
SAT Solver Verification Project⋆

Filip Marić and Predrag Janičić

Faculty of Mathematics, University of Belgrade,
Belgrade, Studentski Trg 16, Serbia
{filip, janicic}@matf.bg.ac.rs

Abstract. In this paper we give an overview of our SAT solver verifi-
cation project. This is the first paper to present this project as a whole.
We summarize the results achieved in the verification of SAT solvers de-
scribed in terms of abstract state transition systems, in the Hoare-style
verification of an imperative implementation of a modern SAT solver,
and in generation of a trusted SAT solver based on the shallow embed-
ding into HOL. Our formalization and verification are accompanied by
a solver implemented in C++ and a trusted, automatically generated
solver implemented in a functional language. One of the main final goals
of our project is reaching to a both efficient and fully trusted SAT solver.
Other goals include rigorous analyzes of existing SAT solving systems.

1 Introduction

One of the most important goals of computer science is reaching trusted software.
This is especially important for algorithms and programs that have numerous
applications, including SAT solvers — programs that test satisfiability of propo-
sitional formulae (usually given in conjunctive normal form). The SAT problem
is the first problem that was proved to be NP-complete [Coo71] and it still holds
a central position in the field of computational complexity. The majority of the
state-of-the-art complete SAT solvers are based on the backtracking algorithm
called Davis-Putnam-Logemann-Loveland (DPLL) [DP60,DLL62]. Spectacular
improvements in the performance of SAT solvers have been achieved in the last
decade and nowadays SAT solvers can decide satisfiability of propositional for-
mulae with tens of thousands of variables and millions of clauses. Thanks to these
advances, modern SAT solvers can handle more and more practical problems in
areas such as electronic design automation, software and hardware verification,
artificial intelligence, operations research.

The tremendous advance in the SAT solving technology has not been ac-
companied with corresponding theoretical results about solvers’ correctness. De-
scriptions of new algorithms and techniques are usually given in terms of imple-
mentations, while correctness arguments are either not given or are given only in
outlines. This gap between practical and theoretical progress needs to be filled
and first steps in that direction have been made only recently.

⋆ This work was partially supported by Serbian Ministry of Science grant 144030.

Transition Rule Systems

Rule 1

. . .

Rule n

Invariant 1

. . .

Invariant m

Termination ordering

Correctness conditions

Propositional Logic

Hoare Style Verification

Correctness conditions

Precondtions

Postconditions

Implementation in
imperative language

Shallow Embedding

Correctness conditions

Function 1

. . .

Function k

Invariant 1

. . .

Invariant l

Trusted implementation in
functional language

Fig. 1. Overall structure of the SAT solver verification project

One approach for achieving a higher level of confidence in SAT solvers’ re-
sults, successfully used in recent years, is proof-checking. Solvers are modified
so that they output not only SAT or UNSAT answers, but also evidences for
their claims (models for satisfiable and proof-objects for unsatisfiable instances)
which are then checked by independent checkers. Proof-checking is relatively
easy to implement, but it has some drawbacks. Generating proof-objects intro-
duces some runtime and storage overheads (proofs are typically large and may
consume gigabytes of storage space) [Gel07]. Since proof-checkers have to be
trusted, they must be very simple programs so they can be ,,verified” by code
inspection.

Another approach is to verify a SAT solver itself, instead of checking each
of the solver’s claims. This approach is much harder to realize (since it requires
formal analysis of the complete solver’s behaviour) but is much more rewarding:

– Although the overheads of generating unsatisfiability proofs during solving
are not unmanageable, they can still be avoided if the solver itself is trusted.

– Verification of modern SAT solvers could help in better theoretical under-
standing of how and why they work and their rigorous analysis may reveal
some possible improvements in underlying algorithms and techniques.

– Verified SAT solvers can serve as trusted kernel checkers for verifying re-
sults of other untrusted verifiers (e.g., BDDs, model checkers, SMT solvers)
[SV09]. Also, verification of some SAT solver modules (e.g., BCP) can serve
as a basis for creating both verified and an efficient proof-checkers for SAT.

– In addition to the above benefits, we want to demonstrate that, thanks to
the recent advances in software verification technology, the time has finally
come when it is possible to have a non-trivial, widely used software fully
verified. Such work would contribute to the Verification Grand Challenge.

In this paper we present our ongoing project on SAT solver verification, with
largest parts already completed. The project aims at producing solvers that are
both efficient and fully trusted. In order to achieve the desired, highest level
of trust, a fully mechanized and machine-checkable formalization is being de-
veloped. An overall structure of our project is illustrated in Fig. 1. Within the

project, we consider three ways of specifying modern SAT solvers and the corre-
sponding verification paradigms (each with its advantages and disadvantages):

Abstract state transition systems. We have formally verified several ab-
stract state transition systems that describe SAT solvers [NOT06,KG07].
Verification of such systems proves to be of vital importance because it
serves as a key building block in other approaches to formalization.

Imperative implementation. We have made a more detailed (compared to
the abstract state transition systems) description of a SAT solver in an im-
perative pseudo programming language. In parallel, we have developed a
corresponding SAT solver ArgoSAT in C++. Solver’s properties have been
formalized and verified within the Hoare logic.

Shallow embedding into a proof assistant. We have defined a SAT solver
as a set of recursive functions within higher order logic of the system Isabelle
(regarded as a pure functional language) and its correctness has been for-
mally proved. Based on this specification, an executable functional program
has been generated by means of the code extraction.

In the rest of this paper, due to the lack of space, we give just a very few used
definitions and just briefly comment only the central theorems and proofs. All the
definitions, conjectures, and proofs have been completely formalized and verified
within the Isabelle/Isar system [NPW02] and the complete proof documents are
available in [Mar08]. Parts of the described project have been already described
elsewhere [MJ09a,Mar09a,Mar09b,Mar09c,MJ09b], but in this paper the project
is described as a whole for the first time. For a detailed survey of modern SAT
solving technology and algorithms we refer the interested reader to other sources
on these matters (e.g, [BHM+09]).

2 Formalization of Logic of Propositional CNF Formulae

The syntax of CNF formulae is based on the following types.

Definition 1. A Variable is identified with a natural number. A Literal is either
a positive variable (Pos vbl) or a negative variable (Neg vbl). A Clause is a list
of literals. A CNF Formula is a list of clauses.

Several basic operations on these types are introduced (e.g., variable of a literal
l, denoted by (var l), the set of all variables that occur in a formula F , denoted
by (vars F), the opposite literal of a literal l, denoted by l).

The semantics of CNF formulae is based on the notion of valuation.

Definition 2. A Valuation is a list of literals. For a given valuation v, a literal
l is true (denoted v � l) iff l ∈ v, and is false (denoted v �¬l) iff l ∈ v. A clause
c is true, denoted v � c, iff ∃l. l ∈ c ∧ v � l, and is false (denoted v �¬c) iff
∀l. l ∈ c ⇒ v �¬l. A formula F is true (denoted v � F) iff ∀c. c ∈ F ⇒ v � c,
and is false (denoted v �¬F) iff ∃c. c ∈ F ∧ v �¬c. A valuation v is consistent,
denoted (consistent v), iff it does not contain both a literal and its opposite. A
model of a formula F is a consistent valuation in which F is true. A formula F
is satisfiable, denoted (sat F), iff it has a model.

Note that, although total valuations are usually defined as Boolean variable
assignments, the given definition that covers also partial valuations and more
closely relates to the internal working of modern SAT solvers. The confidence
in our correctness proofs for a SAT solver, in bottom line, relies on the given
definitions. Fortunately, they are rather simple and can be checked by human
inspection. Still, in order to prove correctness conditions, many additional no-
tions have to be introduced and their properties have to be formally proved (e.g.,
entailment of a literal or a clause by a formula, denoted by F � l or F � c, logical
equivalence of two formulae, denoted by F1 ≡ F2).

SAT solving related notions. Some notions specific to SAT solving are also in-
troduced within our formalization. For example, a unit clause c (denoted by
isUnit c l v), is a clause which contains a literal l undefined in v and whose
all other literals are false in v; a reason clause c for the literal l (denoted by
isReason c l v), is a clause that contains l (true in v), whose all other literals
are false in v, and their opposites precede l in v; the resolvent of two clauses
(denoted by resolve c1 c2 l), etc.

Modern SAT solvers slightly extend the notion of valuation by distinguishing
two different kinds of literals: decision and implied. For example, a trail M could
be [+1, |−2, +6, |+5,−3, |−7]. Decision literals are marked by the symbol | and
they split the trail into levels, so M has 4 different levels (labelled by 0 to 3): +1,
then −2, +6, then +5,−3, and −7. There is a number of operations on assertion
trails used within SAT solvers. These operations have also been formally defined
within our theory and their properties have been formally proved. Some of these
are the list of decisions in a trail (denoted by (decisions M)), the list of decisions
that precede the first occurrence of a given literal (denoted by decisionsTo l M)),
the number of levels in a trail (denoted by (currentLevel M)), prefix of a trail up
to the given level (denoted by (prefixToLevel level M)), etc.

3 Verification of the State Transition Systems

Modern DPLL-based SAT solvers can be modelled as abstract state transition
systems (ASTS). Such systems define the top-level architecture of SAT solvers
as mathematical objects that can be rigorously reasoned about and whose cor-
rectness is expressed in pure mathematical terms. During the last few years two
such systems have been proposed [NOT06,KG07], both accompanied by infor-
mal, pen-and-paper correctness proofs. We used ASTS from [KG07] as a starting
point and developed a slightly modified ASTS shown in Fig. 2. The system mod-
els the solver’s behaviour as transitions between states that represent values of
the global variables of the solver. Transitions are performed only by using the
transition rules. The rules have guarded assignment form: above the line is a
condition that enables the rule application, below the line is an update to the
state variables. The solving process is finished when no transition rule applies.

Our system has been formalized in the following way. A state (F, M, C, conf -
lict) consists of a formula F being tested for satisfiability, a trail M , a conflict
analysis clause C, and a Boolean variable conflict that flags if the current for-

Decide:

l ∈ F0 l, l /∈M

M := M |l

UnitPropagate:
c ∈ F isUnit c l M

M := M l

Conflict:
conflict = ⊥ c ∈ F M �¬c

conflict = ⊤ C := c

Explain:

conflict = ⊤ l ∈ C c ∈ F isReason c l M

C := resolve C c l

Backjump:

conflict = ⊤ C ∈ F C = l ∨ l1 ∨ . . . ∨ lk level l > m ≥ level li
conflict = ⊥ M := (prefixToLevel m M) l

Learn:
C /∈ F

F := F ∪ C

Forget:
conflict = ⊥ c ∈ F F \ c � c

F := F \ c

Restart:
conflict = ⊥

M := prefixToLevel 0 M

Fig. 2. Abstract state transition system for a DPLL-based SAT solver

mula is false in the current valuation (i.e., if the conflict analysis is under way).
The rules have been formalized using relations over states. For instance,

unitPropagate (M1, F1, C1, conflict1) (M2, F2, C2, conflict2) ⇐⇒

∃c l. c ∈ F1 ∧ isUnit c l M1 ∧

M2 = M1 @ l ∧ F2 = F1 ∧ C2 = C1 ∧ conflict1 = conflict2
Two states are in relation → iff they are in one of the relations describing the
transition rules. A state ([], F0, [],⊥) is an initial state for the input formula F0.
A state s is final state with respect to →, iff it is its minimal element, i.e., if
there is no state s′ such that s → s′. A final state is an accepting state if it holds
that conflict = ⊥. A final state is a rejecting state if it holds that conflict = ⊤.

Theorem 1 (Correctness). For any satisfiable input formula, the system con-
sisting of the given rules terminates in an accepting state, and for any unsatis-
fiable formula, it terminates in an rejecting state.

Our correctness proof for the above system is based on formulating a set of
suitable invariants and a well-founded ordering defined on states that ensures
termination (as illustrated in Fig. 1). For example, we proved that the following
invariants hold for each state reached from an initial state.

InvariantM : consistent M ∧ distinct M
Invariantvars: vars M ∪ vars F ⊆ vars F0

Invariantequiv : F ≡ F0

InvariantimpliedLiterals: ∀l. l ∈ M =⇒ F @ (decisionsTo l M) � l
InvariantC : conflict =⇒ M �¬C ∧ F � C
InvariantreasonClauses: ∀ l. l ∈ M ∧ l /∈ (decisions M) =⇒

∃ c. (isReason c l M) ∧ F � c
The main advantage of the ASTSs is that they are mathematical objects, so

it is relatively easy to make their formalization within higher order logic and to
formally reason about them. Also, their verification can be a key building block
for other verification approaches. Disadvantages are that the transition systems
do not specify many details present in modern solvers’ implementations and that
they are not directly executable. More details on the verification of the ASTSs
for SAT are given in [MJ09b].

4 Hoare-style Verification

Verification of imperative programs is usually done in the Floyd-Hoare logic
[Hoa69]. Its central object is a Hoare triple of the form {P} code {Q}. Hoare
triple should be read as: ”given that the precondition P holds before code is
executed and the code execution terminates, the postcondition Q will hold at the
point after code was executed”. Hoare triples are manipulated by the inference
rules that are formulated for each construct of the programming language.

Using this approach, we have verified the core of our solver ArgoSAT1 im-
plemented in C++2. Its implementation [Mar09b] closely follows the abstract
state transition system given in Sect. 3, but also supports all standard tech-
niques present in a modern SAT solver (e.g., MiniSAT [ES04]) not covered by
the ASTS. Most important of these are the two-watched literal unit propagation
scheme used for efficient detection of false and unit clauses in F wrt. the current
trail M , special treatment of single-literal clauses which are directly asserted to
the decision level zero of the trail M instead of adding them to F , and efficient
implementation of conflict analysis using specialized data-structures for storing
the conflict clause C.

Using the Hoare logic for the language complex as C++ was out of our
reach. Therefore, we designed a pseudo language rich enough to support the
implementation of our SAT solver, but simple enough to formulate a convenient
Hoare logic axioms for all its constructs. The whole of the solver’s core has been
expressed within this pseudo language3. As an example, we list one function:

function applyUnitPropagate() : Boolean

begin

assertLiteral ((head Q), false);

Q := (tail Q);

end

Following the two-watched literal scheme, all unit literals are placed in a unit
propagation queue Q from where they are taken and asserted to M . Therefore, a
precondition for the applyUnitPropagate function is that all literals of Q are unit
literals. The following example Hoare triple states that this property is preserved
after the function call:

{∀l. l ∈ Q −→ ∃ c. c ∈ F ∧ isUnit c l M}
applyUnitPropagate()

{∀l. l ∈ Q −→ ∃ c. c ∈ F ∧ isUnit c l M}

Heuristic components were specified only by Hoare triples. This way, for any
implementation of a heuristic it suffices to prove that it meets the corresponding
triple. For example, the selection of a literal for the Decide rule is specified as:

{vars M 6= vars F0} selectLiteral() {var ret ∈ vars F0 ∧ var ret /∈ vars M}

1 The web page of ArgoSAT is http://argo.matf.bg.ac.rs.
2 The core of ArgoSAT, implementing the rules given in Fig. 2 in an efficient way,

counts around 1500 loc, while the whole system counts around 5000 loc.
3 The description of the solver in the pseudo language is somewhat shorter then in

C++, because of the simplified syntax.

Once the solver has been described in the pseudo programming language, the
preconditions and postconditions for each fragment of the code are manually
specified and joint together, following a suitable Hoare logic for our pseudo
language. The entry point to the solver is the solve function which, if terminates,
sets the value of satF lag (either to SAT or UNSAT).

Theorem 2 (Partial correctness). The SAT solver satisfies the Hoare triple:
{⊤} solve(F0) {(satF lag = UNSAT ∧¬sat F0)∨(satF lag = SAT ∧M � F0)}

The main benefit of using the Hoare style verification is that it enabled us
to address imperative code which is the way that most real-world SAT solvers
are implemented. Thanks to this, the confidence in our solver ArgoSAT is higher
compared to other C/C++ implementations. On the other hand, there is still a
gap between our correctness proof and the C++ implementation. First, there is
no formal link between C++ and our pseudo language implementation. Second,
there has been a number of manual steps in formulating correctness conditions
and joining them together. More details on our description of a solver in an
imperative language and its Hoare-style verification are given in [Mar09a].

5 Shallow Embedding into HOL

When using the shallow embedding into HOL approach for verification, a pro-
gram (a SAT solver in our case) is expressed as a set of recursive functions in
HOL (for this purpose, treated as a pure functional programming language) and
its properties are proved mainly by induction and equational reasoning.

Although a programming paradigm had to be changed from imperative to
pure functional, our implementation closely follows the one described in Sect. 4
and that is the core of our solver ArgoSAT. All aspects of the implementation
that are present in the imperative implementation verified by the Hoare-style
approach are also present in our functional implementation within Isabelle4.

In an imperative or object-oriented language, the state of the solver is repre-
sented by using global or class variables. The solver functions access and change
the state variables as their side-effects. In HOL, functions cannot have side-
effects, so the solver state must be wrapped up in a record and passed around
with each function call. For example, the following Isabelle record directly corre-
spond to the state of the abstract state transition systems described in Sect. 3:
record State =

"getF" :: Formula
"getM" :: LiteralTrail
"getC" :: Clause
"getConflictFlag" :: Boolean

However, in order to have more advanced techniques implemented, the state had
to be extended, and in our final definition it contains 14 components.

All functions in our functional implementation receive the current solver state
as their parameter and return the modified state as their result. This explicit

4 Formal definitions of the solver functions count over 500 lines of Isabelle code.

state passing can be hidden if standard monadic combinators are used. This
support has been recently added to Isabelle along with a convenient Haskell-like
do-syntax [BKH+08]. In this syntax, the applyUnitPropagate function becomes:

definition applyUnitPropagate :: "State ⇒ State"

where

"applyUnitPropagate =

do

Q ← readQ; assertLiteral (hd Q) False;

Q’ ← readQ; updateQ (tl Q’)

done"

Functions readQ and updateQ modify the Q component of the current state.
Once the solver has been defined in HOL, its properties are formally proved.

The main result is the following correctness theorem.

Theorem 3 (Correctness). solve F0 = sat F0

Again, it has been proved that all states that are reached during the code
execution (this time these are the states that are returned by the functions of the
solver) satisfy a given set of invariants (as illustrated in Fig. 1). These invariants
include all invariants formulated for the abstract state transition systems, but
also include additional ones (24 invariants in total). Therefore, it had to be
proved that the code preserves all the additional invariants and it turned out
that this task was equally hard (if not harder) as proving the properties of the
ASTS. For termination, it was required to prove that the function solve is total.
Only three functions called by it have been defined by general recursion and their
termination is not trivial. Since the function solve is the only entry point to our
solver, it was sufficient to prove termination of these functions only for those
values of their input parameters that could actually be passed to them during a
solver’s execution starting from an initial state. We have used Isabelle’s built-in
features to model this kind of partiality [Kra08] and reused the orderings defined
for abstract state transition systems to prove termination.

Unlike the Hoare-style approach that starts with an existing solver imple-
mentation, when using the shallow embedding approach, the executable code
in one of the leading functional languages (Haskell, SML, or OCaml) can be
exported by using the code extraction, supported by Isabelle.

Advantages of using the shallow embedding are that, once the solver is defined
within the proof assistant, it is possible to perform its verification directly inside
the logic and a formal model of the operational or denotational semantics of the
language is not required. Also, executable code can be extracted and it can be
trusted with a very high level of confidence. On the other hand, it is required
to build a fresh implementation of a SAT solver within the logic. Also, special
techniques must be used to have mutable data-structures and consequently, an
efficient generated code. More details on the verification by shallow embedding
are given in [Mar09c]. We used this approach also for verification of the classic
DPLL procedure, and details are given in [MJ09a].

6 Related Work

First steps towards verification of SAT solvers have been made only recently.
The authors of two transition rule systems for SAT informally proved their cor-
rectness [NOT06,KG07]. Zhang and Malik have informally proved correctness
of a modern SAT solver [ZM03]. Lescuyer and Conchon have formalized, within
the system Coq, a SAT solver based on the classic DPLL procedure [LS08].
Shankar and Vaucher have formally and mechanically verified a high level de-
scription of a modern DPLL-based SAT solver within the system PVS [SV09].
Although these approaches include most state-of-the art SAT algorithms, lower-
level implementation techniques (e.g., two-watch unit propagation scheme) are
not covered by any of these descriptions. Our project provides fully mechanized
correctness proofs for modern SAT solvers within three verification paradigms
with both higher and lower level state-of-the-art SAT techniques, and, as we are
aware of, it is the only such formalization.

7 Conclusions and Future Work

In this paper we gave an overview of our ongoing project on the modern SAT
solver verification. SAT solvers have been formalized in three different ways: as
abstract state transition systems, as imperative pseudo programming language
code, and as a set of recursive HOL functions. All three formalizations have
been verified using appropriate paradigms. Each of them has its own advan-
tages and disadvantages, making them in some aspects complementary and in
some aspects overlapping. The complete formalization has been made within
Isabelle/Isar proof assistant and is publicly available5. Although it is hard to
quantify the efforts invested in formally proving correctness conditions described
in this work, we estimate that we have, so far, invested around 1.5 man-years
into this project. Although there are other attempts at proving correctness of
modern SAT solvers, to our best knowledge, our project gives the most detailed
formalized and fully verified descriptions of a modern SAT solver so far.

One of the main remaining tasks in our project is to increase the efficiency
of the code exported from the shallow embedding specification. Implementation
of some heuristic components has to be more involved. For example, currently
we have implemented only a trivial decision heuristic that picks a random unde-
fined literal, but in order to have a practically usable solver, an advanced decision
heuristic (e.g., VSIDS) should be used. Also, several low-level algorithmic im-
provements have to be made. Although these modifications require more work,
we believe that they are rather straightforward. However, the most problematic
issue is the fact that because of the pure functional nature of HOL no side-effects
are possible and there can be no destructive updates of data-structures. To over-
come this problem, we are planning to instruct the code generator to generate
monadic Haskell and imperative ML code which would lead to huge efficiency
benefits since it allows mutable references and arrays [BKH+08]. We hope that
with these modifications, the generated code could become practically usable

5 The proof scripts make around 30000 lines of Isabelle code.

and comparable to state-of-the-art SAT solvers and this is the subject of our
current work.

References

[BHM+09] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfia-
bility. IOS Press, 2009.

[BKH+08] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkok, and J. Matthews. Imper-
ative functional programming with Isabelle/HOL. In TPHOLs ’08, LNCS
5170, Montreal, 2008.

[Coo71] S. A. Cook. The Complexity of Theorem-Proving Procedures. In 3rd
STOC, New York, 1971.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program for
Theorem-proving. Commun. ACM 5(7), pp. 394–397, 1962.

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantification
Theory. J. ACM 7(3), pp. 201–215, 1960.

[ES04] N. Een and N. Sorensson. An Extensible SAT Solver. In SAT ’03, LNCS
2919, S. Margherita Ligure, 2003.

[Gel07] A. Van Gelder. Verifying Propositional Unsatisfiability: Pitfalls to Avoid.
In SAT ’07, LNCS 4501, Lisbon, 2007.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Com-
mun. ACM 12(10), pp. 576–580, 1969.

[Kra08] A. Krauss. Defining recursive functions in Isabelle/HOL.
http://isabelle.in.tum.de/documentation.html, 2008.

[KG07] S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories:
Nelson-Oppen with DPLL. In FroCos ’07, LNCS 4720, Liverpool, 2007.

[LS08] S. Lescuyer and S. Conchon A Reflexive Formalization of a SAT Solver in
Coq. In TPHOLs’08: Emerging Trends, Montreal, 2008.

[Mar08] F. Marić, SAT Solver Verification. The Archive of Formal Proofs,
http://afp.sf.net/entries/SATSolverVerification.shtml.

[Mar09a] F. Marić. Formalization and Implementation of SAT solvers. J. Autom.
Reason. To appear. 2009.

[Mar09b] F. Marić. Flexible Implementation of SAT solvers. In preparation.
[Mar09c] F. Marić. Formal Verification of a Modern SAT Solver. Manuscript sub-

mitted.
[MJ09a] F. Marić and P. Janičić. Formal Correctness Proof for DPLL Procedure.

Informatica. To appear. 2009.
[MJ09b] F. Marić, P. Janičić. Formalization of Abstract State Transition Systems

for SAT. In preparation.
[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo

Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). J. of the ACM 53(6), pp. 937–977, 2006.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, LNCS 2283, Springer, 2002.

[SV09] N. Shankar and M. Vaucher. The mechanical verification of a DPLL-based
satisfiability solver. In preparation.

[ZM03] L. Zhang and S. Malik. Validating SAT Solvers Using Independent
Resolution-Based Checker. In DATE ’03, Münich, 2003.

