
Geometry Tools gclc and Wingclc

Predrag Janičić

janicic@matf.bg.ac.yu

Faculty of Mathematics, University of Belgrade
Studentski trg 16, 11 000 Belgrade, Serbia

Abstract. We present geometry tools gclc and Wingclc. They are
based on a custom-built language for declarative representation of ge-
ometry figures. There are automated geometry theorem provers built
in gclc that directly link visual and semantical geometrical information
with deductive properties and machine–generated proofs. So, gclc/Win-

gclc can serve as a powerful mechanized geometric assistant. The main
areas of applications of gclc/Wingclc are in mathematical education,
in publishing, in storing mathematical knowledge, and in studies of au-
tomated reasoning.

1 Introduction

Euclidean geometry and geometric constructions have important role in math-
ematics and in mathematical education for thousands of years. In twentieth
century, there was a shift from classical, synthetic geometry in favor of algebraic
geometry in university education. However, synthetic geometry still holds a very
important position in lower levels of mathematical education and also, in recent
years, it has been making a comeback to university education, thanks to impor-
tant applications in computer-aided design, computer graphics, computer vision,
robotics, etc.

There is a range of geometry software tools, covering different geometries and
geometrical problems. Many of them focus on Euclidean geometry and on con-
struction problems. These problems are very suitable for interactive work and
animations, typical for dynamic geometry software (e.g., Geometer’s Sketchpad,
Cabri, Cinderella). In dynamic geometry software, the user can create and ma-
nipulate geometric constructions. Typically, the user starts a construction with
several points, construct new objects depending on the existing ones, and then
move the starting points to explore how the whole construction changes. Dy-
namic geometry software can help teachers to illustrate and students to explore
and understand abstract concepts in geometry. In addition, dynamic geometry
software can be used for producing digital mathematical illustrations. In most of
these tools, the user uses a graphical user interface, tools from toolbars, and the
point-and-click approach for describing geometric constructions step-by-step.

gclc is a tool for visualizing objects and notions of geometry and other
fields of mathematics. The main distinctive feature of this tool compared to
other geometry tools is that gclc uses a special purpose, custom-built language



for describing geometric constructions. Therefore, rather than using the point-
and-click approach to draw figures, in gclc one describes constructions as formal
procedures made of abstract steps. From the figure descriptions, corresponding
illustrations (in Cartesian model of Euclidean plane) can be generated. This
approach distinguishes the abstract nature of geometrical objects from their
semantics, usual models, and visualizations.

The primary focus of the first versions of gclc was producing digital illus-
trations of Euclidean constructions in LATEX form (hence the name “Geometry
Constructions → LATEX Converter”), but now it is much more than that. For
instance, there is support for symbolic expressions, for parametric curves and
surfaces, for drawing functions, graphs, and trees, support for flow control, etc.
Libraries of gclc procedures provide additional features, such as support for hy-
perbolical geometry. Complex geometry theorems can be expressed and proved
by automated geometry theorem provers built into gclc. So, now gclc provides
mathematical contents directly linked to visual representation and supported by
machine–generated proofs, and can serve as a powerful mechanized geometric
assistant [5]. Wingclc is a dynamic geometry tool built on top of gclc with a
graphical user interface and a range of additional functionalities.

The tool gclc is under constant development since 1996. The underlying
language has been only the subject of extensions, so the full vertical compat-
ibility is kept with the earliest versions. gclc/Wingclc programs are imple-
mented in the C++ programming language. gclc consists of around 1Mb or
40000 lines of code. There are versions of gclc for Windows and for Linux. The
executable versions both for Windows and Linux have less than 1Mb. A ver-
sion with a graphical user-friendly interface is available only for Windows. The
applications gclc and Wingclc are accompanied by a detailed user manual
and are freely available from http://www.matf.bg.ac.rs/~janicic/gclc and
from emis (The European Mathematical Information Service) servers (http:
//www.emis.de/misc/index.html). They have thousands of users worldwide
and their main areas of applications are in:

– publishing, i.e., in producing digital mathematical illustrations;
– storing mathematical contents;
– mathematical education;
– studies of automated geometrical reasoning.

2 Describing Geometric Constructions in gclc

A geometric construction is a sequence of specific, primitive construction steps.
These primitive construction steps are also called elementary constructions by
ruler and compass and they are:

– construction (by ruler) of a line such that two given points belong to it;
– construction of a point such that it is the intersection of two lines (if such a

point exists);



– construction (by compass) of a circle such that its center is one given point
and such that the second given point belongs to it;

– construction of intersections between a given line and a given circle (if such
points exist).

– construction of intersections between two given circles (if such points exist).

By using this set of primitive constructions, one can define more involved,
compound constructions (e.g., construction of right angle, construction of the
midpoint of a segment, construction of the perpendicular bisector of a segment,
etc.). In order to describe geometric constructions, it is usual to use higher level
constructions as well as the primitive ones.

gclc follows the idea of formal constructions and the need of distinguishing
abstract nature of geometrical objects and their semantics and usual models. A
geometric construction is a mere procedure of abstract steps and not a figure,
but for each Euclidean construction, there is its counterpart in the standard
Cartesian model. gclc provides easy-to-use support for all primitive construc-
tions, for a range of higher-level constructions, and support for visualizing these
constructions. Although motivated by the geometric constructions by ruler and
compass, gclc provides a support for some non-constructible objects too — for
instance, in gclc it is possible to determine/use a point obtained by rotation
for 1◦, although it is not possible to construct that point by ruler and compass).

The syntax of the language of gclc is very simple and intuitive [7]. It is
a high-level language designed for mathematicians and not a machine-oriented
script language (which are used internally in some geometry tools). The descrip-
tions of mathematical objects are easily comprehensible to mathematicians, and
in the same time, the commands enable describing very complex objects in a
very few lines.

In order to reduce syntactic overhead and to improve simplicity and read-
ability, the language of gclc is format-free, there are no command separa-
tors/terminators, arguments of commands are separated by white spaces, and
the use of brackets is very limited. The language is dynamically typed, i.e., vari-
ables are not declared and can change their types during program execution.
There is support for arrays and there are flow control structures if-then-else and
while-loop, sufficient for the language to be computationally complete (in a sense
in which, for instance, the languages C or Pascal are computationally complete).
There is support for user-defined procedures and parameters are always passed
by reference (so one procedure can return several results), unless they are numer-
ical constants. Other files (for instance, containing libraries of some procedures)
can be included.

There are around 150 elementary commands, but they are intuitive, so fun-
damentals of the language can be acquired in a very short time.

Some commands of gclc are aimed at describing a contents (geometrical or
other mathematical objects), while some are aimed at describing a presentation
(i.e., visualization of the described objects). According to their semantics, the
commands can be divided into the following groups:



Basic definitions: commands for introducing points, for defining a line on the
basis of two selected points, defining a circle, a numerical constant, etc.

Basic constructions: constructions of intersection points for two lines, for a
line and a circle, construction of the midpoint of a given segment, the bisector
of an angle, the perpendicular bisector of a segment, the line passing through
a given point and perpendicular to a given line, the line passing through a
given point and parallel to a given line, etc.

Transformations: commands for translation, rotation, line-symmetry, half-
turn, and also for some non-isometric transformations like scaling, circle
inversion, etc.

Calculations, expressions, and loops: commands for calculating angles de-
termined by triples of points, distances between points, for generating (pseudo)random
numbers, for calculating symbolic expressions, support for if-then-else struc-
tures and while-loops, etc.

Drawing commands: commands for drawing (in various modes) lines, line
segments, circles, arcs, ellipses, etc.

Labelling and printing commands: commands for labelling and marking points,
and for printing text in various ways;

Cartesian commands: commands for direct access to a user–defined Carte-
sian system. A user can define a system, its unit and, within the system,
he/she can define points, lines, conics, tangents, curves given in parametric
form, etc. Similar support is available for 3D Cartesian space.

Low level commands: commands for changing line thickness, color, clipping
area, figure dimensions, etc.

Commands for describing animations: commands for specifying animations
(within Wingclc). Several points can move from one position to another;
points can also be traced (i.e., a loci can be specified).

Commands for the geometry theorem proving: commands for specifying
a geometrical conjecture, controlling a level of proof details, and a maximal
number of proof steps or a time limit.

The example given in Fig. 1 illustrates one simple geometric construction.
Groups of commands are explained by comments (marked by the symbol %)
within the description itself. As in most geometry tools, descriptions of con-
structions in gclc typically start with introducing several (usually very few) free
points that do not depend on other points. After introducing free points, there is
typically a part with construction steps (e.g., constructing new points and lines
based on existing objects) and a part with labelling and drawing commands.
While an Euclidean construction is abstract procedure, there is its counterpart
in the standard Cartesian model that can be visualized. In order to visualize
a described construction, its free points should be assigned concrete Cartesian
plane coordinates, as illustrated by the example. By changing one of the three
free points, the whole of the illustration is updated.

Example given in Fig. 2 illustrates some programming features of the lan-
guage of gclc, such as while-loop. The construction described within this exam-
ple illustrates that, for any line segment AB, the locus of the points L such that



% free points

point A 10 10

point B 40 10

point C 30 40

% perpendicular bisectors of the sides

med a B C

med b A C

med c B A

% intersections of the bisectors

intersec O 1 a b

intersec O 2 a c

% labelling the points

cmark lb A

cmark rb B

cmark t C

cmark lt O 1

cmark rt O 2

% drawing the sides of the triangle ABC

drawsegment A B

drawsegment A C

drawsegment B C

% drawing the circumcircle of the triangle

drawcircle O 1 A

% specifying a conjecture

prove { identical O 1 O 2 }

A B

C

O1 O2

Fig. 1. Example of a description of a geometric construction (left) and the correspond-
ing (LATEX) output (right).

the angle ALB is right angle is the circle with the perimeter AB. The point B

is rotated (giving the point B′) around the point A for angle phi ranging from
0◦ to 70◦, and the point L is determined as the foot of the perpendicular from
B to AB′. Points L for different values of phi are connected by line segments.

3 Automated Theorem Provers

Automated theorem proving in geometry has three major lines of research: alge-
braic proof, semi-algebraic proof style, and synthetic proof style that is based on
artificial intelligence methods (see, for instance, [3] for a survey). Algebraic proof
style methods are based on reducing geometric properties to algebraic proper-
ties expressed in terms of Cartesian coordinates. These methods are usually very



point A 5 5

point B 50 5

cmark b A

cmark b B

drawsegment A B

set equal L old B

number phi 0

while { phi<=70 }
{

rotate B’ A phi B

line a B’ A

foot L B a

drawsegment L L old

set equal L old L

expression phi { phi+1 }
}

cmark lt B’

drawdashsegment A B’

drawdashsegment B L

A B

B
′

Fig. 2. Example of a construction description involving while-loop.

efficient, but the proofs they produce do not reflect the geometric nature of the
problem. Synthetic methods attempt to automate traditional geometry proof
methods and semi-algebraic methods are based on some sorts of calculations
(e.g., over areas of triangles or over measures of angles), but still produce read-
able proofs. The system gclc has three geometry theorem provers for Euclidean
constructive theorems built in:

– a theorem prover based on the area method [6]. This method belongs to
the group of semi-algebraic methods [1, 2]. It produces readable proofs, with
justifications for each proof step.

– theorem provers based on the Gröbner bases method and on the Wu’s
method [11]. These methods belong to the group of algebraic methods.

All three provers can prove hundreds of complex geometrical theorems very
efficiently, usually in only milliseconds (for a selection of proved theorems, see,
for instance, a repository GeoThms [13]).

The theorem provers consider only abstract specification of the conjecture
and do not consider Cartesian values of the points involved (they are used only
for visualization). The proofs, given in terms of the supported methods, can be



exported, along with explanations for each proof step. Proofs are also accompa-
nied by semantical counterparts — as a check if a conjecture is valid in the spe-
cific case, determined by the given Cartesian points. By this, gclc directly links
geometrical contents, its semantics, visual information, and machine–generated
proofs.

The provers are tightly integrated in gclc. This means that one can use the
prover to reason about a gclc construction without changing and adapting the
description of the construction for the deduction process — only the geometry
conjecture has to be provided within the prove command. One geometry conjec-
ture is given in example in Fig. 1. It states that pairwise intersections of the side
bisectors, the points O_1 and O_2, are identical (i.e., that three side bisectors
intersect at one point — at the center of the circumcircle).

The built-in theorem provers are also used for increasing power of the basic
geometry tool — by certain deductive checks. gclc detects syntactical errors in
input files. The processor can also detect semantical errors — situations when,
for a given concrete set of geometrical objects, a construction step is not possible.
For instance, in the construction shown in Fig.1, it is impossible to construct
a line O1O2, since the points O1 and O2 are identical. In such situations —
when gclc encounters a construction step that is semantically invalid (e.g., two
identical points do not determine a line), it reports that the step is illegal with
respect to a given set of free points. Then, it automatically invokes the theorem
prover to check if a construction step is geometrically sound, i.e., if it is possible
in general case. The prover is ran on the critical conjecture (e.g., it tries to prove
that two points are identical) and, if successful, it reports that the construction
step is always illegal/impossible [8].

4 Graphical Interface

Wingclc is a Microsoft Windows application that provides graphical user in-
terface to gclc and a range of interactive functionalities and tools typical for
dynamic geometry software (see Fig. 3) [9]. In Wingclc, gclc programs are
edited in an integrated syntax coloring editor and are visualized within an in-
ternal viewer. The detected errors (syntactical and semantical) and reports by
the theorem provers are listed in a debug/log window. Through the graphical
interface, the user can choose among the available automated theorem provers
(if any), among the available export formats (a simple LATEX format, a LATEX
format based on the package pstricks, a LATEX format based on the pack-
age TikZ, eps (Encapsulated PostScript), and svg (Scalable Vector Format)),
can import from one of available import formats (e.g., the format of the tool
JavaView (http://www.javaview.de/)), etc.

An animation in Wingclc is defined (within gclc code) as a formal con-
struction with a set of free points that (simultaneously) move linearly from an
initial to a destination position. Then, some points used in the construction can
be traced (giving a locus), drawn in a selected mode. The points to be traced



Fig. 3. Screenshot of the Wingclc application — the menus and toolbars (top), the
syntax coloring editor (left), the debug/log window (left-bottom), the picture window
(right), the status bar (bottom), the watch-window (right-top), the trace window (right-
bottom).

(and the properties of the drawn loci) can be given either within the code, or
through the trace window.

The watch window lists types and Cartesian values of selected objects in
the current construction or in a particular animation frame. It can serve as a
geometric calculator as it can be used for exploring geometry properties and
conjectures. For instance, consider the example given in Fig. 1. It states that
pairwise intersections of the side bisectors, the points O_1 and O_2, are identical
(i.e., that the side bisectors intersect at one point — at the center of the circum-
circle). This property can be, in a sense, explored within Wingclc. Namely, a
value d can be defined to be the distance between O_1 and O_2, and one can
monitor the value of d to test that if it equals zero (for these and for any other
three particular vertices). Of course, this is not a proof of the conjecture but a
hint that it might be valid. For proper, deductive proofs, the built-in theorem
provers are used (see Sec. 3).

For a described and visualized construction, the free points cannot be dragged
(as in many other dynamic geometry tools). Instead, the user can select a free
point (free points can be appropriately marked in the picture window) and its
new position, and then can choose either to update a construction by this change
or to define an animation. This approach is taken as in gclc one can describe
extremely complex constructions (much more complex than constructions de-
scribed in the point-and-click manner) and it might be difficult to update in
run-time both the text description and the picture.

One of the key ideas in development of Wingclc was to keep the graphical
interface as simple as possible and free of toolbars and tools for all construction
steps and available commands. Although developing a point-and-click mode is



still an option, it is not likely that further development will go in that direction.
Namely, the main comparative strength of gclc/Wingclc is the powerful, ex-
pressive, custom-built language. A move to the point-and-click approach would
make just a yet another geometry tool in that family, typically not-suitable
for describing complex geometrical configurations. Also, the largest part of the
language of gclc would remain unaccessible through the graphical interface
(since there are around 150 commands) and there would still be a need for using
scripting. In addition, there seem to be many users that prefer explicit textual
descriptions to the point-and-click approach.

5 Areas of Applications

There are four main areas of application of gclc:

Producing digital illustrations gclc can serve as a tool for making high-
quality digital mathematical illustrations in various formats. It has been
used for producing digital illustrations for a number of mathematical books
and journal articles.

Storing mathematical contents A lot of geometrical contents, both in edu-
cation and in research, is of visual nature. A complex geometric construction
may be illustrated by an image and can make understanding of the geome-
try text easier. However, without a given context and textual explanations
of the constructions, it is unlikely that one can guess the correct specifica-
tion of the construction. In addition, the author or a reader of a geometrical
text, may need to alter an image, to modify some of its characteristics, to
make it more general or more specific, and also to store it in a way that
enables these sorts of transformations. Therefore, it is much preferable to
have formal figure descriptions, rather than illustrations themselves. Geo-
metrical contents stored in this way is easy to understand, visualize, modify,
and process in different ways. Following this motivation, gclc can serve as
a mean for storing geometrical contents of visual nature in textual form [12].

Mathematical education In mathematical education, students can interac-
tively use gclc to make attempts in making constructions and/or explor-
ing some geometrical objects, notions, ideas, problems, proofs, properties,
etc. [4]. Rigorously describing geometrical objects is similar to programming,
so construction problems can help students skilled in programming to under-
stand geometry, while they can also help students acquainted with geometry
and construction problems to understand programming. Visualizations and
interactive work make teaching and studying geometry more interesting and
more fruitful. The built-in theorem provers can help students link semantical
and deductive aspects of geometry. gclc is taught in a number of high-school
and university courses on geometry and on technical writing. Due to the ab-
straction level required for describing constructions, gclc is not best suited
for use in primary schools.



Studies in automated geometrical reasoning The language of gclc is ex-
pressible enough to cover a wide range of theorems in Euclidean plane geom-
etry. gclc has three powerful automated theorem provers built-in. Despite
the fact that these theorem provers are probably the three most successful
methods for automated theorem proving in Euclidean geometry, there are
just a very few implementations. Given that the implementation of these
methods within gclc share many mechanisms and portions of code, gclc

can serve as a workbench for testing, comparing, and improving these meth-
ods, by combining them together or with some other methods.

6 Related Work

The tools gclc/Wingclc are related to the family of interactive geometry
tool, but only the two (commercial) tools Cabri and Geometer’s Sketchpad
have history of continuous development longer than gclc. Some of the re-
lated tools are: Cabri (http://www.cabri.com/), Geometer’s Sketchpad (http:
//www.dynamicgeometry.com/), GeoGebra (http://www.geogebra.org), Dr-
Geo II (http://wiki.laptop.org/go/DrGeo), Kig (http://edu.kde.org/kig/),
C.a.R (http://mathsrv.ku-eichstaett.de/MGF/homes/grothman/java/zirkel/
doc_en/), KSEG (http://www.mit.edu/~ibaran/kseg.html). The main dis-
tinctive feature of gclc compared to these tools is the underlying program-
ming language for describing geometric constructions. Some of the above tools
enable recording construction steps and repeating them later on other given
geometrical objects. Such recorded sequences of steps — macros (sometimes
referred to as “scripts”) are stored as files that are not editable and hence
do not provide features of programming language. For accessing constructions
and properties of constructed objects, some of the listed geometry tools enable
scripting in general purpose languages (such as SmallTalk or Python). In this re-
gard, gclc is closely related to tools Cinderella.2 (http://doc.cinderella.de)
and eukleides (http://www.eukleides.org) that use special-purpose, custom-
developed languages CindyScript and Eukleides.

Concerning automated theorem proving, there are several tools with some
support in that respect. Cinderella uses a probability method for checking whether
a conjecture is likely a theorem [10]. The tools GEOTHER(http://www-calfor.
lip6.fr/~wang/GEOTHER/) MMP/Geometer (http://www.mmrc.iss.ac.cn/~xgao/
software.html) Geometry Explorer [14]. GeoProof (http://home.gna.org/geoproof/)
Java Geometry Expert (http://woody.cs.wichita.edu/) have built-in theo-
rem provers, primarily based on algebraic methods. Some of these tools can
automatically produces dynamic diagrams, based on the textual description of
a conjecture or even visual dynamic presentation of proofs. In addition, some of
the listed tools provide support for discovering geometry theorems. All of the
above tools with deductive mechanisms (all the listed tools except Cinderella)
were built with focus on automated theorem proving and available support for
constructions and visualization typically directly reflect only their proving ca-
pabilities.



7 Conclusions

In this paper we presented the tools gclc/Wingclc for visualizing geometrical
objects and notions, for teaching/studying geometry, and for producing geometry
illustrations of high quality. gclc uses the custom-built language for declarative
representation of constructions, suitable for storing geometrical con-tents of vi-
sual nature. With such representation of information, the intended message and
meaning of geometrical illustrations is possible to preserve and reconstruct.

After years of development, gclc is much more than a geometry tool. There
is support for symbolic expressions, for drawing parametric curves, for flow con-
trol structures, and Wingclc makes gclc an interactive, dynamic mathemat-
ical tool with a range of functionalities. The built-in geometry theorem provers
can automatically prove a range of complex theorems. They directly link math-
ematical contents and its visualization to deductive information and machine–
generated proofs. Thanks to that, gclc can serve as a powerful mechanized
geometry assistant. It fits into a wider context of emerging intelligent geometri-
cal software that includes dynamic geometry tools, geometry theorem provers,
repositories of geometry theorems, tools for visualization of geometry proofs,
e-tutoring systems for geometry, etc.

References

1. C. C. Chou, OU X. S. Gao, and J. Z. Zhang. Automated production of traditional
proofs for constructive geometry theorems. In Eighth Annual IEEE Symposium on
Logic in Computer Science, 1993.

2. S.C. Chou, X.S. Gao, and J.Z. Zhang. Machine Proofs in Geometry. World Scien-
tific, Singapore, 1994.

3. Shang-Ching Chou and Xiao-Shan Gao. Automated Reasoning in Geometry. In
Handbook of Automated Reasoning (eds. Alan Robinson and Andrei Voronkov),
Elsevier, 2001.

4. Mirjana Djorić and Predrag Janičić. Constructions, instructions, interactions .
Teaching Mathematics and its Applications, 23(2):69–88, 2004.

5. Predrag Janičić. GCLC – A Tool for Constructive Euclidean Geometry and More
than That. In Nobuki Takayama, Andres Iglesias, and Jaime Gutierrez, editors,
Proceedings of International Congress of Mathematical Software (ICMS 2006), vol-
ume 4151 of Lecture Notes in Computer Science, pages 58–73. Springer-Verlag,
2006.

6. Predrag Janičić and Pedro Quaresma. System description: Gclcprover + GeoThms.
In Ulrich Furbach and Natarajan Shankar, editors, International Joint Conference
on Automated Reasoning (IJCAR-2006), volume 4130 of Lecture Notes in Artificial
Intelligence, pages 145–150. Springer-Verlag, 2006.

7. Predrag Janičić. Geometry Constructions Language. Journal of Automated Rea-
soning, 2009. to appear.

8. Predrag Janičić and Pedro Quaresma. Automatic verification of regular construc-
tions in dynamic geometry systems. In F. Botana and T. Recio (Eds.), editors,
Automated Deduction in Geometry, volume 4869 of Lecture Notes in Artificial In-
telligence, pages 39–51. Springer-Verlag, 2007.



9. Predrag Janičić and Ivan Trajković. WinGCLC — a Workbench for Formally
Describing Figures. In Proceedings of the 18th Spring Conference on Computer
Graphics (SCCG 2003), pages 251–256, Budmerice, Slovakia, April, 24-26 2003.
ACM Press, New York, USA.

10. Ulrich Kortenkamp and Jürgen Richter-Gebert. Using automatic theorem proving
to improve the usability of geometry software. In Workshop on Mathematical User
Interfaces, 2004.

11. Goran Predović. Automated geometry theorem proving based on Wu’s and Buch-
berger’s methods. Master’s thesis, Faculty of Mathematics, University of Belgrade,
2008. supervisor: Predrag Janičić.

12. Pedro Quaresma and Predrag Janičić. Integrating dynamic geometry software,
deduction systems, and theorem repositories. In J.M. Borwein and W.M. Farmer,
editors, Mathematical Knowledge Management (MKM-2006), volume 4108 of Lec-
ture Notes in Artificial Intelligence, pages 280–294. Springer-Verlag, 2006.

13. Pedro Quaresma and Predrag Janičić. Geothms — a web system for euclidean con-
structive geometry. Electronic Notes in Theoretical Computer Science, 174(2):35–
48, 2007.

14. Sean Wilson and Jacques Fleuriot. Combining dynamic geometry, automated ge-
ometry theorem proving and diagrammatic proofs. In Workshop on User Interfaces
for Theorem Provers (UITP), 2005.


