
GCLC — A Tool for Constructive Euclidean

Geometry and More than That

Predrag Janičić

e-mail: janicic@matf.bg.ac.yu
Faculty of Mathematics, University of Belgrade

Studentski trg 16, 11 000 Belgrade, Serbia

Abstract. We present gclc/Wingclc— a tool for visualizing geomet-
rical (and not only geometrical) objects and notions, for teaching/studying
mathematics, and for producing mathematical illustrations of high qual-
ity. gclc uses a language gc for declarative representation of figures and
for storing mathematical contents of visual nature in textual form. In
gclc, there is a build-in geometrical theorem prover which directly links
visual and semantical geometrical information with deductive properties
and machine–generated proofs.

1 Introduction

gclc is a tool for visualizing objects and notions of geometry and other fields of
mathematics (by generating figures and animations). It can be used for produc-
ing digital mathematical illustrations, for teaching and studying geometry (and
not only geometry), and for storing visual mathematical contents in textual form
— as figure descriptions in the gc language. gclc provides easy-to-use support
for many geometrical constructions, isometric transformations, and conics. The
basic idea behind gclc is that constructions are formal procedures, rather than
drawings. Thus, in gclc, producing mathematical illustrations is based on “de-
scribing figures” rather than of “drawing figures”.1 This approach stresses the
fact that geometrical constructions are abstract, formal procedures and not fig-
ures. A figure can be generated on the basis of abstract description, in Cartesian
model of a plane. A similar approach is used for illustrations for other supported
fields. Figures can be displayed and exported as LATEX files or bitmaps.

Although gclc was initially built as a tool for converting formal descrip-
tions of geometric constructions into LATEX form (hence its name “Geometry
Constructions → LATEX Converter”), now it is much more than that. For in-
stance, there is support for symbolic expressions, for drawing parametric curves,
for program loops, etc; Wingclc, a version with a Windows graphical interface,
makes gclc a dynamic geometry tool with a range of additional functionalities;
a built-in geometry theorem prover can automatically prove a range of complex

1 In a sense, this system is in spirit close to the TEX/LATEX system [14, 16], or is parallel
to it. Within the TEX/LATEX system, the author (explicitly) describes the layout of
his/her text.



theorems, etc. gclc now links semantic information about a construction with
its visual representation and with its deductive properties. Thus, it provides
mathematical contents directly linked to visual information and supported by
machine–generated proofs.

gclc is under constant development from 1996. Some features of graphical
interface of Wingclc are presented in [13], some educational aspects of gclc

are presented in [7], the built-in theorem prover is described in [23, 11], and the
mathematical contents management issues are discussed in [24]. This paper is
the first general overview of the system.

Overview of the paper: The rest of the paper is organized as follows: in Section 2
we focus on formal geometrical constructions and illustrate the need for describ-
ing mathematical illustrations rather then drawing them; in Section 3 we give
a brief overview of the language of the gclc system; in Section 4 we describe
basic features of the graphical interface; in Section 5 we describe the built-in
geometry theorem prover; in Section 6 we present several examples, illustrating
different features of gclc; in Section 7 we briefly discuss applications of gclc

in producing mathematical illustrations, in storing mathematical contents of vi-
sual nature, and in teaching mathematics; in Section 8 we discuss some technical
issues and give availability information; in Section 9 we give a short overview
of the systems related to gclc; in Section 10 we discuss potential directions for
further work and in Section 11 we draw final conclusions. In Section A we give
some additional examples.

2 Describing Formal Constructions

Geometrical constructions are the main area of gclc. This type of mathematical
problems is very relevant for the need to describe, and not draw images.

A geometrical construction is a sequence of specific, primitive construction
steps. These primitive construction steps are also called elementary constructions

and they are:

– construction (by ruler) of a line such that two given points belong to it;
– construction of a point such that it is the intersection of two lines (if such a

point exist);
– construction (by compass) of a circle such that its center is one given point

and such that the second given point belongs to it;
– construction (by compass) of a segment connecting two points;
– construction of intersections between a given line and a given circle (if such

points exist).

By using the set of primitive constructions, one can define more involved,
compound constructions (e.g., construction of right angle, construction of the
segment midpoint, construction of the segment bisector etc.). In describing geo-
metrical constructions, it is usual to use higher level constructions as well as the
primitive ones.



gclc follows the idea of formal constructions. It provides easy-to-use support
for all primitive constructions, but also for a range of higher-level constructions.
(Although motivated by the formal geometrical constructions, gclc provides a
support for some non-constructible objects too — for instance, in gclc it is
possible to determine/use a point obtained by rotation for 1◦, although it is not
possible to construct that point by ruler and compass).

There is a need of distinguishing abstract (i.e., formal, axiomatic) nature of
geometrical objects and their semantics and usual models. A geometrical con-
struction is a mere procedure of abstract steps and not a picture. However, for
each (Euclidean) construction, there is its counterpart in the standard Cartesian
model. While a construction is an abstract procedure, in order to make its usual
representation in Cartesian plane (or, more precisely, in Cartesian model of Eu-
clidean plane), one still has to make a link between these two. For instance, given
three vertices of a triangle, one can construct a center of its circumcircle, but
in order to visualize and represent this construction in Cartesian plane, he/she
has to take three particular Cartesian points as vertices of the triangle (see the
example given in Fig. 1). Thus, figure descriptions in gclc are usually made by
a list of definitions of several (usually very few) fixed points (defined in terms
of Cartesian plane, i.e., by pairs of coordinates) and a list of construction steps
based on these points.

3 gc Language

In gclc, figures are described in the gc language. gc syntax is very simple,
but, at the same time, it enables describing very complex figures in very few
lines. Describing images in the gc language does not require programming skills.
Descriptions via gc commands directly reflect mathematical objects to be vi-
sualized and are easily understandable to mathematicians. Therefore, gc is a
higher-level language (with support for a number of advanced geometrical con-
cepts) designed for mathematicians, and not a machine-oriented script language.

gc language consists of the following groups of commands (examples for
different groups of commands are given in Section 6):

Basic definitions: these commands include commands for defining fixed points,
for defining a line on the basis of two selected points, defining a circle, a nu-
merical constant etc.

Basic constructions: these constructions include constructions of intersection
points for two lines, and for a line and a circle, construction of the mid-
point of a given segment, the bisector of an angle, the segment bisectors,
perpendicular lines, parallel lines, etc.

Transformations: these commands include commands for translation, rota-
tion, line-symmetry, half-turn, but also some non-isometric transformations
like scaling, circle inversion etc.

Commands for calculations, expressions, and loops: there are commands
for calculating angles determined by triples of points, distances between



points, for generating random numbers, for calculating symbolic expressions
and support for while-loops.

Drawing commands: there are commands for drawing lines, segments, circles,
arcs, and ellipses in several modes.

Labelling and printing commands: points can be labelled, marked in a num-
ber of ways. In addition, a text can be attached to a particular point.

Cartesian commands: this group of commands provides support for direct
access to a user–defined Cartesian system. A user can define a system, its
unit, and, within it, he/she can define points, lines, conics, tangents etc. and
can also draw curves given in parametric form.

Low level commands: there is support for changing line thickness, color, clip-
ping area, figure dimensions etc.

Commands for describing animations: this group of commands provides
support for making animations within Wingclc. Some points can be de-
fined to move from one position to another; points can also be traced.

Commands for the geometry theorem prover: using support for the built-
in geometry theorem prover, the user can provide the conjecture, can control
a proof level and can limit a maximal number of proof steps.

4 Graphical Interface

Wingclc provides a range of interactive functionalities. In addition to tools
for processing picture descriptions and locating errors, tools (watch window)
for monitoring values of selected objects in a construction (so Wingclc can
work as a geometrical calculator), there are also tools for easy and interactive
moving of fixed points, updating pictures and making animations. (Animations
and traced points can be defined both interactively and via gclc commands.)
These interactive features can be very useful in teaching geometry, but can also
help studying geometry or even help some research (with Wingclc serving as a
machine assistant). Figure 5 illustrates some of the mentioned tools and devices
(traces, animations, watch windows, etc.)

5 Theorem Prover

Automated theorem proving in geometry has two major lines of research: syn-
thetic proof style and algebraic proof style (see, for instance, [18] for a survey).
Algebraic proof style methods are based on reducing geometric properties to
algebraic properties expressed in terms of Cartesian coordinates. These methods
are usually very efficient, but the proofs they produce do not reflect the geomet-
ric nature of the problem and they give only a yes or no conclusion. Synthetic
methods attempt to automate traditional geometry proof methods.

The geometry theorem prover built into gclc is based on the area method [3,
4, 23].2 This method belongs to the group of synthetic methods. It produces

2 The theorem prover is developed in collaboration with prof. Pedro Quaresma from
University of Coimbra.



traditional, human-readable proofs, with a clear justification for each proof step.
The main idea of the method is to express hypotheses of a theorem using a set of
constructive statements, each of them introducing a new point, and to express
a conclusion by an equality of expressions in geometric quantities (e.g., signed
area of a triangle), without referring to Cartesian coordinates. The proof is then
based on eliminating (in reverse order) the points introduced before, using for
that purpose a set of appropriate lemmas. After eliminating all introduced points,
the current goal becomes a trivial equality that can be simply tested for validity.
In all stages, different expression simplifications are applied to the current goal.
The method does not have any branching, which makes it very efficient. A wide
range of geometric conjectures can be simply stated within gclc and proved by
the prover.

The prover is tightly integrated in gclc. This means that one can use the
prover to reason about a gclc construction (i.e., about objects introduced in
it), without changing and adapting it for the deduction process — the user only
needs to add the conclusion he/she wants to prove. The proofs are generated in
LATEX form. For more details about the prover, see [23, 11].

6 Examples

Geometrical constructions. The example given in Fig. 1 illustrates one sim-
ple geometrical construction. Groups of commands are explained by comments
(marked by the symbol %) within the description itself. As many other simi-
lar descriptions, this one has basically three parts (not necessarily separated):
one with defining fixed points (with coordinates in Cartesian plane), one with
construction steps, and one with labelling and drawing commands. By changing
one of the three fixed points, the whole of the illustration is updated. In this
example, three side bisectors of the triangle ABC are constructed. It is a simple
fact that these three lines intersect at one point (at the center of the circum-
circle). This can be also stated in the following form: pairwise intersections of
the side bisectors, the points O_1 and O_2, are identical. This property (as well
as much more complex properties or hypotheses) can be, in a sense, explored
within gclc. Namely, d is defined to be the distance between O_1 and O_2, and
one can monitor the value of d to ensure that it is equal to zero (for these and
for any other three particular vertices).

Cartesian commands. Example given in Fig. 2 illustrates the support for a direct
access to a user-defined Cartesian system. In this example, there is a description
of one conic (parabola), via its canonical parameters, and one its tangent. This
example also illustrates how a rather complex figure can be described in only a
few lines.

Parametric curves. Example given in Fig. 3 illustrates the support for parametric
curves. The first curve, is drawn for parameter x ranging from -3 to 4, increased
by the step 0.05.



% fixed points

point A 10 10

point B 50 10

point C 40 50

% side bisectors

med a B C

med b A C

med c B A

% intersections of bisectors

intersec O 1 a b

intersec O 2 a c

distance d O 1 O 2

% marking points

cmark b A

cmark b B

cmark t C

cmark lt O 1

cmark rt O 2

% drawing the sides of the triangle ABC

drawsegment A B

drawsegment A C

drawsegment B C

% drawing the circumcircle of a triangle

drawcircle O 1 A

A B

C

O1 O2

Fig. 1. Example of a gc description of a geometrical construction (left) and the corre-
sponding (LATEX) output (right).

While-loops. Example given in Fig. 4 illustrates while-loops. The construction
described within this example shows that, for any line segment AB, the locus
of all points L such that the angle ALB is right angle, is the circle with the
perimeter AB. The point B is rotated (giving the point B ′) around the point
A for the angle phi ranging from 0◦ to 70◦, and the point L is determined as a
foot of the perpendicular from B to AB′. Points L for different values of phi are
connected by line segments.

Animations. An animation in Wingclc is defined as a formal construction
with a set of fixed points that linearly move from an initial to a destination
position. All positions of one selected point make trace (similar to locus), drawn
in a selected color. The watch window is used for monitoring values of objects
used in the construction. The screenshot shown in Fig. 5 illustrates some of the
features and devices of Wingclc (traces, animations, watch windows, etc.)



% define and draw Cartesian axis

ang picture 5 5 55 55

ang origin 20 20

ang drawsystem

% define a conic

ang conic h 0 0 1 -1 0 -3

% construct a point P on the conic

% and the tangent in P

ang point A1 2 2

ang point A2 3 2

line l A1 A2

ang intersec2 P P2 h l

ang tangent p P h

% draw the conic and the tangent

cmark t P

ang drawline p

ang drawconic h

0 1 2 3−1

1

2

3

−1

P

Fig. 2. Illustration for Cartesian commands

ang picture 2 2 58 58

ang origin 25 25

ang unit 7

ang drawsystem a

ang draw parametric curve x

{-3; x<4; x+0.05}
{ x; sin(pow(x,2))*cos(x) }

% polar coordinates

number rho 2

ang draw parametric curve phi

{ 0 ; phi<6; phi+0.1}
{ phi*rho*sin(phi)/5 ;

rho*cos(phi) }

0 1 2 3 4−1−2−3

1

2

3

4

−1

−2

−3

x

y

Fig. 3. Illustration for parametric curves



point A 5 5

point B 50 5

cmark b A

cmark b B

drawsegment A B

translate L old B B B

number phi 0

while { phi<=70 }
{

rotate B’ A phi B

line a B’ A

foot L B a

drawsegment L L old

translate L old L L L

expression phi { phi+1 }
}

cmark lt B’

drawdashsegment A B’

drawdashsegment B L

A B

B′

Fig. 4. Illustration for while-loops

Theorem prover. For the example shown in Figure 1, it can be checked that
for any particular three points A, B, and C, the points O_1 and O_2 (pairwise
intersections of the side bisectors) are identical. Using the prover, one can ensure
that this is valid statement, i.e., the distance between points O_1 and O_2 is
always equal to zero. This statement can be given to the prover by simply adding
the following line:

prove { equal { pythagoras difference3 O 1 O 2 O 1 } 0 }

to the code given in Figure 1. The conjecture is stated within the command
prove and via the geometric quantity Pythagoras difference (P3). By definition,
P3(A, B, C) = AB2 + CB2 −AC2, hence, the value P3(O_1,O_2,O_1) is equal to
0 if and only if the points O_1 and O_2 are identical (for more details, see [23]).
The proof is exported to a LATEX file, with explanations for each proof step.
Figure 6 shows last steps of the proof made by the prover (the proof consists
of 119 steps and it took 0.035 seconds of CPU time). This example illustrates
how gclc provides geometrical contents directly linked to visual information
and supported by machine–generated proofs.



Fig. 5. Trace and watch windows with cycloid described in WinGCLC

(113) (0.062500 · (PCBC · SBAC)) =

„

1

4
·

“

PCBM0
a
· SBAM0

a

”

«

, by algebraic simplifications

(114) (0.062500 · (PCBC · SBAC)) =

„

1

4
·

„„

PCBB +

„

1

2
· (PCBC + (−1 · PCBB))

««

· SBAM0
a

««

, by Lemma 29 (point M
0

a eliminated)

(115) (0.062500 · (PCBC · SBAC )) =

„

1

4
·

„„

0 +

„

1

2
· (PCBC + (−1 · 0))

««

· SBAM0
a

««

, by geometric simplifications

(116) (0.062500 · SBAC) =

„

1

8
· SBAM0

a

«

, by algebraic simplifications

(117) (0.062500 · SBAC) =

„

1

8
·

„

SBAB +

„

1

2
· (SBAC + (−1 · SBAB))

«««

, by Lemma 29 (point M
0

a eliminated)

(118) (0.062500 · SBAC ) =

„

1

8
·

„

0 +

„

1

2
· (SBAC + (−1 · 0))

«««

, by geometric simplifications

(119) 0 = 0 , by algebraic simplifications

2
8

Fig. 6. Last steps of the proof of the Circumcircle theorem

7 Applications

In this section we briefly discuss three main fields of application for gclc: in
producing mathematical illustrations, for storing mathematical contents, and in
teaching mathematics.



7.1 Producing Digital Illustrations

gclc can serve as a tool for making digital illustrations of high quality. Descrip-
tions made in gc language can be (internally) visualized or can be converted
into some other format — LATEX or bitmap format. Figures in LATEX format
produced by gclc can be included directly in LATEX documents, hence they use
LATEX fonts and formulae which is essential for good looking figures in LATEX
documents (while this is a problem for many other formats and tools). Pictures
in bitmap format are suitable for different conversions and processing. Although
these two picture formats (LATEX and bitmap) have their advantages, gclc fig-
ures are normally stored in their original, source form. This form is not only
precise and sufficient for producing pictures, but also very concise: for instance,
all figures from a university book with 120 illustrated geometrical problems [12]
have together (in uncompressed, gclc form) less than 130Kb. gclc has been
used for producing illustrations for a number of other books and articles.

7.2 Storing Mathematical Contents

We advocate for describing (rather than drawing) mathematical illustrations.
Descriptions of images should be given in formal, but human-readable, easily
understandable language, close to the intended mathematical meaning. Mathe-
matical illustrations should be stored in such form (rather than in the form of
images).

A lot of mathematical contents, both in education and in research, is of visual
nature. In many (or most) lecture notes, books, and research articles there are
mathematical illustrations. They carry mathematical information, some mathe-
matical message that is represented visually rather than in textual or numerical
form. Usually, such message is better understandable to a reader when repre-
sented visually. On the other hand, this visual information is usually not math-
ematically rigorous; it is usually approximation and/or interpretation of some
mathematical objects, notions, concepts, numerical data, proofs, ideas etc. A
reader interprets the visual information and in his/her mind creates a formal
mathematical information. It is often assumed that the reader (with a support
from the given textual explanations, earlier experience with illustrations, stan-
dard mathematical background, intuition, etc) can understand, “read” the right
mathematical message from the illustration. Although a mathematical message
is carried by an illustration, that message cannot always be reproduced from
the illustration itself. In addition, a mathematician, the author or a reader of a
mathematical text, may need to alter an image, to modify some of its characteris-
tics (not only characteristics such as dimensions, but rather some characteristics
implying the mathematical contents), to make it more general or more specific,
and also to store it in a way that enables these sorts of transformations.

Let us consider geometrical illustrations: a complex geometrical construction
may be illustrated by an image and can indeed make the understanding of the
text easier. However, without a given context, without provided textual expla-
nations of the problem, it is unlikely that one could guess the right nature and



description of the construction. In addition, the Cartesian interpretation of Eu-
clidean geometry is just one of possible interpretations and, hence, potentially
misses some of the abstract geometrical meaning. The main point is: an image
itself does not provide precise geometrical message. It is better to have a figure
description that is formal and can be used for producing the required image,
required mathematical illustration. Such information should be stored instead
of images. Mathematical content stored in this way (via formal descriptions) is
easy to understand, maintain, modify and process in different ways.

The program gclc is developed along the lines of the given motivation. It
is based on using the gc language, in which one can describe a number of geo-
metrical constructions, but also other mathematical objects. Figure descriptions
are declarative, precise and brief descriptions of mathematical content and from
them corresponding illustrations can be generated. This way, gclc can be seen
as a tool for storing mathematical contents of visual natura in textual form.

7.3 Using GCLC in Teaching Mathematics

In teaching and studying geometry, students can interactively use gclc to make
different attempts in making constructions and/or exploring some mathematical
(especially geometrical) objects, notions, ideas, problems, proofs, properties etc
[7]. Formally describing mathematical objects is similar to programming, so this
helps computer science students to better understand geometry notions and
mathematics students to get familiar with programming. Interactive work makes
this sort of studying more interesting and more fruitful. The built-in theorem
prover can help students link semantic and deductive aspects of geometry.

B

C

E

F

P

Q

H

N

O
R

S

T

U

V

W

Fig. 7. Illustration for Euclid’s construction of dodecahedron



Producing mathematical images and teaching/studying mathematics are not
far from each other. For instance, within the geometry courses at the Faculty of
Mathematics, University of Belgrade, prof. Zoran Lučić with his students made
an electronic version of Euclid’s masterpiece of the classical mathematics — The

Elements [17]. All figures in the book are described in the gc language and
directly reflect the accompanying geometrical text. This is probably the first
edition of The Elements that includes formal, rigorous description of all images,
descriptions that directly reflect the accompanying mathematical text. Figure
7 shows Lučić’s detailed illustration for Euclid’s construction of dodecahedron.
This figure is made by using the means of descriptive geometry and shows that
three-dimensional objects can be also formally describe in gc language, despite
the fact that it is basically designed for plane geometry.

8 Technical Issues, Versions and Availability

gclc/Wingclc programs are implemented in C++ programming language.
The basic, command line version has around 18000 lines of code. gclc programs
are very small in size: the command line version of gclc has around 350Kb,
Wingclc has around 700Kb.

There are command-line versions of gclc for Windows and for Linux. Win-

gclc is the version of gclc for Windows, with a graphical user-friendly interface.
As yet, there is no version with a graphical user interface for Linux.

gclc package (with a manual file and sample files) is freely available from
www.matf.bg.ac.yu/~janicic/gclc/ and from emis (The European Mathe-
matical Information Service) servers (www.emis.de/misc/index.html).

Figures in LATEX format generated by gclc are included in a LATEX doc-
uments by the \input command. They use a simple package gclc.sty, with
definitions that can be changed (so, for instance, can use some particular LATEX
drawing package).

9 Related Work

gclc/Wingclc is related to a family of similar, dynamic geometry tools such
as Cinderella, [25, 6], Geometer’s Sketchpad, [10, 8] Eukleides [20], Cabri, [2, 15],
JavaView [22, 21]. gclc share a number of features with these tools, but also
have some specific features. The main features in which gclc/Wingclc differs
from similar tools are:

– the deduction module (that directly links visual and semantical geometrical
information with deductive properties and machine–generated proofs);

– features that go beyond Euclidean geometry; for instance, gclc can be used
for easily producing figures in Cartesian plane, including graphs of func-
tions (see Figure 8); therefore, gclc can substitute a wide range of tools for
producing mathematical (not only geometrical) illustrations.



x

y

1 1

1

Fig. 8. Function of arity two drawn by gclc

Some of the advantages of gclc/Wingclc (comparing to other tools) are
also its free availability, its simplicity, small size of the program, its output
files natively supported by LATEX, interactive features such as animations and
traces, etc. In contrast to some dynamic geometry tools, gclc/Wingclc fo-
cuses on explicitly and formally describing figures (instead of drawing figures)
and thus, focusing on meaning rather than only on layout of figures. These ex-
plicit descriptions are easy to write and understand, and they directly reflect the
mathematical meaning illustrated by figures.

There are links between gclc and other tools: there are converters from
JavaView .jvx code and from Eukleides code to gclc code. This brings addi-
tional power to gclc (by making available models created in other tools).

Concerning geometrical theorem proving, there are also some systems related
to gclc/Wingclc. Geometry Expert [9] is a dynamic geometry system with
algebraic based theorem prover. There are geometrical theorem provers based
on the area method also within the systems Coq [19] and Theorema [1].

10 Further Work

The next version of gclc/Wingclc will have support for 3D Cartesian system,
for plotting graphs, for exporting figures to eps and svg format, and for export-
ing figures descriptions and proofs to xml format. For future work, we also are
planning to:

– implement additional geometrical theorem provers and build them into gclc;
one of the candidates is a prover based on Wu’s algorithm [5];

– develop new additional modules to gclc (for hyperbolical geometry, descrip-
tive geometry, projective geometry etc.), so gclc could work as a native
platform for a range of geometries;



– develop new tools for linking gclc with other mathematical software tools;
– make xml version of gc format, and link gclc with some popular markup

languages for mathematical contents.

11 Conclusions

In this paper we presented the software package gclc/Wingclc for visualizing
mathematical objects and notions, for teaching/studying mathematics, and for
producing mathematical illustrations of high quality. gclc uses the gc language
for declarative representation of figures, suitable for storing mathematical con-
tents of visual nature. With such representation of information, the intended
mathematical message and meaning of mathematical illustrations is possible to
preserve and reconstruct.

After first ten years of development, gclc is much more than a geometrical
tool. There is support for symbolic expressions, for drawing parametric curves,
for program loops, and Wingclc makes gclc an interactive, dynamic math-
ematical tool with a range of functionalities. The built-in geometry theorem
prover can automatically prove a range of complex theorems. It links seman-
tic information about a construction with its deductive properties. It provides
mathematical contents directly linked to visual information and supported by
machine–generated proofs.

The system is publicly available and is already being used by a number of
mathematicians. We are planning to further improve it and extend it.

References

1. Bruno et.al. Buchberger. Theorema: Towards computer-aided mathematical theory
exploration. Journal of Applied Logic, 2006.

2. Cabri site. http://www.cabri.com.
3. C. C. Chou, OU X. S. Gao, and J. Z. Zhang. Automated production of traditional

proofs for constructive geometry theorems. In Eighth Annual IEEE Symposium on
Logic in Computer Science, 1993.

4. S.C. Chou, X.S. Gao, and J.Z. Zhang. Machine Proofs in Geometry. World Scien-
tific, Singapore, 1994.

5. Shang-Ching Chou. Mechanical Geometry Theorem Proving. D.Reidel Publishing
Company, Dordrecht, 1988.

6. Cinderella site. http://www.cinderella.de.
7. Mirjana Djorić and Predrag Janičić. Constructions, instructions, interactions .

Teaching Mathematics and its Applications, 23(2):69–88, 2004.
8. Geometer’s Sketchpad site. http://www.keypress.com/sketchpad/.
9. GEX site. http://woody.cs.wichita.edu/gex/7-10/gex.html.

10. Nicholas Jackiw. The Geometer’s Sketchpad v4.0. Emeryville: Key Curriculum
Press, 2001.

11. Predrag Janičić and Pedro Quaresma. System description: Gclcprover + geothms.
International Joint Conference on Automated Reasoning (IJCAR-2006). LNAI
4130. Springer, 2006.



12. Predrag Janičić. Zbirka zadataka iz geometrije. Skripta Internacional, Beograd, 1st
edition 1997, 6th edition 2005. Collection of problems in geometry (in Serbian).

13. Predrag Janičić and Ivan Trajković. WinGCLC — a Workbench for Formally
Describing Figures. SCCG 2003, ACM Press.

14. Donald Knuth. TeXBook. Addison Wesley Professional, 1986.
15. J.-M. Laborde and R. Strasser. Cabri-géométre: A Microworld of Geometry for

Guided Discovery Learning. Zentrablatt Für Didactic der Matematik, 22(5), 1990.
16. Leslie Lamport. LaTeX: A Document Preparation System. Addison Wesley Pro-

fessional, 1994.
17. Zoran Lučić et. al. Euclid’s Elements. http://www.matf.bg.ac.yu/nastavno/zlucic/.
18. Noboru Matsuda and Kurt Vanlehn. Gramy: A geometry theorem prover capable

of construction. Journal of Automated Reasoning, 32:3–33, 2004.
19. Julien Narboux. A decision procedure for geometry in coq. In TPHOLS 2004,

volume 3223 of Lecture Notes in Computer Science. Springer-Verlag, 2004.
20. Christian Obrecht. Eukleides. http://www.eukleides.org/.
21. Konrad Polthier et. al. JavaView. on-line at: http://http://javaview.de/.
22. K. Polthier, S. Khadem, E. Preuss, and U. Reitebuch. Publication of interactive

visualizations with JavaView. Multimedia Tools for Communicating Mathematics.
Springer, 2002.

23. P. Quaresma and P. Janičić. Framework for the Constructive Geometry.
TR2006/001, Center for Informatics and Systems, University of Coimbra, 2006.

24. Pedro Quaresma and Predrag Janičić. Integrating dynamic geometry software, de-
duction systems, and theorem repositories. Mathematical Knowledge Management
(MKM-2006), LNAI 4108. Springer-Verlag, 2006.

25. Jürgen Richter-Gebert and Ulrich Kortenkamp. Cinderella - The interactive ge-
ometry software. Springer, 1999.

A Additional Examples

B

C

A A A A A A A A

A

B

S
C

D
M

K

N ′

N

c

d

c′

d′

m

a

b

a′

b′

s

o

Fig. 9. Inscribed circle for different choices for the point A (left) and hyperbolical
geometry figure represented in Poincare’s disc model (right)



A

B C

OS

A1

P ′

M

N

M ′

N ′

P

Q

R

Pa

Qa

Ra

Pb

Qb

Rb

Pc

Qc

Rc

Sa

Sb

Sc

Fig. 10. Triangle with some characteristic points

0 1 2 3 4−1−2−3

1

2

3

−1

−2

−3

x

y

Fig. 11. Function and its derivation (left) and model imported from JavaView (right)


