofs introduces some overhead to the solver’s running time, proofs are typically large and
may consume gigabytes of storage space, and proof-checking itself can be time consuming
[Gel07]. Since proof-checkers have to be trusted, they must be very simple programs so they
can be “verified” by code inspection.1 On the other hand, in order to be efficient, they must
use specialized functionality of the underlying operating system which reduces the level of
their reliability (e.g., the proof checker used in the SAT competitions uses Linux’s mmap
functionality [Gel07]).

The other approach for having trusted solvers’ results is to verify the SAT solver itself,
instead of checking each of its claims. This approach is very demanding, since it requires
formal analysis of the complete solver’s behaviour. In addition, whenever the implementa-
tion of the solver changes, the correctness proofs must be adapted to reflect the changes.
Still, in practice, the core solving procedure is usually stable and stays fixed, while only
heuristic components frequently change. The most challenging task is usually proving the
correctness of the core solving procedures, while heuristic components only need to satisfy
relatively simple properties that are easily checked. This approach gives also the following
benefits:

• Although the overheads of generating unsatisfiability proofs during solving are not un-
manageable, in many applications they can be avoided if the solver itself is trusted.2

• Verification of modern SAT solvers could help in better theoretical understanding of how
and why they work. A rigorous analysis and verification of modern SAT solvers may
reveal some possible improvements in underlying algorithms and techniques which can
influence and improve other solvers as well.
• Verified SAT solvers can serve as trusted kernel checkers for verifying results of other
untrusted verifiers such as BDDs, model checkers, and SMT solvers. Also, verification of
some SAT solver modules (e.g., Boolean constraint propagation) can serve as a basis for
creating both verified and efficient proof-checkers for SAT.

1Alternatively, proof-checkers could be formally verified by a proof assistant, and then their correctness
would rely on the correctness of the proof assistant.

2In some applications, proofs of unsatisfiability are still necessary as they are used, for example, for
extracting unsatisfiable cores and interpolants.
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Figure 1: Different approaches for SAT solver verification

In order to prove correctness of a SAT solver, it has to be formalized in some meta-theory
so its properties can be analyzed in a rigorous mathematical manner. In order to achieve
the desired highest level of trust, formalization in a classical “pen-and-paper” fashion is not
satisfactory and, instead, a mechanized and machine-checkable formalization is preferred.
The formal specification of a SAT solver can be made in several ways (illustrated in Figure
1, each with an appropriate verification paradigm and each having its own advantages and
disadvantages, described in the following text).

Verification of abstract state transition system: State transition systems are an
abstract and purely mathematical way of specifying program behaviour. Using this ap-
proach, the SAT solver’s behaviour is modelled by transitions between states that repre-
sent the values of the solver’s global variables. Transitions can be made only by following
precisely defined transition rules. Proving correctness of state transition systems can be
performed by the standard mathematical apparatus. There are state transition systems
describing the top-level architecture of the modern DPLL-based SAT solvers (and related
SMT solvers) [KG07, NOT06] and their correctness has been informally shown.

The main advantage of the abstract state transition systems is that they are mathe-
matical objects, so it is relatively easy to make their formalization within higher-order
logic and to formally reason about them. Also, their verification can be a key building
block for other verification approaches. Disadvantages are that the transition systems
do not specify many details present in modern solver implementations and that they are
not directly executable.

Verified implementation within a proof assistant: A program’s behaviour can be
specified within the higher-order logic of a proof assistant (regarded as a purely functional
programming language). This approach is often called shallow embedding into HOL.
Specifications may vary from very abstract ones to detailed ones covering most details
present in the real SAT solver’s code. The level of details can incrementally be increased
(e.g., by using a datatype refinement). Having the specification inside the logic, its
correctness can be proved again by using the standard mathematical apparatus (mainly
induction and equational reasoning). Based on the specification, executable functional
programs can be generated by means of code extraction — the term language of the logic
within the proof assistant is identified with the term language of the target language and
the verified program correctness is transferred to the exported program, up to simple
transformation rules.
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Advantages of using the shallow embedding are that, once the solver is defined within
the proof assistant, it is possible to verify it directly inside the logic and a formal model
of the operational or denotational semantics of the language is not required. Also, ex-
tracted executable code can be trusted with a very high level of confidence. On the other
hand, the approach requires building a fresh implementation of a SAT solver within the
logic. Also, since higher-order logic is a pure functional language, it is unadapted to
modelling imperative data-structures and their destructive updates. Special techniques
must be used to have mutable data-structures and, consequently, an efficient generated
code [BKH+08].

Verification of the real implementations: The most demanding approach for verifying
a SAT solver is to directly verify the full real-world solver code. Since SAT solvers are
usually implemented in imperative programming languages, verifying the correctness of
implementation can be made by using the framework of Hoare logic [Hoa69] — a formal
system for reasoning about programs written in imperative programming languages. The
program behaviour can then be described in terms of preconditions and postconditions
for pieces of code. Proving the program correctness is made by formulating and prov-
ing verification conditions. For instance, Isabelle/HOL provides a formal verification
environment for sequential imperative programs ([Sch06]).

The main benefit of using the Hoare style verification is that it enables reasoning
about the imperative code, which is the way that most real-world SAT solvers are im-
plemented. However, since real code is overwhelmingly complex, simpler approximations
are often made and given in pseudo-programming languages. This can significantly sim-
plify the implementation, but leaves a gap between the correctness proof and the real
implementation.

In this paper we focus on the first verification approach as it is often suitable to separate
the verification of the abstract algorithms and that of their specific implementations.3 In
addition, state transition systems, as the most abstract specifications, cover the widest
range of existing SAT solver implementations. Moreover, the reasoning used in verifying
abstract state transition systems for SAT can serve as a key building block in verification
of more detailed descriptions of SAT solvers using the other two approaches described
above (as illustrated by Figure 1). Indeed, within our SAT verification project [MJ09], we
have already applied these two approaches [Mar09, Mar10, MJ10], and in both cases the
correctness arguments were mainly reduced to correctness of the corresponding abstract
state transition systems. These transition systems and their correctness proofs are presented
in this paper for the first time, after they evolved to some extent through application within
the other two verification approaches.

The methodology that we use in this paper for the formalization of SAT solvers via
transition systems is incremental refinement : the formalization begins with a most basic
specification, which is then refined by introducing more advanced techniques, while pre-
serving the correctness. This incremental approach proves to be a very natural approach
in formalizing complex software systems. It simplifies understanding of the system and
reduces the overall verification effort. Each of the following sections describes a separate
abstract state transition system. Although, formally viewed, all these systems are indepen-
dent, each new system extends the previous one and there are tight connections between

3A recent example is the L4 verified OS kernel, where a shallowly embedded Haskell specification of the
kernel is verified, and then the C code is shown to implement the Haskell specification, yielding a natural
separation of concepts and issues [Kle10].
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them. Therefore, we do not expose each new system from scratch, but only give additions
to the previous one. We end up with a system that rather precisely describes modern SAT
solvers, including advanced techniques such as backjumping, learning, conflict analysis, for-
getting and restarting. The systems presented are related to existing solvers, their abstract
descriptions and informal correctness proofs.

The paper is accompanied by a full formalization developed within the Isabelle/HOL
proof assistant.4 The full version of the paper5 contains an appendix with informal proofs
of all lemmas used. All definitions, lemmas, theorems and proofs of top-level statements
given in the paper correspond to their Isabelle counterparts, and here are given in a form
accessible not only to Isabelle users, but to a wider audience.

The main challenge in each large formalization task is to define basic relevant notions in
appropriate terms, build a relevant theory and a suitable hierarchy of lemmas that facilitates
constructing top-level proofs. Although in this paper we do not discuss all decisions made
in the above directions, the final presented material is supposed to give the main motivating
ideas and, implicitly, to illustrate a proof management technology that was used. The main
purpose of the paper is to give a clear picture of central ideas relevant for verification of
SAT transition systems, hopefully interesting both to SAT developers and to those involved
in formalization of mathematics.

The main contributions of this paper are the following.

• SAT solving process is introduced by a hierarchical series of abstract transition systems,
ending up with the state-of-the-art system.
• Formalization and mechanical verification of properties of the abstract transition systems
for SAT are performed (within this, invariants and well-founded relations relevant for
termination are clearly given; conditions for soundness, completeness, and termination
are clearly separated). Taking advantage of this formalization, different real-world SAT
solvers can be verified, using different verification approaches.
• First proofs (either informal or formal) of some properties of modern SAT solvers (e.g.,
termination condition for frequent restarting) are given, providing deeper understanding
of the solving process.

The rest of the paper is organized as follows: In Section 2 some background on SAT solving,
abstract state transition systems, and especially abstract state transition systems for SAT is
given. In Section 3 basic definitions and examples of propositional logic and CNF formulae
are given. In Section 4, a system corresponding to basic DPLL search is formalized. In
Section 5, that system is modified and backtracking is replaced by more advanced back-
jumping. In Section 6, the system is extended by clause learning and forgetting. In Section
7 and Section 8 a system with conflict analysis and a system with restarting and forgetting
are formalized. In Section 9 we discuss related work and our contributions. In Section 10,
final conclusions are drawn.

2. Background

In this section we give a brief, informal overview of the SAT solving process, abstract
state transition systems and abstract state transition systems for SAT. The paper does

4The whole presented formalization is available from AFP [Mar08] and, the latest version, from
http://argo.matf.bg.ac.rs.

5The full version of the paper is available from http://argo.matf.bg.ac.rs.

http://argo.matf.bg.ac.rs
http://argo.matf.bg.ac.rs
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not intend to be a tutorial on modern DPLL-based SAT solving techniques — the rest
of the paper contains only some brief explanations and assumes the relevant background
knowledge (more details and tutorials on modern SAT solving technology can be found in
other sources e.g., [BHMW09, Mar09]).

2.1. SAT Solving. SAT solvers are decision procedures for the satisfiability problem for
propositional formulae in conjunctive normal form (CNF). State-of-the-art SAT solvers are
mainly based on a branch-and-backtrack procedure called DPLL (Davis-Putnam-Logemann-
Loveland) [DP60, DLL62] and its modern successors. The original DPLL procedure (shown
in Figure 2) combines backtrack search with some basic, but efficient inference rules.

function dpll (F : Formula) : (SAT, UNSAT)

begin

if F is empty then return SAT

else if there is an empty clause in F then return UNSAT

else if there is a pure literal l in F then return dpll(F [l → ⊤])
else if there is a unit clause [l] in F then return dpll(F [l → ⊤])
else begin

select a literal l occurring in F
if dpll(F [l → ⊤]) = SAT then return SAT

else return dpll(F [l → ⊥])
end

end

Figure 2: The original DPLL procedure

The search component selects a branching literal l occurring in the formula F , and tries to
satisfy the formula obtained by replacing l with ⊤ and simplifying afterwards. If the sim-
plified formula is satisfiable, so is the original formula F . Otherwise, the formula obtained
from F by replacing l with ⊥ and by simplifying afterwards is checked for satisfiability and
it is satisfiable if and only if the original formula F is satisfiable. This process stops if the
formula contains no clauses or if it contains an empty clause. A very important aspect of
the search process is the strategy for selecting literals for branching — while not important
for the correctness of the procedure, this strategy can have a crucial impact on efficiency.

The simple search procedure is enhanced with several simple inference mechanisms. The
unit clause rule is based on the fact that if there is a clause with a single literal present in
F , its literal must be true in order to satisfy the formula (so there is no need for branching
on that literal). The pure literal rule is based on the fact that if a literal occurs in the
formula, but its opposite literal does not, if the formula is satisfiable, in one of its models
that literal is true. These two rules are not necessary for completeness, although they have
a significant impact on efficiency.

Passing valuations instead of modifying the formula. In the original DPLL procedure,
the formula considered is passed as a function argument, and modified throughout recursive
calls. This is unacceptably inefficient for huge propositional formulae and can be replaced
by a procedure that maintains a current (partial) valuation M and, rather than modifying
the formula, keeps the formula constant and checks its value against the current valuation
(see Figure 3). The inference rules used in the original procedure must be adapted to fit
this variant of the algorithm. The unit clause rule then states that if there is a clause in
F such that all its literals, except exactly one, are false in M , and that literal is undefined
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in M , then this literal must be added to M in order to satisfy this clause. The pure literal
rule turns out to be too expensive in this context, so modern solvers typically do not use it.

function dpll (M : Valuation) : (SAT, UNSAT)

begin

if M �¬F then return UNSAT

else if M is total wrt. the variables of F then return SAT

else if there is a unit clause (i.e., a clause

l ∨ l1 ∨ . . . ∨ lk in F s.t. l, l /∈ M, l1, . . . , lk ∈ M) then return dpll(M ∪ {l})
else begin

select a literal l s.t. l ∈ F, l, l /∈ M
if dpll(M ∪ {l}) = SAT then return SAT

else return dpll(M ∪ {l})
end

end

Figure 3: DPLL procedure with valuation passing

Non-recursive implementation. To gain efficiency, modern SAT solvers implement
DPLL-like procedures in a non-recursive fashion. Instead of passing arguments through
recursive calls, both the current formula F and the current partial valuation M are kept as
global objects. The valuation acts as a stack and is called assertion trail. Since the trail
represents a valuation, it must not contain repeated nor opposite literals (i.e., it is always
distinct and consistent). Literals are added to the stack top (asserting) or removed from the
stack top (backtracking). The search begins with an empty trail. During the solving process,
the solver selects literals undefined in the current trail M and asserts them, marking them
as decision literals. Decision literals partition the trail into levels, and the level of a literal
is the number of decision literals that precede that literal in the trail. After each decision,
unit propagation is exhaustively applied and unit literals are asserted to M , but as implied
literals (since they are not arbitrary decisions). This process repeats until either (i) a clause
in F is found which is false in the current trail M (this clause is called a conflict clause)
or (ii) all the literals occurring in F are defined in M and no conflict clause is found in
F . In the case (i), a conflict reparation (backtracking) procedure must be applied. In the
basic variant of the conflict reparation procedure, the last decision literal l and all literals
after it are backtracked from M , and the opposite literal of l is asserted, also as an implied
literal. If there is no decision literal in M when a conflict is detected, then the formula F
is unsatisfiable. In the case (ii), the formula is found to be satisfiable and M is its model.

Modern DPLL enhancements. For almost half of a century, DPLL-based SAT proce-
dures have undergone various modifications and improvements. Accounts of the evolution
of SAT solvers can be found in recent literature [BHMW09, GKSS07]. Early SAT solvers
based on DPLL include Tableau (NTAB), POSIT, 2cl and CSAT, among others. In the
mid 1990’s, a new generation of solvers such as GRASP [MSS99], SATO [Zha97], Chaff
[MMZ+01], and BerkMin [GN02] appeared, and in these solvers a lot of attention was
payed to optimisation of various aspects of the DPLL algorithm. Some influential modern
SAT solvers include MiniSat [ES04] and PicoSAT [Bie08].

A significant improvement over the basic search algorithm is to replace the simple
conflict reparation based on backtracking by a more advanced one based on conflict driven
backjumping, first proposed in the Constraint Satisfaction Problem (CSP) domain [BHZ06].
Once a conflict is detected, a conflict analysis procedure finds sequence of decisions (often
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buried deeper in the trail) that eventually led to the current conflict. Conflict analysis can
be described in terms of graphs and the backjump clauses are constructed by traversing
a graph called implication graph [MSS99]. The process can also be described in terms
of resolution that starts from the conflict clause and continues with clauses that caused
unit propagation of literals in that clause [ZM02]. There are several strategies for conflict
analysis, leading to different backjump clauses [BHMW09]. Most conflict analysis strategies
are based on the following scheme:

(1) Conflict analysis starts with a conflict clause (i.e., the clause from F detected to be
false in M). The conflict analysis clause C is set to the conflict clause.

(2) Each literal from the current conflict analysis clause C is false in the current trail M
and is either a decision literal or a result of a propagation. For each propagated literal
l it is possible to find a clause (reason clause) that caused l to be propagated. The
propagated literals from C are then replaced (it will be said explained) by remaining
literals from their reason clauses. The process of conflict analysis then continues.

The described procedure continues until some termination condition is met, and the back-
jump clause is then constructed. Thanks to conflict driven backjumping, a lot of unnecessary
work can be saved compared to the simple backtrack operation. Indeed, the simple back-
tracking would have to consider all combinations of values for all decision literals between
the backjump point and the last decision, while they are all irrelevant for the particular
conflict.

The result of conflict analysis is usually a clause that is a logical consequence of F and
that explains a particular conflict that occurred. If this clause was added to F , then this
type of conflict would occur never again during search (even in some other contexts, i.e., in
some other parts of the search space). This is why solvers usually perform clause learning
and append (redundant) deduced clauses to F . However, if the formula F becomes too
large, some clauses have to be forgotten. Conflict driven backjumping with clause learning
were first incorporated into a SAT solver in the mid 1990’s by Silva and Sakallah in GRASP
[MSS99] and by Bayardo and Schrag in rel_sat [BS97]. DPLL-based SAT solvers employing
conflict driven clause learning are often called CDCL solvers.

Another significant improvement is to empty the trail and restart the search from time
to time, in a hope that it would restart in an easier part of the search space. Randomized
restarts were introduced by Gomes et al. [GSK98] and further developed by Baptista and
Marques-Silva [BMS00].

One of the most demanding operations during solving is the detection of false and unit
clauses. Whenever a literal is asserted, the solver must check F for their presence. To aid
this operation, smart data structures with corresponding implementations are used. One
of the most advanced ones is the two-watched literal scheme, introduced by Moskewicz et
al. in their solver zChaff [MMZ+01].

2.2. Abstract State Transition Systems. An abstract state transition system for an
imperative program consists of a set of states S describing possible values of the program’s
global variables and a binary transition relation → ⊆ S × S. The transition relation is
usually the union of smaller transition relations →i, called the transition rules. If s →i s

′

holds, we say that the rule i has been applied to the state s and the state s′ has been
obtained. Transition rules are denoted as:
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Rulename :
cond1 . . . condk

effect

Above the line are the conditions cond1, . . . , condk that the state s must meet in order
for the rule to be applicable and the effect denotes the effect that must be applied to the
components of s in order to obtain s′.

More formally, transition rules can be defined as relations over states:

Rulename s s′ iff φ

where φ denotes a formula that describes conditions on s that have to be met and the
relationship between s and s′.

Some states are distinguished as initial states. An initial state usually depends on the
program input. A state is a final state if no transition rules can be applied. Some states
(not necessarily final) are distinguished as the outcome states carrying certain resulting
information. If a program terminates in a final outcome state, it emits a result determined
by this state. For a decision procedure (such as a SAT solver), there are only two possible
outcomes: yes (sat) or no (unsat). A state transition system is considered to be correct if
it has the following properties:

Termination: from each initial state s0, the execution eventually reaches a final state (i.e.,
there are no infinite chains s0 → s1 → . . .).

Soundness: the program always gives correct answers, i.e., if the program, starting with
an input I from an initial state s0, reaches a final outcome state with a result O, then O
is the desired result for the input I.

Completeness: the program always gives an answer if it terminates, i.e., all final states
are outcome states.

2.3. Abstract State Transition Systems for SAT. Two transition rule systems that
model DPLL-based SAT solvers and related SMT solvers have been published recently.
Both systems present a basis of the formalization described in this paper. The system of
Krstić and Goel [KG07] gives a more detailed description of some parts of the solving process
(particularly the conflict analysis phase) than the one given by Nieuwenhuis, Oliveras and
Tinelli [NOT06], so we present its rules in Figure 4. In this system, along with the formula
F and the trail M , the state of the solver is characterized by the conflict analysis set C
that is either a set of literals (i.e., a clause) or the distinguished symbol no cflct . Input to
the system is an arbitrary set of clauses F0. The solving starts from a initial state in which
F = F0, M = [ ], and C = no cflct .

The Decide rule selects a literal from a set of decision literals L and asserts it to the
trail as a decision literal. The set L is typically just the set of all literals occurring in the
input formulae. However, in some cases a smaller set can be used (based on some specific
knowledge about the encoding of the input formula). Also, there are cases when this set is
in fact larger than the set of all variables occurring in the input formula.6

The UnitPropag rule asserts a unit literal l to the trail M as an implied literal. This
reduces the search space since only one valuation for l is considered.

6For example, the standard DIMACS format for SAT requires specifying the number of variables and the
clauses that make the formula, without guarantees that every variable eventually occurs in the formula.
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Decide :
l ∈ L l, l /∈M

M := M ld

UnitPropag :
l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈M l, l /∈M

M := M li

Conflict :
C = no cflct l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈M

C := {l1, . . . , lk}

Explain :
l ∈ C l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ≺ l

C := C ∪ {l1, . . . , lk} \ {l}

Learn :
C = {l1, . . . , lk} l1 ∨ . . . ∨ lk /∈ F

F := F ∪ {l1 ∨ . . . ∨ lk}

Backjump :
C = {l, l1, . . . , lk} l ∨ l1 ∨ . . . ∨ lk ∈ F level l > m ≥ level li

C := no cflct M := M [m] l
i

Forget :
C = no cflct c ∈ F F \ c � c

F := F \ c

Restart :
C = no cflct

M := M [0]

Figure 4: Transition system for SAT solving by Krstić and Goel (li ≺ lj denotes that the

literal li precedes lj in M , ld denotes a decision literal, li an implied literal, level l

denotes the decision level of a literal l in M , and M [m] denotes the prefix of M
up to the level m).

The Conflict rule is applied when a conflict clause is detected. It initializes the conflict
analysis and the reparation procedure, by setting C to the set of literals of the conflict
clause. This set is further refined by successive applications of the Explain rule, which
essentially performs a resolution between the clause C and the clause that is the reason
of propagation of its literal l. During the conflict analysis procedure, the clause C can be
added to F by the Learn rule. However, this is usually done only once — when there is
exactly one literal in C present at the highest decision level of M . In that case, the Backjump
rule can be applied. That resolves the conflict by backtracking the trail to a level (usually
the lowest possible) such that C becomes unit clause with a unit literal l. In addition, unit
propagation of l is performed.

The Forget rule eliminates clauses. Namely, because of the learning process, the number
of clauses in the current formula increases. When it becomes too large, detecting false and
unit clauses becomes too demanding, so from time to time, it is preferable to delete from F
some clauses that are redundant. Typically, only learnt clauses are forgotten (as they are
always redundant).

3. Underlying Theory

As a framework of our formalization, higher-order logic is used, in a similar way as in the
system Isabelle/HOL [NPW02]. Formulae and logical connectives of this logic (∧, ∨, ¬, −→,
←→) are written in the standard way. Equality is denoted by =. Function applications are
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written in prefix form, as in f x1 . . . xn. Existential quantification is denoted by ∃ x. ...
and universal quantification by ∀ x. ....

In this section we will introduce definitions necessary for notions of satisfiability and
notions used in SAT solving. Most of the definitions are simple and technical so we give
them in a very dense form. They make the paper self-contained and can be used just for
reference.

The correctness of the whole formalization effort eventually relies on the definition of
satisfiable formulae, which is rather straightforward and easily checked by human inspection.

3.1. Lists, Multisets, and Relations. We assume that the notions of ordered pairs, lists
and (finite) sets are defined within the theory. Relations and their extensions are used
primarily in the context of ordering relations and the proofs of termination. We will use
standard syntax and semantics of these types and their operations. However, to aid our
formalization, some additional operations are introduced.

Definition 3.1 (Lists related).

• The first position of an element e in a list l, denoted firstPos e l, is the zero-based index
of the first occurrence of e in l if it occurs in l or the length of l otherwise.
• The prefix to an element e of a list l, denoted by prefixTo e l, is the list consisting of all
elements of l preceding the first occurrence of e (including e).
• The prefix before an element e of a list l, denoted by prefixBefore e l is the list of all
elements of l preceding the first occurrence of e (not including e).
• An element e1 precedes e2 in a list l, denoted by e1 ≺l e2, if both occur in l and the first
position of e1 in l is less than the first position of e2 in l.
• A list p is a prefix of a list l (denoted by p ≤ l) if there exists a list s such that l = p@ s.

Definition 3.2 (Multiset). A multiset over a type X is a function S mapping X to natural
numbers. A multiset is finite if the set {x | S(x) > 0} is finite. The union of multisets S
and T is a function defined as (S ∪ T )(x) = S(x) + T (x).

Definition 3.3 (Relations related).

• The composition of two relations ρ1 and ρ2 is denoted by ρ1 ◦ ρ2. The n-th degree of
the relation ρ is denoted by ρn. The transitive closure of ρ is denoted by ρ+, and the
transitive and reflexive closure of ρ by ρ∗.
• A relation ≻ is well-founded iff:

∀P. ((∀x. (∀y. x ≻ y −→ P (y)) −→ P (x)) −→ (∀x. P (x)))

• If ≻ is a relation on X, then its lexicographic extension ≻lex is a relation on lists of X,
defined by:

s ≻lex t iff (∃ r. s = t@ r ∧ r 6= [ ]) ∨

(∃ r s′ t′ a b. s = r@ a@ s′ ∧ t = r@b@ t′ ∧ a ≻ b)

• If ≻ is a relation onX, then its multiset extension ≻mult is a relation defined over multisets
over X (denoted by 〈x1, . . . , xn〉). The relation ≻

mult is a transitive closure of the relation
≻mult1 , defined by:

S1 ≻
mult1 S2 iff ∃S S′

2 s1. S1 = S ∪ 〈s1〉 ∧ S2 = S ∪ S′

2 ∧
∀ s2. s2 ∈ S′

2 −→ s1 ≻ s2
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• Let ≻x and ≻y be relations over X and Y . Their lexicographic product, denoted by
≻x 〈∗lex∗〉 ≻y, is a relation ≻ on X × Y such that

(x1, y1) ≻ (x2, y2) iff x1 ≻x x2 ∨ (x1 = x2 ∧ y1 ≻y y2)

• Let ≻x be a relation on X, and for each x ∈ X let ≻x
y be a relation over Y (i.e., let

λ x. ≻x
y be a function mapping X to relations on Y ). Their parametrized lexicographic

product,7 denoted by ≻x 〈∗lex
p∗〉 ≻x

y , is a relation ≻ on X × Y such that

(x1, y1) ≻ (x2, y2) iff x1 ≻x x2 ∨ (x1 = x2 ∧ y1 ≻
x1

y y2).

Proposition 3.4 (Properties of well-founded relations).

• A relation ≻ is well-founded iff

∀ Q. (∃ a ∈ Q) −→ (∃ amin ∈ Q. (∀ a′. amin ≻ a′ −→ a′ /∈ Q))

• Let f be a function and ≻ a relation such that x ≻ y −→ fx ≻′ fy. If ≻′ is well-founded,
then so is ≻.
• If ≻ is well-founded, then so is ≻mult.
• Let ≻x be a well-founded relation on X and for each x ∈ X let be ≻x

y a well-founded
relation. Then ≻x 〈∗lex

p∗〉 ≻x
y is well-founded.

3.2. Logic of CNF formulae.

Definition 3.5 (Basic types).

Variable natural number
Literal either a positive variable (Pos vbl) or a negative variable (Neg vbl)
Clause a list of literals
Formula a list of clauses
Valuation a list of literals
Trail a list of (Literal, bool) pairs

For the sake of readability, we will sometimes omit types and use the following naming
convention: literals (i.e., variables of the type Literal) are denoted by l (e.g., l, l′, l0, l1, l2, . . .),
variables by vbl, clauses by c, formulae by F , valuations by v, and trails by M .

Note that, in order to be closer to implementation (and to the standard solver input
format — DIMACS), clauses and formulae are represented using lists instead of sets (a
more detailed discussion on this issue is given in Section 9). Although a trail is not a list of
literals (but rather a list of (Literal, bool) pairs), for simplicity, we will often identify it with
its list of underlying literals, and we will treat trails as valuations. In addition, a trail can
be implemented, not only as a list of (Literal, bool) pairs but in some other equivalent way.
We abuse the notation and overload some symbols. For example, the symbol ∈ denotes
both set membership and list membership, and it is also used to denote that a literal occurs
in a formula. Symbol vars is also overloaded and denotes the set of variables occurring in a
clause, in a formula, or in a valuation.

Definition 3.6 (Literals and clauses related).

7Note that lexicographic product can be regarded as a special case of parametrized lexicographic product
(where a same ≻y is used for each x ∈ X).
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• The opposite literal of a literal l, denoted by l, is defined by: Pos vbl = Neg vbl, Neg vbl =
Pos vbl.
• A formula F contains a literal l (i.e., a literal l occurs in a formula F ), denoted by l ∈ F ,
iff ∃c. c ∈ F ∧ l ∈ c.
• The set of variables that occur in a clause c is denoted by vars c. The set of variables that
occur in a formula F is denoted by vars F . The set of variables that occur in a valuation
v is denoted by vars v.
• The resolvent of clauses c1 and c2 over the literal l, denoted
resolvent c1 c2 l is the clause (c1 \ l)@(c2 \ l).
• A clause c is a tautological clause, denoted by clauseTautology c, if it contains both a
literal and its opposite (i.e., ∃ l. l ∈ c ∧ l ∈ c).
• The conversion of a valuation v to a formula is the list 〈v〉 that contains all single literal
clauses made of literals from v.

Definition 3.7 (Semantics).

• A literal l is true in a valuation v, denoted by v � l, iff l ∈ v. A clause c is true in a
valuation v, denoted by v � c, iff ∃l. l ∈ c ∧ v � l. A formula F is true in a valuation v,
denoted by v � F , iff ∀c. c ∈ F ⇒ v � c.
• A literal l is false in a valuation v, denoted by v �¬ l, iff l ∈ v. A clause c is false in a
valuation v, denoted by v �¬ c, iff ∀l. l ∈ c⇒ v �¬ l. A formula F is false in a valuation
v, denoted by v �¬F , iff ∃c. c ∈ F ∧ v �¬ c.8

• v 2 l ( v 2 c / v 2 F ) denotes that l (c / F ) is not true in v (then we say that l (c / F )
is unsatisfied in v). v 2¬ l (v 2¬ c / v 2¬F ) denotes that l (c / F ) is not false in v (then
we say that l (c / F ) is unfalsified in v).

Definition 3.8 (Valuations and models).

• A valuation v is inconsistent, denoted by inconsistent v, iff it contains both a literal and
its opposite i.e., iff ∃l. v � l ∧ v � l. A valuation is consistent, denoted by (consistent v),
iff it is not inconsistent.
• A valuation v is total with respect to a variable set V bl, denoted by total v V bl, iff
vars v ⊇ V bl.
• A model of a formula F is a consistent valuation under which F is true. A formula F is
satisfiable, denoted by sat F , iff it has a model, i.e., ∃v. consistent v ∧ v � F .
• A clause c is unit in a valuation v with a unit literal l, denoted by isUnit c l v iff l ∈ c,
v 2 l, v 2¬ l and v �¬ (c \ l) (i.e., ∀l′. l′ ∈ c ∧ l′ 6= l⇒ v �¬ l′).
• A clause c is a reason for propagation of literal l in valuation v, denoted by isReason c l v
iff l ∈ c, v � l, v �¬ (c \ l), and for each literal l′ ∈ (c \ l), the literal l′ precedes l in v.

8Note that the symbol �¬ is atomic, i.e., v �¬F does not correspond to v |= (¬F ), although it would be
the case if all propositional formulae (instead of CNF only) were considered.



14 F. MARIĆ AND P. JANIČIĆ

Definition 3.9 (Entailment and logical equivalence).

• A formula F entails a clause c, denoted by F � c, iff c is true in every model of F . A
formula F entails a literal l, denoted by F � l, iff l is true in every model of F . A formula
F entails valuation v, denoted by F � v, iff it entails all its literals i.e., ∀l. l ∈ v ⇒ F � l.
A formula F1 entails a formula F2, denoted by F1 � F2, if every model of F1 is a model
of F2.
• Formulae F1 and F2 are logically equivalent, denoted by F1 ≡ F2, iff any model of F1 is a
model of F2 and vice versa, i.e., iff F1 � F2 and F2 � F1.

Definition 3.10 (Trails related).

• For a trail element a, element a denotes the first (Literal) component and isDecision a
denotes the second (Boolean) component. For a trail M , elements M denotes the list of
all its elements and decisions M denotes the list of all its marked elements (i.e., of all its
decision literals).
• The last decision literal, denoted by lastDecision M , is the last marked element of the list
M , i.e., lastDecision M = last (decisions M).
• decisionsTo M l is the list of all marked elements from a trail M that precede the
first occurrence of the element l, including l if it is marked, i.e., decisionsTo l M =
decisions (prefixTo l M).
• The current level for a trail M , denoted by currentLevel M , is the number of marked
literals in M , i.e., currentLevel M = length (decisions M).
• The decision level of a literal l in a trail M , denoted by level l M , is the number of marked
literals in the trail that precede the first occurrence of l, including l if it is marked, i.e.,
level l M = length (decisionsTo M l).
• prefixToLevel M level is the prefix of a trail M containing all elements of M with levels
less or equal to level.
• The prefix before last decision, denoted by prefixBeforeLastDecision M , is a prefix of the
trail M before its last marked element (not including it),9

• The last asserted literal of a clause c, denoted by lastAssertedLiteral c M , is the literal
from c that is in M , such that no other literal from c comes after it in M .
• The maximal level of a literal in the clause c with respect to a trail M , denoted by
maxLevel c M , is the maximum of all levels of literals from c asserted in M .

Example 3.11. A trail M could be [+1i,−2d,+6i,+5d,−3i,+4i,−7d]. The symbol +
is written instead of the constructor Pos, the symbol − instead of Neg. decisions M =
[−2d,+5d,−7d], lastDecision M = −7, decisionsTo M +4 = [−2d,+5d], and decisionsTo M -7
= [−2d,+5d,−7d]. level +1 M = 0, level +4 M = 2, level -7 M = 3, currentLevel M = 3,
prefixToLevel M 1 = [+1i,+2d,+6i]. If c is [+4,+6,−3], then lastAssertedLiteral c M = +4,
and maxLevel c M = 2.

9Note that some of these functions are used only for some trails. For example, prefixBeforeLastDecision M
makes sense only for trails that contain at least one decision literal. Nevertheless, these functions are still
defined as total functions — for example, prefixBeforeLastDecision M equals M if there are no decision
literals.
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4. DPLL Search

In this section we consider a basic transition system that contains only transition rules cor-
responding to steps used in the original DPLL procedure: unit propagation, backtracking,
and making decisions for branching (described informally in Section 2.1; the pure literal
step is usually not used within modern SAT solvers, so it will be omitted). These rules will
be defined in the form of relations over states, in terms of the logic described in Section
3. It will be proved that the system containing these rules is terminating, sound and com-
plete. The rules within the system are not ordered and the system is sound, terminating,
and complete regardless of any specific ordering. However, it will be obvious that better
performance is obtained if making decisions is maximally postponed, in the hope that it
will not be necessary.

4.1. States and Rules. The state of the solver performing the basic DPLL search consists
of the formula F being tested for satisfiability (that remains unchanged) and the trail M
(that may change during the solver’s operation). The only parameter to the solver is the
set of variables DecVars used for branching. By Vars we will denote the set of all variables
encountered during solving — these are the variables from the initial formula F0 and the
decision variables DecVars , i.e., Vars = vars F0 ∪ DecVars.

Definition 4.1 (State). A state of the system is a pair (M,F ), where M is a trail and F
is a formula. A state ([ ], F0) is an initial state for the input formula F0.

Transition rules are introduced by the following definition, in the form of relations over
states.

Definition 4.2 (Transition rules).

unitPropagate (M1, F1) (M2, F2) iff ∃c l. c ∈ F1 ∧ isUnit c l M1 ∧
M2 = M1 @ li ∧ F2 = F1

backtrack (M1, F1) (M2, F2) iff M1 �¬F1 ∧ decisions M1 6= [ ] ∧

M2 = prefixBeforeLastDecision M1 @ lastDecision M1
i
∧ F2 = F1

decide (M1, F1) (M2, F2) iff ∃l. var l ∈ DecVars ∧ l /∈M1 ∧ l /∈M1 ∧
M2 = M1@ ld ∧ F2 = F1

As can be seen from the above definition (and in accordance with the description given in
Section 2.1), the rule unitPropagate uses a unit clause — a clause with only one literal l
undefined in M1 and with all other literals false in M1. Such a clause can be true only if
l is true, so this rule extends M1 by l (as an implied literal). The rule backtrack is applied
when F1 is false in M1. Then it is said that a conflict occurred, and clauses from F1 that
are false in M1 are called conflict clauses. In that case, the last decision literal ld in M1

and all literals that succeed it are removed from M1, and the obtained prefix is extended

by l
i
as an implied literal. The rule decide extends the trail by an arbitrary literal l as a

decision literal, such that the variable of l belongs to DecVars and neither l nor l occur in
M1. In that case, we say there is a branching on l.

The transition system considered is described by the relation →d, introduced by the
following definition.
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Definition 4.3 (→d).

s1 →d s2 iff unitPropagate s1 s2 ∨ backtrack s1 s2 ∨ decide s1 s2

Definition 4.4 (Outcome states). An outcome state is either an accepting state or a re-
jecting state.

A state is an accepting state if M 2 ¬F and there is no state (M ′, F ′) such that
decide (M,F ) (M ′, F ′) (i.e., there is no literal such that var l ∈ DecVars , l /∈ M , and
l /∈M).

A state is a rejecting state if M �¬F and decisions M = [ ].

Note that the condition M 2¬F in the above definition can be replaced by the condition
M |= F , but the former is used since its check can be more efficiently implemented.

Example 4.5. Let F0 = [ [−1,+2], [−1,−3,+5,+7], [−1,−2,+5,−7], [−2,+3], [+2,+4],
[−2,−5,+7], [−3,−6,−7], [−5,+6] ]. One possible →d trace is given below.
rule M

[ ]
decide (l = +1), [+1d]
unitPropagate (c = [−1,+2], l = +2) [+1d,+2i]
unitPropagate (c = [−2,+3], l = +3) [+1d,+2i,+3i]
decide (l = +4) [+1d,+2i,+3i,+4d]
decide (l = +5) [+1d,+2i,+3i,+4d,+5d]
unitPropagate (c = [−5,+6], l = +6) [+1d,+2i,+3i,+4d,+5d,+6i]
unitPropagate (c = [−2,−5,+7], l = +7) [+1d,+2i,+3i,+4d,+5d,+6i,+7i]
backtrack (M �¬ [−3,−6,−7]) [+1d,+2i,+3i,+4d,−5i]
unitPropagate (c = [−1,−3,+5,+7], l = +7) [+1d,+2i,+3i,+4d,−5i,+7i]
backtrack (M �¬ [−1,−2,+5,−7]) [+1d,+2i,+3i,−4i]
decide (l = +5) [+1d,+2i,+3i,−4i,+5d]
unitPropagate (c = [−5,+6], l = +6) [+1d,+2i,+3i,−4i,+5d,+6i]
unitPropagate (c = [−2,−5,+7], l = +7) [+1d,+2i,+3i,−4i,+5d,+6i,+7i]
backtrack (M �¬ [−3,−6,−7]) [+1d,+2i,+3i,−4i,−5i]
unitPropagate (c = [−1,−3,+5,+7], l = +7) [+1d,+2i,+3i,−4i,−5i,+7i]
backtrack (M �¬ [−1,−2,+5,−7] [−1i]
decide (l = +2) [−1i,+2d]
unitPropagate (c = [−2,+3], l = +3) [−1i,+2d,+3i]
decide (l = +4) [−1i,+2d,+3i,+4d]
decide (l = +5) [−1i,+2d,+3i,+4d,+5d]
unitPropagate (c = [−5,+6], l = +6) [−1i,+2d,+3i,+4d,+5d,+6i]
unitPropagate (c = [−2,−5,+7], l = +7) [−1i,+2d,+3i,+4d,+5d,+6i,+7i]
backtrack M �¬ [−3,−6,−7] [−1i,+2d,+3i,+4d,−5i]
decide (l = +6) [−1i,+2d,+3i,+4d,−5i,+6d]
unitPropagate (c = [−3,−6,−7], l = −7) [−1i,+2d,+3i,+4d,−5i,+6d,−7i]

4.2. Properties. In order to prove that the presented transition system is terminating,
sound, and complete, first, local properties of the transition rules have to be given in the
form of certain invariants.
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4.2.1. Invariants. For proving properties of the described transition system, several rele-
vant rule invariants will be used (not all of them are used for proving each of soundness,
completeness, and termination, but we list them all here for the sake of simplicity).

Invconsistent: consistent M
Invdistinct: distinct M
InvvarsM : vars M ⊆ Vars
InvimpliedLits: ∀l. l ∈M −→ (F @ decisionsTo l M) � l
Invequiv: F ≡ F0

InvvarsF : vars F ⊆ Vars

The condition Invconsistent states that the trail M can potentially be a model of the
formula, and Invdistinct requires that it contains no repeating elements. The InvimpliedLits

ensures that any literal l in M is entailed by F with all decision literals that precede l.
Notice that the given rules do not change formulae in states, so it trivially holds that

F = F0, which further implies Invequiv and InvvarsF . However, the transition systems
that follow in the next sections may change formulae, so the above set of invariants is
more appropriate. If only testing satisfiability is considered (and not in building models for
satisfiable formulae), instead of Invequiv, it is sufficient to require that F and F0 are weakly
equivalent (i.e., equisatisfiable).

The above conditions are indeed invariants (i.e., they are met for each state during the
application of the rules), as stated by the following lemma.

Lemma 4.6.

(1) In the initial state ([ ], F0) all the invariants hold.
(2) If (M,F ) →d (M ′, F ′) and if the invariants are met in the state (M,F ), then they are

met in the state (M ′, F ′) too.
(3) If ([ ], F0)→

∗

d (M,F ), then all the invariants hold in the state (M,F ).

The proof of this lemma considers a number of cases — one for each rule-invariant pair.

4.2.2. Soundness. Soundness of the given transition system requires that if the system ter-
minates in an accepting state, then the input formula is satisfiable, and if the system
terminates in a rejecting state, then the input formula is unsatisfiable.

The following lemma ensures soundness for satisfiable input formulae, and the next
one is used for proving soundness for unsatisfiable input formulae (but also in some other
contexts).

Lemma 4.7. If DecVars ⊇ vars F0 and if there is an accepting state (M,F ) such that:

(1) consistent M (i.e., Invconsistent holds),
(2) F ≡ F0 (i.e., Invequiv holds),
(3) vars F ⊆ Vars (i.e., InvvarsF holds),

then the formula F0 is satisfiable and M is one model (i.e., model M F0).

Lemma 4.8. If there is a state (M,F ) such that:

(1) ∀l. l ∈M −→ (F @ decisionsTo l M) � l (i.e., InvimpliedLits holds),
(2) M �¬F

then ¬(sat (F @ decisions M)).

Theorem 4.9 (Soundness for →d). If ([ ], F0)→
∗

d (M,F ), then:
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(1) If DecVars ⊇ vars F0 and (M,F ) is an accepting state, then the formula F0 satisfiable
and M is one model (i.e., sat F0 and model M F0).

(2) If (M,F ) is a rejecting state, then the formula F0 is unsatisfiable (i.e., ¬(sat F0)).

Proof. By Lemma 4.6 all the invariants hold in the state (M,F ).
Let us assume that DecVars ⊇ vars F0 and (M,F ) is an accepting state. Then, by

Lemma 4.7, the formula is F0 satisfiable and M is one model.
Let us assume that (M,F ) is a rejecting state. Then M �¬F and, by Lemma 4.8,

¬(sat (F @ (decisions M))). Since (M,F ) is a rejecting state, it holds that decisions M = [ ],
and hence ¬(sat F ). From F ≡ F0 (Invequiv), it follows that ¬(sat F0), i.e., the formula F0

is unsatisfiable.

4.2.3. Termination. Full and precise formalization of termination is very demanding, and
termination proofs given in the literature (e.g., [KG07, NOT06]) are far from detailed formal
proofs. For this reason, termination proofs will be presented here in more details, including
auxiliary lemmas used to prove the termination theorem.

The described transition system terminates, i.e., for any input formulae F0, the system
(starting from the initial state ([ ], F0)) will reach a final state in a finite number of steps.
In other words, the relation →d is well-founded. This can be proved by constructing a well-
founded partial ordering ≻ over trails, such that (M1, F1) →d (M2, F2) implies M1 ≻ M2.
In order to reach this goal, several auxiliary orderings are defined.

First, a partial ordering over annotated literals ≻lit and a partial ordering over trails ≻tr

will be introduced and some of their properties will be given within the following lemmas.

Definition 4.10 (≻lit). l1 ≻lit l2 iff isDecision l1 ∧ ¬(isDecision l2)

Lemma 4.11. ≻lit is transitive and irreflexive.

Definition 4.12 (≻tr). M1 ≻tr M2 iff M1 ≻
lex
lit M2, where ≻

lex
lit is a lexicographic extension

of ≻lit.

Lemma 4.13. ≻tr is transitive, irreflexive, and acyclic (i.e., there is no trail M such that
M ≻+

tr M).
For any three trails M , M ′, and M ′′ it holds that: if M ′ ≻tr M

′′, then M @ M ′ ≻tr

M @ M ′′.

The next lemma links relations →d and ≻tr.

Lemma 4.14. If decide (M1, F1) (M2, F2) or unitPropagate (M1, F1) (M2, F2) or backtrack
(M1, F1) (M2, F2), then M1 ≻tr M2.

The relation ≻tr is not necessarily well-founded (for the elements of the trails range
over infinite sets), so a restriction ≻tr|V bl of the relation ≻tr will be defined such that it is
well-founded, which will lead to the termination proof for the system.

Definition 4.15 (≻tr|V bl). M1 ≻tr|V blM2 iff (distinctM1 ∧ varsM1 ⊆ V bl) ∧ (distinctM2 ∧
vars M2 ⊆ V bl) ∧ M1 ≻tr M2

Lemma 4.16. If the set V bl is finite, then the relation ≻tr|V bl is a well-founded ordering.

Finally, we prove that the transition system is terminating.
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Theorem 4.17 (Termination for →d). If the set DecVars is finite, for any formula F0, the
relation →d is well-founded on the set of states (M,F ) such that ([ ], F0)→

∗

d (M,F ).

Proof. By Proposition 3.4 it suffices to construct a well-founded ordering on the set of states
(M,F ) such that ([ ], F0)→

∗

d (M,F ) such that

(M1, F1)→d (M2, F2) −→ (M1, F1) ≻ (M2, F2).

One such ordering is ≻ defined by: (M1, F1) ≻ (M2, F2) iff M1 ≻tr|VarsM2.
Indeed, since by Lemma 4.16, ≻tr|Vars is well-founded, by Proposition 3.4 (for a function

mapping (M,F ) to M), ≻ is also a well-founded ordering.
Let (M1, F1) and (M2, F2) be two states such that ([ ], F0)→

∗

d (M1, F1) and (M1, F1)→d

(M2, F2). By Lemma 4.6 all the invariants hold for (M1, F1). From (M1, F1) →d (M2, F2),
by Lemma 4.14, it follows that M1 ≻tr M2. Moreover, by Lemma 4.6, all the invariants
hold also for (M2, F2), so distinct M1, vars M1 ⊆ Vars , distinct M2 and vars M2 ⊆ Vars .
Ultimately, M1 ≻tr|VarsM2.

4.2.4. Completeness. Completeness requires that all final states are outcome states.

Theorem 4.18 (Completeness for →d). Each final state is either accepting or rejecting.

Proof. Let (M,F ) be a final state. It holds that either M �¬F or M 2¬F .
If M 2¬F , since there is no state (M ′, F ′) such that decide (M,F ) (M ′, F ′) (as (M,F )

is a final state), there is no literal l such that var l ∈ DecVars , l /∈M , and l /∈M , so (M,F )
is an accepting state.

If M �¬F , since there is no state (M ′, F ′) such that backtrack (M,F ) (M ′, F ′) (as
(M,F ) is a final state), it holds that decisions M = [ ], so (M,F ) is a rejecting state.

Notice that from the proof it is clear that the basic search system consisting only of
the rules decide and backtrack is complete.

4.2.5. Correctness. The theorems 4.9, 4.17, and 4.18 directly lead to the theorem about
correctness of the introduced transition system.10

Theorem 4.19 (Correctness for →d). The given transition system is correct, i.e., if all
variables of the input formula belong to the set DecVars, then for any satisfiable input
formula, the system terminates in an accepting state, and for any unsatisfiable formula, the
system terminates in a rejecting state.

5. Backjumping

In this section, we consider a transition system that replaces naive chronological backtrack-
ing by more advanced nonchronological backjumping.

10Correctness of the system can be proved with a weaker condition. Namely, instead of the condition
that all variables of the input formula belong to the set DecVars , it is sufficient that all strong backdoor
variables belong to DecVars [BHMW09], but that weaker condition is not considered here.
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5.1. States and Rules. The rules of the new system are given (as in Section 4) in the
form of relations over states.

Definition 5.1 (Transition rules).
unitPropagate (M1, F1) (M2, F2) iff

∃c l. F1 � c ∧ var l ∈ Vars ∧ isUnit c l M1 ∧

M2 = M1 @ li ∧ F2 = F1

backjump (M1, F1) (M2, F2) iff

∃ c l P level . F1 � c ∧ var l ∈ Vars ∧

P = prefixToLevel level M ∧ 0 ≤ level < currentLevel M ∧

isUnit c l P ∧

F2 = F1 ∧ M2 = P @ li

decide (M1, F1) (M2, F2) iff ∃l. var l ∈ DecVars ∧ l /∈M1 ∧ l /∈M1 ∧
M2 = M1 @ ld ∧ F2 = F1

In the following, the transition system described by the relation →b defined by these
rules will be considered.

The key difference between the new transition system and one built over the rules given
in Definition 4.2 is the rule backjump (that replaces the rule backtrack). The rule decide is
the same as the one given in Definition 4.2, while the rule unitPropagate is slightly modified
(i.e., its guard is relaxed).

The clause c in the backjump rule is called a backjump clause and the level level is called
a backjump level. The given definition of the backjump rule is very general — it does not
specify how the backjump clause c is constructed and what prefix P (i.e., the level level) is
chosen if there are several options. There are different strategies that specify these choices
and they are required for concrete implementations. The conditions that P is a prefix to a
level (i.e., that P is followed by a decision literal in M1) and that this level is smaller than
the current level are important only for termination. Soundness can be proved even with
a weaker assumption that P is an arbitrary prefix of M1. However, usually the shortest
possible prefix P is taken. The backtrack rule can be seen as a special case of the backjump
rule. In that special case, the clause c is built of opposites of all decision literals in the trail
and P becomes prefixBeforeLastDecision M1.

Notice that the backjump clause c does not necessarily belong to F1 but can be an
arbitrary logical consequence of it. So, instead of c ∈ F1, weaker conditions F1 � c and
var l ∈ Vars are used in the backjump rule (the latter condition is important only for
termination). This weaker condition (inspired by the use of SAT engines in SMT solvers)
can be used also for the unitPropagate rule and leads from the rule given in Definition 4.2, to
its present version (this change is not relevant for the system correctness). The new version
of unitPropagate has much similarities with the backjump rule — the only difference is that
the backjump rule always asserts the implied literal to a proper prefix of the trail.

Example 5.2. Let F0 be the same formula as in Example 4.5. One possible →b trace is
given below. Note that, unlike in the trace shown in Example 4.5, the decision literal +4
is removed from the trail during backjumping, since it was detected to be irrelevant for the
conflict, resulting in a shorter trace. The deduction of backjump clauses (e.g., [−2,−3,−5])
will be presented in Example 7.4.
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rule M
[ ]

decide (l = +1), [+1d]
unitPropagate (c = [−1,+2], l = +2) [+1d,+2i]
unitPropagate (c = [−2,+3], l = +3) [+1d,+2i,+3i]
decide (l = +4) [+1d,+2i,+3i,+4d]
decide (l = +5) [+1d,+2i,+3i,+4d,+5d]
unitPropagate (c = [−5,+6], l = +6) [+1d,+2i,+3i,+4d,+5d,+6i]
unitPropagate (c = [−2,−5,+7], l = +7) [+1d,+2i,+3i,+4d,+5d,+6i,+7i]
backjump (c = [−2,−3,−5], l = −5) [+1d,+2i,+3i,−5i]
unitPropagate (c = [−1,−3,+5,+7], l = +7) [+1d,+2i,+3i,−5i,+7i]
backjump (c = [−1], l = −1) [−1i]
decide (l = +2) [−1i,+2d]
unitPropagate (c = [−2,+3], l = +3) [−1i,+2d,+3i]

decide (l = +4) [−1i,+2d,+3i,+4d]
decide (l = +5) [−1i,+2d,+3i,+4d,+5d]
unitPropagate (c = [−5,+6], l = +6) [−1i,+2d,+3i,+4d,+5d,+6i]
unitPropagate (c = [−2,−5,+7], l = +7) [−1i,+2d,+3i,+4d,+5d,+6i,+7i]
backjump (c = [−2,−3,−5]) [−1i,+2d,+3i,−5i]
decide (l = +4) [−1i,+2d,+3i,−5i,+4d]
decide (l = +6) [−1i,+2d,+3i,−5i,+4d,+6d]
unitPropagate (c = [−3,−6,−7], l = −7) [−1i,+2d,+3i,−5i,+4d,+6d,−7i]

5.2. Backjump Levels. In Definition 5.1, for the backjump rule to be applicable, it is
required that there is a level of the trail such that the backjump clause is unit in the prefix
to that level. The following definition gives a stronger condition (used in modern SAT
solvers) for a level ensuring applicability of the backjump rule to that level.

Definition 5.3 (Backjump level). A backjump level for the given backjump clause c (false
in M) is a level level that is strictly less than the level of the last falsified literal from c,
and greater or equal to the levels of the remaining literals from c:

isBackjumpLevel level l c M iff M �¬ c ∧ l = lastAssertedLiteral c M ∧

0 ≤ level < level l M ∧

∀ l′. l′ ∈ c \ l −→ level l′ M ≤ level

Using this definition, the backjump rule can be defined in a more concrete and more
operational way.

backjump′ (M1, F1) (M2, F2) iff ∃c l level. F1 � c ∧ var l ∈ Vars ∧
isBackjumpLevel level l c M1 ∧
M2 = (prefixToLevel level M1)@ li ∧ F2 = F1

Notice that, unlike in Definition 5.1, it is required that the backjump clause is false, so
this new rule is applicable only in conflict situations.

It still remains unspecified how the clause c is constructed. Also, it is required to check
whether the clause c is false in the current trail M and implied by the current formula F . In
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Section 7 it will be shown that if a clause c is built during a conflict analysis process, these
conditions will hold by construction and so it will not be necessary to check them explicitly.
Calculating the level of each literal from c (required for the backjump level condition) will
also be avoided.

The following lemmas connect the backjump and backjump’ rules.

Lemma 5.4. If:

(1) consistent M (i.e., Invconsistent holds),
(2) unique M (i.e., Invunique holds),
(3) isBackjumpLevel level l c M ,

then isUnit c l (prefixToLevel level M).

Lemma 5.5. If a state (M,F ) satisfies the invariants and if backjump′ (M,F ) (M ′, F ′),
then backjump (M,F ) (M ′, F ′).

Because of the very close connection between the relations backjump and backjump’,
we will not explicitly define two different transition relations →b. Most of the correctness
arguments apply to both these relations, and hence only differences will be emphasized.

Although there are typically many levels satisfying the backjump level condition, (i.e.,
backjumping can be applied for each level between the level of the last falsified literal from
c and the levels of the remaining literals from c), usually it is applied to the lowest possible
level, i.e., to the level that is a backjump level such that there is no smaller level that is
also a backjump level. The following definition introduces formally the notion of a minimal
backjump level.

Definition 5.6 (isMinimalBackjumpLevel). isMinimalBackjumpLevel level l c M iff

isBackjumpLevel level l c M ∧ (∀ level ′ < level . ¬isBackjumpLevel level ′ l c M)

Although most solvers use minimal levels when backjumping, this will be formally
required only for systems introduced in Section 8.

5.3. Properties. As in Section 4, local properties of the transition rules in the form of
certain invariants are used in proving properties of the transition system.

5.3.1. Invariants. The invariants required for proving soundness, termination, and com-
pleteness of the new system are the same as the invariants listed in Section 4. So, it is
required to prove that the rules backjump and the modified unitPropagate preserve all the
invariants. Therefore, Lemma 4.6 has to be updated to address new rules and its proof has
to be modified to reflect the changes in the definition of the transition relation.

5.3.2. Soundness and Termination. The soundness theorem (Theorem 4.9) has to be up-
dated to address the new rules, but its proof remains analogous to the one given in Section
4.

The termination theorem (Theorem 4.17) also has to be updated, and its proof again
remains analogous to the one given in 4. However, in addition to Lemma 4.14, the following
lemma has to be used.

Lemma 5.7. If backjump (M1, F1) (M2, F2), then M1 ≻tr M2.
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This proof relies on the following property of the relation ≻tr.

Lemma 5.8. If M is a trail and P = prefixToLevel level M , such that 0 ≤ level <
currentLevel M , then M ≻tr P @ li.

5.3.3. Completeness and Correctness. Completeness of the system is proved partly in anal-
ogy with the completeness proof of the system described in Section 4, given in Theorem
4.18. When (M,F ) is a final state and M 2¬F , the proof remains the same as for Theorem
4.18. When (M,F ) is a final state and M �¬F , for the new system it is not trivial that this
state is a rejecting state (i.e., it is not trivial that decisions M = [ ]). Therefore, it has to
be proved, given that the invariants hold, that if backjumping is not applicable in a conflict
situation (when M �¬F ), then decisions M = [ ] (i.e., if decisions M 6= [ ], then backjump’ is
applicable, and so is backjump). The proof relies on the fact that a backjump clause may be
constructed only of all decision literals. This is the simplest way to construct a backjump
clause c and in this case backjumping degenerates to backtracking. The clause c constructed
in this way meets sufficient (but, of course, not necessary) conditions for the applicability
of backjump’ (and, consequently, by Lemma 5.5, for the applicability of backjump).

Lemma 5.9. If for a state (M,F ) it holds that:

(1) consistent M (i.e., Invconsistent holds),
(2) unique M (i.e., Invunique holds),
(3) ∀l. l ∈M −→ F @ (decisionsTo l M) � l (i.e., InvimpliedLits holds),
(4) vars M ⊆ Vars (i.e., InvvarsM holds),
(5) M �¬F ,
(6) decisions M 6= [ ],

then there is a state (M ′, F ′) such that backjump′ (M,F ) (M ′, F ′).

To ensure applicability of Lemma 5.9, the new version of the completeness theorem
(Theorem 4.18) requires that the invariants hold in the current state. Since, by Lemma 5.5,
backjump′ (M,F ) (M ′, F ′) implies backjump (M,F ) (M ′, F ′), the following completeness
theorem holds for both transition systems presented in this section (using the rule backjump’
or the rule backjump).

Theorem 5.10 (Completeness for →b). If ([ ], F0)→
∗

b (M,F ), and (M,F ) is a final state,
then (M,F ) is either accepting or rejecting.

Proof. Let (M,F ) be a final state. By Lemma 4.6, all invariants hold in (M,F ). Also, it
holds that either M �¬F or M 2¬F .

If M 2¬F , since decide is not applicable, (M,F ) is an accepting state.
If M �¬F , assume that decisions M 6= [ ]. By Lemma 5.9, there is a state (M ′, F ′)

such that backjump′ (M,F ) (M ′, F ′). This contradicts the assumption that (M,F ) is a final
state. Therefore, decisions M = [ ], and since M �¬F , (M,F ) is a rejecting state.

Correctness of the system is a consequence of soundness, termination, and completeness,
in analogy with Theorem 4.19.
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6. Learning and Forgetting

In this section we briefly describe a system obtained from the system introduced in Section 5
by adding two new transition rules. These rules will have a significant role in more complex
systems discussed in the following sections.

6.1. States and Rules. The relation →b introduced in Section 5 is extended by the two
following transition rules (introduced in the form of relations over states).

Definition 6.1 (Transition rules).

learn (M1, F1) (M2, F2) iff ∃ c . F1 � c ∧ vars c ⊆ Vars ∧

F2 = F1 @ c ∧ M2 = M1

forget (M1, F1) (M2, F2) iff ∃ c . F1 \ c � c ∧

F2 = F1 \ c ∧ M2 = M1

The extended transition system will be denoted by →l.

The learn rule is defined very generally. It is not specified how to construct the clause c
— typically, only clauses resulting from the conflict analysis process (Section 7) are learnt.
This is the only rule so far that changes F , but the condition F � c ensures that it always
remains logically equivalent to the initial formula F0. The condition vars c ⊆ Vars is relevant
only for ensuring termination.

The forget rule changes the formula by removing a clause that is implied by all other
clauses (i.e., is redundant). It is also not specified how this clause c is chosen.

Example 6.2. Let F0 be a formula from Example 4.5. A possible →l trace is given by
(note that, unlike in the trace shown in Example 5.2, a clause [−1,−2,−3] is learnt and
used afterwards for unit propagation in another part of the search tree, eventually leading
to a shorter trace):
rule M F

[ ] F0

decide (l = +1), [+1d] F0

unitPropagate (c = [−1,+2], l = +2) [+1d,+2i] F0

unitPropagate (c = [−2,+3], l = +3) [+1d,+2i,+3i] F0

decide (l = +4) [+1d,+2i,+3i,+4d] F0

decide (l = +5) [+1d,+2i,+3i,+4d,+5d] F0

unitPropagate (c = [−5,+6], l = +6) [+1d,+2i,+3i,+4d,+5d,+6i] F0

unitPropagate (c = [−2,−5,+7], l = +7) [+1d,+2i,+3i,+4d,+5d,+6i,+7i] F0

backjump (c = [−2,−3,−5], l = −5) [+1d,+2i,+3i,−5i] F0

learn (c = [−2,−3,−5]) [+1d,+2i,+3i,−5i] F0 @ [−2,−3,−5]
unitPropagate (c = [−1,−3,+5,+7], l = +7) [+1d,+2i,+3i,−5i,+7i] F0 @ [−2,−3,−5]
backjump (c = [−1], l = −1) [−1i] F0 @ [−2,−3,−5]
decide (l = +2) [−1i,+2d] F0 @ [−2,−3,−5]
unitPropagate (c = [−2,+3], l = +3) [−1i,+2d,+3i] F0 @ [−2,−3,−5]
unitPropagate (c = [−2,−3,−5], l = −5) [−1i,+2d,+3i,−5i] F0 @ [−2,−3,−5]
decide (l = +4) [−1i,+2d,+3i,−5i,+4d] F0 @ [−2,−3,−5]
decide (l = +6) [−1i,+2d,+3i,−5i,+4d,+6d] F0 @ [−2,−3,−5]
unitPropagate (c = [−3,−6,−7], l = −7) [−1i,+2d,+3i,−5i,+4d,+6d,−7i] F0 @ [−2,−3,−5]
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6.2. Properties. The new set of rules preserves all the invariants given in Section 4.2.1.
Indeed, since learn and forget do not change the trail M , all invariants about the trail
itself are trivially preserved by these rules. It can be proved that Invequiv, InvvarsF and
InvimpliedLiterals also hold for the new rules.

Since the invariants are preserved in the new system, soundness is proved as in Theorem
4.9. Completeness trivially holds, since introducing new rules to a complete system cannot
compromise its completeness. However, the extended system is not terminating since the
learn and forget rules can by cyclically applied. Termination could be ensured with some
additional restrictions. Specific learning, forgetting and backjumping strategies that ensure
termination will be defined and discussed in Sections 7 and 8.

7. Conflict Analysis

The backjumping rules, as defined in Section 5, are very general. If backjump clauses
faithfully reflect the current conflict, they typically lead to significant pruning of the search
space. In this section we will consider a transition system that employs conflict analysis in
order to construct backjump clauses, which can be (in addition) immediately learned (by
the rule learn).

7.1. States and Rules. The system with conflict analysis requires extending the definition
of state introduced in Section 4.

Definition 7.1 (State). A state of the system is a four-tuple (M,F,C, cflct ), where M is
a trail, F is a formula, C is a clause, and cflct is a Boolean variable. A state ([ ], F0, [ ],⊥)
is an initial state for the input formula F0.

Two new transition rules conflict and explain are defined in the form of relations over
states. In addition, the existing rules are updated to map four-tuple states to four-tuple
states.

Definition 7.2 (Transition rules).
decide (M1, F1, C1, cflct1) (M2, F2, C2, cflct2) iff

∃l. var l ∈ DecVars ∧ l /∈M1 ∧ l /∈M1 ∧

M2 = M1 @ ld ∧ F2 = F1 ∧ C2 = C1 ∧ cflct2 = cflct1

unitPropagate (M1, F1, C1, cflct1) (M2, F2, C2, cflct2) iff

∃c l. F1 � c ∧ var l ∈ vars Vars ∧ isUnit c l M1 ∧

M2 = M1 @ li ∧ F2 = F1 ∧ C2 = C1 ∧ cflct2 = cflct1

conflict (M1, F1, C1, cflct1) (M2, F2, C2, cflct2) iff

∃c. cflct1 = ⊥ ∧ F1 � c ∧ M1 �¬ c ∧

M2 = M1 ∧ F2 = F1 ∧ C2 = c ∧ cflct2 = ⊤

explain (M1, F1, C1, cflct1) (M2, F2, C2, cflct2) iff

∃ l c. cflct1 = ⊤ ∧ l ∈ C1 ∧ isReason c l M1 ∧ F1 � c ∧

M2 = M1 ∧ F2 = F1 ∧ C2 = resolve C1 c l ∧ cflct2 = ⊤

backjump (M1, F1, C1, cflct1) (M2, F2, C2, cflct2) iff
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∃l level. cflct1 = ⊤ ∧ isBackjumpLevel level l C1 M1 ∧

M2 = (prefixToLevel level M1)@ li ∧ F2 = F1 ∧

C2 = [ ] ∧ cflct2 = ⊥

learn (M1, F1, C1, cflct1) (M2, F2, C2, cflct2) iff

cflct1 = ⊤ ∧ C1 /∈ F1

M2 = M1 ∧ F2 = F1 @ C1 ∧ C2 = C1 ∧ cflct2 = cflct1

The relation →c is defined as in Definition 4.3, but using the above list of rules. The
definition of outcome states also has to be updated.

Definition 7.3 (Outcome states). A state is an accepting state if cflct = ⊥, M 2¬F and
there is no literal such that var l ∈ DecVars , l /∈M and l /∈M .

A state is a rejecting state if cflct = ⊤ and C = [ ].

Example 7.4. Let F0 be a formula from Example 4.5. A possible →c trace (shown up to
the first application of backjump) is given (due to the lack of space, the F component of the
state is not shown).
rule M cflct C

[ ] ⊥ []
decide (l = +1), [+1d] ⊥ []
unitPropagate (c = [−1,+2], l = +2) [+1d,+2i] ⊥ []
unitPropagate (c = [−2,+3], l = +3) [+1d,+2i,+3i] ⊥ []
decide (l = +4) [+1d,+2i,+3i,+4d] ⊥ []
decide (l = +5) [+1d,+2i,+3i,+4d,+5d] ⊥ []
unitPropagate (c = [−5,+6], l = +6) [+1d,+2i,+3i,+4d,+5d,+6i] ⊥ []
unitPropagate (c = [−2,−5,+7], l = +7) [+1d,+2i,+3i,+4d,+5d,+6i,+7i] ⊥ []
conflict (c = [−3,−6,−7]) [+1d,+2i,+3i,+4d,+5d,+6i,+7i] ⊤ [−3,−6,−7]
explain (l = −7, c = [−2,−5,+7]) [+1d,+2i,+3i,+4d,+5d,+6i,+7i] ⊤ [−2,−3,−5,−6]
explain (l = −6, c = [−5,+6]) [+1d,+2i,+3i,+4d,+5d,+6i,+7i] ⊤ [−2,−3,−5]
learn (c = [−2,−3,−5]) [+1d,+2i,+3i,+4d,+5d,+6i,+7i] ⊤ [−2,−3,−5]
backjump (c = [−2,−3,−5], l = −5) [+1d,+2i,+3i,−5i] ⊥ []

7.2. Unique Implication Points (UIP). SAT solvers employ different strategies for con-
flict analysis. The most widely used is a 1-UIP strategy, relying on a concept of unique
implication points (UIP) (often expressed in terms of implication graphs [MSS99]). Infor-
mally, a clause c, false in the trail M , satisfies the UIP condition if there is exactly one
literal in c that is on the highest decision level of M . The UIP condition is very easy to
check. The 1-UIP strategy requires that the rule explain is always applied to the last literal
false in M among literals from c, and that backjumping is applied as soon as c satisfies the
UIP condition.

Definition 7.5 (Unique implication point). A clause c that is false in M has a unique
implication point, denoted by isUIP l c M , if the level of the last literal l from c that is false
in M is strictly greater than the level of the remaining literals from c that are false in M :

isUIP l c M iff M �¬ c ∧ l = lastAssertedLiteral c M ∧

∀ l′. l′ ∈ c \ l −→ level l′ M < level l M
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The following lemma shows that, if there are decision literals in M , if a clause has a
unique implication point, then there is a corresponding backjump level, and consequently,
the backjump rule is applicable.

Lemma 7.6. If unique M (i.e., Invunique holds), then

isUIP l c M ∧ level l M > 0 iff ∃ level. isBackjumpLevel level l c M

Therefore, the guard isBackjumpLevel level l c M in the definition of the backjump rule
can be replaced by the stronger conditions isUIP l c M and level l M > 0. In that case, the
backjump level level has to be explicitly calculated (as in the proof of the previous lemma).

The UIP condition is trivially satisfied when the clause c consists only of opposites of
decision literals from the trail (a similar construction of c was already used in the proof of
Lemma 5.9).

Lemma 7.7. If it holds that:

(1) unique M (i.e., Invunique holds),
(2) c ⊆ decisions M ,
(3) l = lastAssertedLiteral c M ,

then isUIP l c M .

7.3. Properties. Properties of the new transition system will be again proved using in-
variants introduced in Section 4, but they have to be updated to reflect the new definition
of states. In addition, three new invariants will be used.

7.3.1. Invariants. In addition to the invariants from Section 4, three new invariants are
used.
InvCfalse: cflct −→ M �¬C
InvCentailed: cflct −→ F � C
InvreasonClauses: ∀ l. l ∈M ∧ l /∈ decisions M −→ ∃ c. isReason c l M ∧ F � c

The first two invariants ensure that during the conflict analysis process, the conflict
analysis clause C is a consequence of F and that C is false in M . The third invariant
ensures existence of clauses that are reasons of literal propagation (these clauses enable
application of the explain rule). By the rules unitPropagate and backjump literals are added
to M only as implied literals and in both cases propagation is performed using a clause
that is a reason for propagation, so this clause can be associated to the implied literal, and
afterwards used as its reason.

Lemma 4.6 again has to be updated to address new rules and its proof has to be modified
to reflect the changes in the definition of the relation →c.

7.3.2. Soundness. Although the soundness proof for unsatisfiable formulae could be again
based on Lemma 4.8, this time it will be proved in an alternative, simpler way (that does
not rely on the invariant InvimpliedLits), that was not possible in previous sections.

Lemma 7.8. If there is a rejecting state (M,F,C, cflct ) such that it holds

(1) F ≡ F0, (i.e., Invequiv holds)
(2) cflct −→ F � C (i.e., InvCentailed holds),

then F0 is unsatisfiable (i.e., ¬(sat F0)).
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Theorem 7.9 (Soundness for →c). If ([ ], F0, [ ],⊥)→
∗

c (M,F,C, cflct ), then:

(1) If DecVars ⊇ vars F0 and (M,F ) is an accepting state, then the formula is F0 satisfiable
and M is its model (i.e., sat F0 and model M F0).

(2) If (M,F,C, cflct ) is a rejecting state, then the formula F0 is unsatisfiable (i.e., ¬(sat F0)).

Proof. By Lemma 4.6, all the invariants hold in the state (M,F,C, cflct ).

(1) All conditions of Lemma 4.7 are met (adapted to the new defintion of state), so sat F0

and model M F0.
(2) All conditions of Lemma 7.8 are met, so ¬(sat F0).

7.3.3. Termination. Termination of the system with conflict analysis will be proved by using
a suitable well-founded ordering that is compatible with the relation →c, i.e., an ordering ≻
such that s→c s

′ yields s ≻ s′, for any two states s and s′. This ordering will be constructed
as a lexicographic combination of four simpler orderings, one for each state component.

The rules decide, unitPropagate, and backjump changeM and no other state components.
If a state s is in one of these relations with the state s′ then M ≻tr|VarsM

′ (for the ordering
≻tr|Vars , introduced in Section 4.2.3).

The ordering ≻tr|Vars cannot be used alone for proving termination of the system, since
the rules conflict, explain, and learn do not change M (and, hence, if a state s is transformed
into a state s′ by one of these rules, then it does not hold that M ≻tr|V arsM

′). For each of
these rules, a specific well-founded ordering will be constructed and it will be proved that
these rules decrease state components with respect to those orderings.

The ordering ≻bool will be used for handling the state component cflct and the rule
conflict (the rule explain changes the state component cflct , but also the state component
C, so it will be handled by another ordering). Given properties of the ordering ≻bool are
proved trivially.

Definition 7.10 (≻bool). b1 ≻bool b2 iff b1 = ⊥ ∧ b2 = ⊤.

Lemma 7.11. If conflict (M1, F1, C1, cflct1) (M2, F2, C2, cflct2), then cflct1 ≻bool cflct2.

Lemma 7.12. The ordering ≻bool is well-founded.

An ordering over clauses (that are the third component of the states) should be con-
structed such that the rule explain decreases the state component C with respect to that
ordering. Informally, after each application of the rule explain, a literal l of the clause C
that is (by InvCfalse) false in M is replaced by several other literals that are again false in

M , but for them it holds that their opposite literals precede the literal l in M (since reason
clauses are used). Therefore, the ordering of literals in the trail M defines an ordering of
clauses false in M . The ordering over clauses will be a multiset extension of the relation ≺M

induced by the ordering of literals in M (Definition 3.1). Each explanation step removes a
literal from C and replaces it with several literals that precede it in M . To avoid multiple
occurrences of a literal in C, duplicates are removed. Solvers usually perform this operation
explicitly and maintain the condition that C does not contain duplicates. However, our
ordering does not require this restriction and termination is ensured even without it.

Definition 7.13 (≻M
Cla). For a trail M , C1 ≻

M
Cla C2 iff 〈remDups C2〉 ≺

mult
M 〈remDups C1〉.

Lemma 7.14. For any trail M , the ordering ≻M
Cla is well-founded.
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The following lemma ensures that each explanation step decreases the conflict clause in
the ordering ≻M

Cla, for the current trail M . This ensures that each application of the explain
rule decreases the state with respect to this ordering.

Lemma 7.15. If l ∈ C and isReason c l M , then C ≻M
Cla resolve C c l.

Lemma 7.16. If explain (M,F,C1, cflct) (M,F,C2, cflct), then C1 ≻
M
Cla C2.

The rule learn changes the state component F (i.e., it adds a clause to the formula) and
it requires constructing an ordering over formulae.

Definition 7.17 (≻C
Form). For any clause C, F1 ≻

C
Form F2 iff C /∈ F1 ∧ C ∈ F2.

Lemma 7.18. For any clause C, the ordering ≻C
Form is well-founded.

By the definition of the learn rule, it holds that C /∈ F1 and C ∈ F2, so the following
lemma trivially holds.

Lemma 7.19. If learn (M,F1, C, cflct) (M,F2, C, cflct), then F1 ≻
C
Form F2.

Theorem 7.20 (Termination for →c). If the set DecVars is finite, for any formula F0, the
relation →c is well-founded on the set of states s such that s0 →

∗

c s, where s0 is the initial
state for F0.

Proof. Let ≻ be a (parametrized) lexicographic product (Definition ?), i.e., let

≻ ≡ ≻tr|Vars 〈∗lex∗〉 ≻bool 〈∗lex
p∗〉

(

λs. ≻Ms

Cla

)

〈∗lexp∗〉
(

λs. ≻Cs

Form

)

,

whereMs is the trail in the state s, and Cs is the conflict clause in the state s. By Proposition
3.4 and Lemmas 4.16, 7.12, 7.14, and 7.18, the relation ≻ is well-founded. If the invari-
ants hold in the state (M1, F1, C1, cflct1) and if (M1, F1, C1, cflct1) →c (M2, F2, C2, cflct2),
then (M1, cflct1, C1, F1) ≻ (M2, cflct2, C2, F2). Indeed, by Lemma 4.14, the rules decide,
unitPropagate and backjump decrease M in the ordering, the rule conflict does not change
M but (by Lemma 7.11) decreases cflct , the rule explain does not change M nor cflct , but
(by Lemma 7.16) decreases C, and the rule learn does not change M , cflct , nor C, but (by
Lemma 7.19) decreases F .

Then the theorem holds by Proposition 3.4 (where f is a permutation mapping (M, F,
C, cflct) to (M, cflct , C, F )).

7.3.4. Completeness and Correctness. Completeness requires that all final states are out-
come states, and the following two lemmas are used to prove this property.

Lemma 7.21. If for the state (M,F,C, cflct ) it holds that:

(1) cflct = ⊤,
(2) unique M (i.e., Invunique holds),
(3) cflct −→ M �¬C (i.e., InvCfalse holds),
(4) the rules explain and backjump are not applicable,

then the state (M,F,C, cflct) is a rejecting state and C = [ ].

Lemma 7.22. If in the state (M,F,C, cflct ) it holds that cflct = ⊥ and the rule conflict is
not applicable, then the state (M,F,C, cflct ) is an accepting state and M 2¬F .

Theorem 7.23 (Completeness for→c). For any formula F0, if ([ ], F0, [ ],⊥)→
∗

c (M,F,C, cflct ),
and if the state (M,F,C, cflct ) is final, then it is either accepting or rejecting.
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Proof. Since the state (M,F,C, cflct ) is reachable from the initial state, by Lemma 4.6, all
the invariants hold in this state, including uniqueM (i.e., Invunique), and cflct −→ M �¬C
(i.e., InvCfalse). In the state (M,F,C, cflct ), it holds that either cflct = ⊤ or cflct = ⊥. If
cflct = ⊥, since the rule decide is not applicable (as the state is final), by Lemma 7.22, the
state (M,F,C, cflct ) is a rejecting state. If cflct = ⊤, since the rule conflict is not applicable
(as the state is final) by Lemma 7.21, the state is an accepting state.

Correctness of the system is proved in analogy with Theorem 4.19.

8. Restarting and Forgetting

In this section we extend the previous system with restarting and forgetting. The most
challenging task with restarting is to ensure termination.

Many solvers use restarting and forgetting schemes that apply restarting with in-
creasing periodicity and there are theoretical results ensuring total correctness of these
[KG07, NOT06]. However, modern solvers also use aggressive restarting schemes (e.g.,
Luby restarts) that apply the restart rule very frequently, but there are no corresponding
theoretical results that ensure termination of these schemes. In this section we will for-
mulate a system that allows application of the restart rule after each conflict and show
that this (weakly constrained, hence potentially extremely frequent) scheme also ensures
termination.

8.1. States and Rules. Unlike previous systems that tend to be as abstract as possible,
this system aims to precisely describe the behaviour of modern SAT solvers. For example,
only learnt clauses can be forgotten. So, to aid the forget rule, the formula is split to the
initial part F0 and the learnt clauses Fl . Since the input formula F0 is fixed it is not a
part of state anymore, but rather an input parameter. The new component of the state
— the lnt flag — has a role in ensuring termination by preventing applying restart and
forget twice without learning a clause in between. In addition, some changes in the rules
ensure termination of some variants of the system. Unit propagation is performed eagerly,
i.e., decide is not applied when there is a unit clause present. Also, backjumping is always
performed to the minimal backjump level (Definition 5.2). These stronger conditions are
very often obeyed in real SAT solver implementations, and so this system still makes their
faithful model.

Definition 8.1 (State). A state of the system is a five-tuple (M,Fl , C, cflct , lnt), where M
is a trail, Fl is a formula, C is a clause, and cflct and lnt are Boolean variables. A state
([ ], F0, [ ],⊥,⊥) is a initial state for the input formula F0.

Definition 8.2 (Transition rules).
decide (M1,Fl1, C1, cflct1, lnt1) (M2,Fl2, C2, cflct2, lnt2) iff

∃l. var l ∈ DecVars ∧ l /∈M1 ∧ l /∈M1 ∧

¬(∃ c l. c ∈ F0 @Fl1 ∧ isUnitClause c l M1) ∧

M2 = M1@ ld ∧ Fl2 = Fl1 ∧ C2 = C1 ∧ cflct2 = cflct1 ∧ lnt2 = lnt1

unitPropagate (M1,Fl1, C1, cflct1, lnt1) (M2,Fl2, C2, cflct2, lnt2) iff

∃c l. c ∈ F0 @Fl1 ∧ isUnit c l M1 ∧

M2 = M1 @ li ∧ Fl2 = Fl1 ∧ C2 = C1 ∧ cflct2 = cflct1 ∧ lnt2 = lnt1
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conflict (M1,Fl1, C1, cflct1, lnt1) (M2,Fl2, C2, cflct2, lnt2) iff

∃c. cflct1 = ⊥ ∧ c ∈ F0 @Fl1 ∧ M1 �¬ c ∧

M2 = M1 ∧ Fl2 = Fl1 ∧ C2 = c ∧ cflct2 = ⊤ ∧ lnt2 = lnt1

explain (M1,Fl1, C1, cflct1, lnt1) (M2,Fl2, C2, cflct2, lnt2) iff

∃ l c. cflct1 = ⊤ ∧ l ∈ C1 ∧ isReason mc l M1 ∧ c ∈ F0 @Fl1 ∧

M2 = M1 ∧ Fl2 = Fl1 ∧ C2 = resolve C1 c l ∧ cflct2 = ⊤ ∧ lnt2 = lnt1

backjumpLearn (M1,Fl1, C1, cflct1, lnt1) (M2,Fl2, C2, cflct2, lnt2) iff

∃c l level. cflct1 = ⊤ ∧ isMinimalBackjumpLevel level l C1 M1 ∧

M2 = (prefixToLevel level M1)@ li ∧ Fl2 = Fl1@[C1] ∧

C2 = [ ] ∧ cflct2 = ⊥ ∧ lnt2 = ⊤

forget (M1,Fl1, C1, cflct1, lnt1) (M2,Fl2, C2, cflct2, lnt2) iff

∃ Fc. cflct1 = ⊥ ∧ lnt1 = ⊤

Fc ⊆ Fl ∧ (∀ c ∈ Fc. ¬(∃ l. isReason c l M1)) ∧

Fl2 = Fl1 \ Fc ∧ M2 = M1 ∧ C2 = C1 ∧ cflct2 = cflct1 ∧ lnt2 = ⊥

restart (M1,Fl1, C1, cflct1, lnt1) (M2,Fl2, C2, cflct2, lnt2) iff

cflct1 = ⊥ ∧ lnt1 = ⊤ ∧

M2 = prefixToLevel 0 M1 ∧ Fl2 = Fl1 ∧ C2 = C1 ∧ cflct2 = cflct1 ∧ lnt2 = ⊥

These rules will be used to formulate three different transition systems. The system
→r consists of all rules except restart, the system →f consists of all rules except forget, and
the system → consists of all rules.

8.2. Properties. The structure of the invariants and the proofs of the properties of the
system are basically similar to those given in Section 7, while the termination proof requires
a number of new insights.

8.2.1. Invariants. All invariants formulated so far hold, but the formula F , not present in
the new state, has to be replaced by F0 @Fl .

8.2.2. Termination. Termination of the system without restarts is proved first.

Theorem 8.3 (Termination for →r). If the set DecVars is finite, for any formula F0, the
relation →r is well-founded on the set of states s such that s0 →

∗

r s, where s0 is the initial
state for F0.

Proof. Let ≻ be a (parametrized) lexicographic product (Definition ?), i.e., let

≻ ≡ ≻tr|Vars 〈∗lex∗〉 ≻bool 〈∗lex
p∗〉

(

λs. ≻Ms

Cla

)

〈∗lex∗〉 ≻bool,

where Ms is the trail in the state s. By Proposition 3.4 and Lemmas 4.16, 7.12, and 7.14,
the relation ≻ is well-founded. If the state (M1,Fl 1, C1, cflct1, lnt1) satisfies the invariants
and if (M1,Fl1, C1, cflct1, lnt1) →r (M2,Fl 2, C2, cflct2, lnt2), then (M1, cflct1, C1,¬lnt1) ≻
(M2, cflct2, C2,¬lnt2). Indeed, by Lemma 4.14 the rules unitPropagate, decide and back-
jumpLearn decrease M , the rule conflict does not change M but (by Lemma 7.11) decreases
cflct , the rule explain does not change M nor cflct , but (by Lemma 7.16) decreases C, and
the rule forget does not change M , cflct , nor C, but decreases ¬lnt .

From the above, the theorem holds by Proposition 3.4 (for a suitable f).
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The termination proof of the system without forgets is more involved. We define a
(not necessarily well-founded) ordering of the formulae by inclusion and its restriction with
respect to the set of variables occurring in the formula.

Definition 8.4 (≻Form⊂). F1 ≻Form⊂ F2 iff F1 ⊂ F2.

Definition 8.5 (≻Form⊂ |Vbl). F1 ≻Form⊂ |Vbl F2 iff vars F1 ⊆ Vlb ∧ vars F1 ⊆ Vbl ∧
F1 ≻Form⊂ F2, where F denotes the formula obtained by removing duplicate literals from
clauses and removing duplicate clauses.

Lemma 8.6. If the set Vbl is finite, then the relation ≻Form⊂|Vbl is well-founded.

The following lemma states that if unit propagation is done eagerly and if backjumping
is always performed to the minimal backjump level, then the clauses that are learnt are
always fresh, i.e., they do not belong to the current formula.

Lemma 8.7. If s0 is an initial state, s0 →
∗

f sA and backjumpLearn sA sB, where sA =

(MA,FlA, CA,⊤, lntA), then CA /∈ F0 @FlA.

Therefore, backjumpLearn increases formula in the inclusion ordering.

Lemma 8.8. If s0 →f sA and backjumpLearn sA sB for initial state s0 and states sA and
sB, then F0 @FlA ≻Form⊂|V arsF0 @FlB, where FA and FB are formulae in states sA and
sB.

Theorem 8.9 (Termination for →f ). If the set DecVars is finite, for any formula F0, the
relation →f is well-founded on the set of states s such that s0 →

∗

f s, where s0 is the initial
state for F0.

Proof. Let ≻ be a (parametrized) lexicographic product (Definition ?), i.e., let

≻ ≡ ≻Form⊂|Vars 〈∗lex∗〉 ≻bool 〈∗lex∗〉 ≻tr|Vars 〈∗lex∗〉 ≻bool 〈∗lex
p∗〉

(

λs. ≻Ms

Cla

)

,

whereMs is the trail in the state s. By Proposition 3.4 and Lemmas 4.16, 7.12, 7.14, and 8.6,
the relation ≻ is well-founded. If the state (M1,Fl 1, C1, cflct1, lnt1) satisfies the invariants
and if (M1,Fl1, C1, cflct1, lnt1)→f (M1,Fl 1, C1, cflct1, lnt1), then (F1,¬lnt1,M1, cflct1, C1) ≻
(F2,¬lnt2,M2, cflct2, C2). Indeed, by Lemma 8.8 the rule backjumpLearn decreases F , the
rule restart does not change F but decreases ¬lnt , the rules unitPropagate and decide do not
change F and lnt but (by Lemma 4.14) decrease M , the rule conflict does not change F ,
lnt , nor M but (by Lemma 7.11) decreases cflct , and the rule explain does not change F ,
lnt , M nor cflct , but (by Lemma 7.16) decreases C.

From the above, the theorem holds by Proposition 3.4 (for a suitable f).

If both forget and restart are allowed, then the system is not terminating.

Theorem 8.10. The relation → is not well-founded on the set of states reachable from the
initial state.

Proof. Consider the formula [[−1,−2, 3], [−1,−2, 4], [−1,−3,−4], [−5,−6, 7], [−5,−6, 8],
[−5,−7,−8]]. The following derivation chain (for simplicity, not all components of the
states are shown) proves that the relation → is cyclic.
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rule M Fl lnt
[ ] [ ] ⊥

decide, decide [1d, 2d] [ ] ⊥
unitPropagate, unitPropagate [1d, 2d, 3i, 4i] [ ] ⊥
conflict, explain, explain, backjumpLearn [1d,−2i] [[−1,−2]] ⊤
restart [ ] [[−1,−2]] ⊥
decide, decide [5d, 6d] [[−1,−2]] ⊥
unitPropagate, unitPropagate [5d, 6d, 7d, 8d] [[−1,−2]] ⊥
conflict, explain, explain, backjumpLearn [5d,−6d] [[−1,−2], [−5,−6]] ⊤
forget [5d,−6i] [ ] ⊥
decide, decide [5d,−6i, 1d, 2d] [ ] ⊥
unitPropagate, unitPropagate [5d,−6i, 1d, 2d, 3i, 4i] [ ] ⊥
conflict, explain, explain, backjumpLearn [5d,−6i, 1d,−2i] [[−1,−2]] ⊤
restart [ ] [[−1,−2]] ⊥

Therefore, it holds that

([ ], [ ], [ ],⊥,⊥) →∗ ([ ], [[−1,−2]], [ ],⊥,⊥) →+ ([ ], [[−1,−2]], [ ],⊥,⊥).

However, if there are additional restrictions on the rule application policy, the system
may be terminating. Since the number of different states for the input formula F0 is finite
(when duplicate clauses and literals are removed), there is a number nf (dependent on
F0) such that there is no chain of rule applications without forget longer than nf (→f is

well-founded and therefore acyclic, so, on a finite set, there must exist nf such that →
nf

f is

empty). Similarly, there is a number nr (dependent on F0) such that there is no chain of
rule applications without restart longer than nr. So, termination is ensured for any policy
that guarantees that there is a point where the application of forget will be forbidden for at
least nf steps or that there is a point where the application of restart will be forbidden for
at least nr steps.

8.2.3. Soundness, Completeness and Correctness. Soundness and completeness proofs from
previous sections hold with minor modifications necessary to adapt them to the new defi-
nition of state and rules. The most demanding part is to update Lemma 4.6 and to prove
that the new rules maintain the invariants.

9. Related Work and Discussions

The original DPLL procedure [DLL62] has been described in many logic textbooks, along
with informal proofs of its correctness (e.g., [DSW94]). First steps towards verification of
modern DPLL-based SAT solvers have been made only recently. Zhang and Malik have
informally proved correctness of a modern SAT solver [ZM03]. Their proof is very informal,
the specification of the solver is given in pseudo-code and it describes only one strategy for
applying rules. The authors of two abstract transition systems for SAT also give correctness
proofs [NOT06, KG07]. These specifications and the proofs are much more formal than
those given in [ZM03], but they are also not machine-verifiable and are much less rigorous
than the proofs presented in this paper.
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In recent years, several machine-verifiable correctness proofs for SAT solvers were con-
structed. Lescuyer and Conchon formalized, within Coq, a SAT solver based on the classical
DPLL procedure and its correctness proof [LS08]. They used a deep embedding, so this
approach enables execution of the SAT solver in Coq and, further, a reflexive tactic. Marić
and Janičić formalized a correctness proof for the classical DPLL procedure by shallow
embedding into Isabelle/HOL [MJ10]. Shankar and Vaucher formally and mechanically
verified a high-level description of a modern DPLL-based SAT solver within the system
PVS [SV09]. However, unlike this paper which formalizes abstract descriptions for SAT,
they formalize a very specific SAT solver implementation within PVS. Marić proved par-
tial correctness (termination was not discussed) of an imperative pseudo-code of a modern
SAT solver using Hoare logic approach [Mar09] and total correctness of a SAT solver im-
plemented in Isabelle/HOL using shallow embedding [Mar10]. Both these formalizations
use features of the transition systems described in this paper and provide links between the
transition systems and executable implementations of modern SAT solvers. In the former
approach, the verified specification can be rewritten to an executable code in an imperative
programming language11 while in the latter approach, an executable code in a functional
language can be exported from the specification by automatic means [HN10].

The transition system discussed in Section 4 corresponds to a non-recursive version
of the classical DPLL procedure. The transition systems and correctness proofs presented
in the later sections are closely related to the systems of Nieuwenhuis et al. [NOT06] and
Krstić and Goel [KG07]. However, there are some significant differences, both in the level
of precision in the proofs and in the definitions of the rules.

Informal (non machine-verifiable) proofs allow authors some degree of imprecision. For
example, in [NOT06] and [KG07] clauses are defined as “disjunctions of literals” and for-
mulae as “conjunctions of clauses”, and this leaves unclear some issues such as whether
duplicates are allowed. The ordering of clauses and literals is considered to be irrelevant —
in [KG07] it is said that “clauses containing the same literals in different order are consid-
ered equal”, and in [NOT06] it is not explicitly said, but only implied (e.g., clauses in the
unitPropagate rule are written as C ∨ l, where M �¬C and l is undefined in M , and from
this it is clear that the order of literals must be irrelevant, or otherwise only last literals in
clauses could be propagated). Therefore, clauses and formulae are basically defined as sets
or multisets of literals. In our formal definition, clauses and formulae are defined as lists.
Although a choice whether to use lists, multisets, or sets in these basic definitions might not
seem so important, fully formal proofs show that this choice makes a very big difference.
Namely, using sets saves much effort in the proof. For example, if formulae may contain
repeated clauses, easy termination arguments like “there are finitely many different clauses
that can be learnt” cannot be applied. On the other hand, using sets makes the systems
quite different from real SAT solver implementations — eliminating duplicates from clauses
during solving is possible and cheap, but explicitly maintaining absence of duplicate clauses
from formulae may be intolerably expensive. It can be proved that maintaining absence of
duplicate clauses can be, under some conditions on the rules, implicitly guaranteed only by
eliminating duplicate clauses from formulae during initialization. Solvers typically assume
this complex fact, but it was not proved before for formulae represented by lists, while for
systems using sets this issue is irrelevant.

11As done in the implementation of our SAT solver ArgoSAT.
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The system given in [NOT06] is very close to the system given in Section 5 and later
extended in Section 6. The requirement that the set of decision literals exactly coincides
with the set of literals from the input formula is too strong and is not always present in
real SAT solvers, so it is relaxed in our system and the set DecVars is introduced (a similar
technique is used in [KG07]). Also, the definition of the backjump rule from [NOT06]
requires that there is a false clause in the formula being solved when the rule is applied,
but our formal analysis of the proofs shows that this assumption is not required, so it is
omitted from Definition 5.1. As already mentioned, the condition that the unit clauses
belong to the formula is also relaxed, and propagating can be performed over arbitrary
consequences of the formula. The invariants used in the proofs and the soundness proof
are basically the same in [NOT06] and in this paper, but the amount of details had to
be significantly increased to reach a machine-verifiable proof. Our completeness proof is
somewhat simpler. The ordering used in termination proof for the system with backjumping
in [NOT06] expresses a similar idea to ours, but is much more complex. A conflict analysis
process is not described within the system from [NOT06].

The system given in [KG07] is close to the system given in Section 7, with some minor
differences. Namely, in our system, instead of a set of decision literals, the set of decision
variables is considered. Also, unit, conflict and reason clauses need not be present in
the formula. The conflict set used in [KG07] along with its distinguished value no cflct

is here replaced by the conflict flag and a conflict clause (the conflict set is the set of
opposites of literals occurring in our conflict clauses). The underlying reasoning used in two
total correctness proofs is the same, although in [KG07] the invariants are not explicitly
formulated and the proof is monolithic (lemmas are not present) and rather informal.

Formalization of termination proofs from both [NOT06] and [KG07] required the great-
est effort in the formalization. Although arguments like “between any two applications of
the rule . . . there must be an occurrence of the rule . . . ”, heavily used in informal termina-
tion proofs, could be formalized, we felt that constructing explicit termination orderings is
much cleaner.

In [KG07] termination of systems with restarts is not thoroughly discussed and in
[NOT06] it is proved very informally, under a strong condition that the periodicity of restarts
is strictly increasing. This is often not the case in many modern SAT solver implementations.
In this paper, we have (formally) proved that restarting can be performed very frequently
(after each conflict) without compromising total correctness. However, some additional
requirements (unit propagation must be exhaustive, backjumping must be performed to
minimal backjumping levels, and backjump lemmas must always be learnt) are used in the
proof, but these are always present in modern SAT solvers. Although the issue has been
addressed in the literature, we are not aware of a previous proof of termination of frequent
restarting.

10. Conclusions

We presented a formalization of modern SAT solvers and their properties in the form of
abstract state transition systems. Several different SAT solvers are formalized — from the
classical DPLL procedure to its modern successors. The systems are defined in a very
abstract way so they cover a wide range of SAT solving procedures. The formalization
is made within the Isabelle/HOL system and the total correctness properties (soundness,
termination, completeness) are shown for each presented system.
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Central theorems claim (roughly) that a transition system, i.e., a SAT solver, terminates
and returns an answer yes if and only if the input formula is satisfiable. This whole con-
struction boils down to the simple definition of satisfiable formula, which can be confirmed
by manual inspection.

Our formalization builds up on the previous work on state transition systems for SAT
and also on correctness arguments for other SAT systems. However, our formalization is
the first that gives machine-verifiable total correctness proofs for systems that are close to
modern SAT solvers. Also, compared to other abstract descriptions, our systems are more
general (so can cover a wider range of possible solvers) and require weaker assumptions that
ensure the correctness properties. Thanks to the framework of formalized mathematics,
we explicitly separated notions of soundness and completeness, and defined all notions and
properties relevant for SAT solving, often neglected to some extent in informal presentations.

Our experience in the SAT verification project shows that having imperative software
modelled abstractly, in the form of abstract state transition systems, makes the verification
cleaner and more flexible. It can be used as a key building block in proving correctness of
SAT solvers by using other verification approaches which significantly simplifies the overall
verification effort.
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[Mar10] F. Marić. Formal Verification of a Modern SAT Solver by shallow embedding into Isabelle/HOL.

Theoretical Computer Science, 411(50), 2010.
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