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Abstract

In this paper we consider geometrical construction problems and their
role in mathematical education. Owing to the main features of construc-
tion problems (accuracy in making conclusions, strict structure, rigorous
language and constructivistic nature), they can be fruitfully used in teach-
ing mathematics and computer science. We shall try to shed a new light
on construction problems, and show how they can be used in exercising
mathematical rigor, but also for understanding and illustrating a range of
mathematical and computer science theories. For these tasks, we empha-
size the motivating role of software tools that can be used for interactive
work. One such tool (WinGCLC) will be briefly presented.

1 Introduction

We see by experience that among equal minds and all other things
being equal, he who possesses geometry, conquers and acquires an
entirely new rigor.

B. Pascal, Pensées et opuscules,
Hachette, p. 165, Note

In ancient Greece, geometry played an important role in general education
and it always had its place, even when schooling consisted of only three or
four subjects. Thanks to the Arabs, the knowledge of geometry again reached
Europe in the Middle Age. Starting from the mid-nineteenth century (from
Lobachevskii all the way to Hilbert), geometry had a fundamental role in the
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reform of mathematics, leading to the introduction of strict concepts of lan-
guage and axiomatization. This type of experience was largely responsible for
the reforming other disciplines of mathematics, too. In the twentieth century,
mostly as the result of the work of the Bourbaki group, the influence of the
algebraic point of view on geometry was growing. The appearance of computers
introduced new perspectives and applications in the field of geometry. During
all that time, construction problems had an important role, and we believe that
this role has gained a new meaning in the modern time characterized by the
development of new mathematical and computer science concepts and theories.

In schools and at universities, geometry is studied to various extents, thus of-
ten serving for illustrating the axiomatic approach, as well. Although the study
of geometry has lately been algebrized, we still believe that there is some space in
which the synthetic approach can be illustrative and fruitful for understanding
not only geometrical problems but also some other — wider mathematical and
even computer science problems, concepts and ideas. To that sense, construc-
tion problems are extremely suitable because they are rigorous, but at the same
time also more intuitive (since the level of abstraction is different, higher than
geometrical axiomatic level and, hence, more easily comprehensible), as well as
connected with the need for effective procedures and therefore more attractive
to the students. Construction problems require accuracy in making conclusions,
strict structure, rigorous language and constructive consideration (since it is not
sufficient to prove the existence of a solution). That is why we consider that
construction problems can play an important role in present-day education and
that, at the same time, they represent an excellent field for training the stu-
dents in such work. In further text we shall illustrate by a prototype example
the questions of relevance to the formulation of a problem and components of
the solution, including the most frequent mistakes. We shall demonstrate the
way in which the construction itself represents an effective procedure which can
be considered as a form of programming. This will be presented in a way which
can be directly used in teaching, not only of geometry but of some other fields
as well.

The study of geometry and construction problems also represents a suit-
able field for interactive teaching which can nowadays be supported by software
tools, as well. Such interactive work is attractive and motivating for students,
who can practically at any moment receive the feedback from the tools they
use. Moreover, in that way geometry and construction problems are naturally
studied in a manner appropriate to the contemporary science and technology.
All these aspects and a multitude of possible links with the new mathematical
and computer science disciplines shed a new light upon geometry and construc-
tion problems. In further text we shall present in brief one of such tools —
WinGCLC.

Construction problems can also serve as a step towards computer science, not
only regarding the fields such as graphics, but even as a link with theories such
as the theory of computability, which will be seen in further text. We believe and
try to demonstrate that there are reasons for analyzing construction problems,
and we also point to the facilitating and motivating role of interactive work,
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especially presented by applying WinGCLC.

Overview of the paper: The rest of the paper is organized as follows: in
Section 2 we discuss the main characteristics of formal constructions and geo-
metrical construction problems; in Section 3 we give one example, worked out in
full details; in Section 4 we stress some common mistakes in stating and solving
geometrical construction problems and give some general suggestions; in Sec-
tion 5 we discuss the software package WinGCLC — a tool for teaching and
studying geometry; in Section 6 we discuss links between geometry and con-
struction problems with a range of mathematical and computer science fields;
in Section 7 we discuss how construction problems can be promoted and used
in education; in Section 8 we briefly discuss related work and in Section 9 we
draw final conclusions.

2 Formal geometrical constructions

The concept of formal geometrical constructions has been studied literally for
thousands of years, and since the ancient Greeks (and especially since Euclid’s
Elements [7]), it has become a standard part of virtually any sort of education.
One of the reasons for this was a general opinion that the rigor of geometrical
constructions substantially helps in developing the process of logical thinking.
The rigor in geometrical proofs was one of the motivating reasons for the modern
reform of geometry, with Hilbert’s Grundlagen der Geometrie as one of the
milestones [9]. Modern approach to classical, synthetical geometry is still very
much based on Hilbert’s visions. During all this time, geometrical construction
problems have remained one of the most rigorous and yet most attractive parts
of geometry.

A geometrical construction is a sequence of specific, primitive construction
steps. These primitive construction steps (which we also call elementary con-
structions) are based on using a ruler (or a straightedge1) and a compass, and
they are:

• construction (with a ruler) of a line such that two given points belong to
it;

• construction of a point which is an intersection of two lines (if such a point
exists);

• construction (with a compass) of a circle such that its center is one given
point and such that the second given point belongs to it;

• construction of a segment connecting two points;

• construction of intersections between a given line and a given circle (if
such points exist).

1The term “straightedge” is sometimes used instead of “ruler” in order to emphasize that
no markings which could be used to make measurements are allowed.
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Note that the above primitive constructions use abstract instruments: a ruler
and a compass. For Euclidean geometry, a ruler and a compass, as the usual
real-world instruments, can help in making approximative representation of for-
mal constructions in Cartesian plane. However, one should not mix-up these
instruments with the abstract instruments whose application in different geome-
tries can have different properties (e.g., an abstract ruler will differ in Euclidean
and hyperbolical geometries). Also, it cannot be overemphasized that there is
a need to distinguish the abstract (i.e., formal, axiomatic) nature of geometri-
cal objects from their usual interpretations (e.g., Cartesian interpretations). A
geometrical construction is a mere procedure consisting of abstract steps and
not a picture. However, for each construction, there is its counterpart in the
standard Cartesian model.

By using the set of primitive constructions, one can define more complex con-
structions (e.g., the construction of a right angle, a construction of the midpoint
of a line segment, a construction of the bisector of an angle, etc.). In describ-
ing geometrical constructions, both primitive and higher level constructions and
used.

The solution of a geometrical construction problem traditionally includes the
following four phases/components: analysis, construction, proof and discussion
(see, for instance, [10]). Each of them has its important role in the solution as
a whole.

Solving of geometrical construction problems requires great logical accuracy
as well as precise language. Although these properties cannot, on their own,
make the solution correct, they not only increase its value, but also correctly
direct a way of thinking both of the person writing the solution, on one hand,
and the person reading it, on the other.

2.1 Analysis

Generally, in analysis one starts from the assumption that a certain geometrical
object satisfies the conditions of the problem (conditions Γ) and proves that
properties Λ enabling the construction are then also satisfied. The analysis
is correct only if it contains all the proved implications which make complete
construction possible. For instance, if it is necessary to construct the triangle
ABC which satisfies certain properties, then the analysis must contain proved
properties which are fulfilled for points A, B, and C, thus enabling the effective
construction of these points.

2.2 Construction

Construction is based on the analysis, that is, on the properties Λ which are
proved in it. If the analysis is carried out sufficiently precisely, then all the
steps of the construction are directly linked with the assertions in the analysis.
However, it is assumed in the analysis that a certain figure satisfies the proper-
ties of the problem, but nothing is constructed within the analysis (e.g., if an
“auxiliary” point P is used in the analysis, it is not said that “... we construct
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point P which is ...”, but for example “... let point P be such that ...”). Con-
struction, on the other hand, is a constructive process and the only way to use
in it a certain (auxiliary) object is to construct it first (and then we say “... we
construct the object ...”).

The nature of construction is formal and it is, in fact, the description of the
procedure, that is, the set of formal and abstract steps (based on the use of
abstract instruments such as a ruler and a compass), and not a picture (to be
obtained, for instance, on the paper by using a ruler and a compass). Such a
picture can facilitate the understanding of the description of the construction,
but it can in no way replace one.

In constructions one must not use misleading and wrong phrases such as:
“let us draw a straight line”, “let us draw a segment”, “let us draw a nor-
mal”, “let us form a circle”, “let us circumscribe a circle around a triangle”,
“let us encompass in the opening of the compass”, “let us rotate the trian-
gle ABC in the clockwise direction”, “let us denote by B the point which is
up/down/above/below/left/right (from) the point A”, etc (see also Section 4).

2.3 Proof

In this part of the solution, it is necessary to prove that, if a figure is constructed
on the basis of the given description (that is, if it satisfies conditions Λ), then it
satisfies the conditions of the problem (i.e., conditions Γ). Within the framework
of the construction problem, proof is one of the places where most of the mistakes
are made, including the standard ones:

• wrongly established goal; a frequent error consists of unnecessarily prov-
ing unnecessary facts, while omitting what is necessary: the proof that
the constructed figure satisfies the properties of the problem by the very
statement of the problem;

• incorrect referring to analysis (“the proof is analogous to the analysis”);
the analysis and the proof represent, basically, two directions of one equiv-
alence and by rule are essentially different, so they can almost never (or
literally never) be analogous;

• incorrect referring to proved conjectures (one of the most frequent errors;
for instance, in order to apply the assertion PPa = b − c from (the fol-
lowing) Section 3, we must, first of all, ascertain that the points P and
Pa obtained in the construction are indeed the touching points of the in-
scribed circle and the escribed circle of the triangle ABC with the line
BC).

2.4 Discussion

In the discussion, it is considered how many possible solutions to the problem
there exist. Ideally, the number of solutions should be expressed effectively
in the function of mutual relations of the given elements, but sometimes it is

5



sufficient to express it implicitly in the function of the relation of the figures
obtained during the construction.

3 Worked example

In this section we shall give a fully detailed solution to one geometrical con-
struction problem. The problem is of moderate difficulty level and we have
chosen it in order to illustrate several important issues and to demonstrate the
required rigour of reasoning. The problem requires that a triangle should be
constructed, given the difference between its two sides, one median line and the
radius of its inscribed circle. In order to solve it, we first need to prove two
auxiliary conjectures and to solve one auxiliary construction problem.

We denote by B a primitive relation between of arity 3, which can also be
generalized (defined) to arity n, n > 3. We denote by ∼= a primitive congru-
ence relation. We denote points by capital Latin letters and we denote lines,
segments and segments’ measures by small Latin letters; we denote angles and
their measures by small Greek letters.

Lemma 1 If the circle with the centre at the point O touches the sides of the
angle 6 XY Z at points X and Z, then Y X ∼= Y Z holds.

Y

X

O

Z

Figure 1: Illustration for Lemma 1

Proof:
Since OX ∼= OZ, OY ∼= OY and 6 OXY = 6 OZY = π

2
, it follows that the

triangles OXY and OY Z are congruent, and therefore Y X ∼= Y Z. qed2

Lemma 2 If S is the centre of the circle inscribed in the triangle ABC (for
which AC ≥ AB holds), A1 the midpoint of the side BC, P the tangent point of

2qed — Quod errat demonstrandum (what was to be proved), since the middle Age the
proofs have been concluded by this Latin sentence.
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the line BC with the inscribed circle, Pa the tangent point of the line BC with
the escribed circle which corresponds to the vertex A, and P ′ the point symmetric
to the point P with respect to the point S, then the following holds: B(A, P ′, Pa),
the point A1 is the midpoint of the segment PPa, and PPa = AC − AB.

A

B C

OS

A1

P ′

P

Q

R

Pa

Qa

Ra

Sa

Sb

Sc

Figure 2: Illustration for Lemma 2

Proof:

• If AB ∼= AC holds, then the line AS is the bisector of the side BC and it
contains the points P , P ′ and Pa. Moreover, the points A1, P and Pa are
identical and, hence, PPa = AB − AC, as claimed.

• If AB ∼= AC does not hold, then the points P and Pa are not identical
and the lines AS and P ′Pa are different. Let Q be the tangent point of
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the line AC with the inscribed circle and Qa the tangent point of the line
AC with the escribed circle which corresponds to the vertex A. Let P̂

be the intersection point of the lines SP and APa. Since SP ⊥ BC and
SaPa ⊥ BC, it follows that SP̂‖SaPa, and therefore, on the basis of the
Thales’ Theorem, it holds that SP̂ : SaPa = AS : ASa. Since SQ ⊥ AC

and SaQa ⊥ AC, it follows that SQ‖SaQa, and therefore, on the basis
of the Thales’ Theorem, it holds that SQ : SaQa = AS : ASa. This
means that SP̂ : SaPa = AS : ASa = SQ : SaQa, and then it follows
that SP̂ = SQ (because SaPa = SaQa). Therefore, the point P̂ lies on
the circle inscribed in the triangle ABC and it lies on the line SP . It
cannot be identical to the point P , because in that case the points P and
Pa would be identical, and the following would hold: AB ∼= AC, which is
contrary to the assumption. Hence, the point P̂ is symmetric to the point
P with respect to the point S, that is, the points P ′ and P̂ are identical,
and then it follows that the point P ′ lies on the line APa. The point P ′

lies on the circle inscribed in the triangle, while the point Pa lies on the
side BC, and therefore B(A, P ′, Pa) holds.

Let a, b and c be the lengths of the sides BC, AC and AB, respectively,
and let p = 1

2
(a + b + c). Let Q and R be the points in which the circle

inscribed in the triangle ABC touches the lines AC and AB. Further,
let Qa and Ra be the touching points of the lines AC and AB with the
escribed circle of the triangle ABC corresponding to the vertex A.

Let us prove that BP = p − b. On the basis of Lemma 1, it holds that
BP ∼= BR, AR ∼= AQ and CP ∼= CQ. Moreover, it also holds that
B(B, P, C), B(B, R, A) and B(A, Q, C), from which it follows that BP =
BC − CP , BR = BA − AR and AC = AQ + CQ, and therefore

BP =
1

2
(BP+BR) =

1

2
(BC−CP+BA−AR) =

1

2
(BC+BA−CQ−AQ) =

=
1

2
(BC + BA − AC) =

1

2
(a + c − b) = p − b .

Let us prove that CPa = p − b. On the basis of Lemma 1, it follows that
ARa

∼= AQa, BPa

∼= BRa and CQa

∼= CPa. The following also holds:
B(A, B, Ra), B(A, C, Qa) and B(B, Pa, C), therefore

AQa =
1

2
(AQa + ARa) =

1

2
(AB + BRa + AC + CQa) =

=
1

2
(AB + AC + BPa + CPa) =

1

2
(AB + AC + BC) =

1

2
(a + b + c) = p .

From AQa = p it follows that CQa = AQa −AC = p− b. On the basis of
Lemma 1, CPa = CQa holds, therefore CQa = p − b.

If it holds that AC > AB, then B(B, P, A1, Pa, C) holds, so that A1P =
BA1 − BP = 1

2
a − (p − b) and A1Pa = A1C − PaC = 1

2
a − (p − b).
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Hence, A1P = A1Pa, and therefore from B(P, A1, Pa), it follows that the
point A1 is the midpoint of the segment PPa and PPa = A1P + A1Pa =
1

2
a− (p− b) + 1

2
a− (p− b) = a− 2p + 2b = a− (a + b + c) + 2b = b− c. (If

it holds that AB > AC, it can be proved that PPa = c − b, by analogy).

qed

Problem 1 Construct the tangent through the point P touching the circle k.

Analysis:
Let us suppose that t is the tangent through the point P touching the circle

k. If such a tangent exists, the point P either lies outside the circle k or it lies
on the circle k. Let O be the centre of the circle k.

• If the point P lies outside the circle k, then the angle PTO is a right angle,
where T is the point of contact of the tangent t and the circle k. Therefore
it follows that the point T is the intersecting point of the circle k and the
circle whose diameter is the segment PO. The line t is determined by the
points P and T .

• If the point P lies on the circle k, then the tangent t is normal to the line
PO.

Construction:

• If the point P lies outside the circle k, let us construct the circle l whose
diameter is the segment OP . Let us denote by T one of the intersecting
points of the circles l and k. Let us construct the line t determined by the
points P and T . The line t is the tangent through the point P touching
the circle k.

• If the point P lies on the circle k, let us construct the line t on which the
point P lies, and which is perpendicular to the line OP . The line t is the
tangent through the point P , touching the circle k at the point P .

• If the point P lies inside the circle k, there is no tangent through the point
P touching the circle k.

Proof:

• If the point P lies outside the circle k, the point T , on the basis of the
construction, lies on the circle whose diameter is the segment OP , from
which it follows that the angle PTO is a right angle. The line t is deter-
mined by the points O and T , and therefore it is the tangent through P

touching k, as claimed.

• If the point P lies on the circle k, the line t is, on the basis of construction,
perpendicular to OP , and therefore it is the tangent through the point P

touching the circle k.
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P

T

O k

l

Figure 3: Illustration for Problem 1

Discussion:

• If the point P lies outside the circle k, then there are two tangents through
P touching k.

• If the point P lies on the circle k, then there is one tangent through P

touching k.

• If the point P lies inside the circle k, then there is no tangent through P

touching k.

Problem 2 Construct a triangle ABC such that AC − AB = d, the radius of
its inscribed circle is congruent to r, and the median line that corresponds to A

is congruent to ta, where d, r and ta are given.

Analysis:
Let us assume that the triangle ABC fulfills the conditions of the problem.

Let A1 be the midpoint of BC, P the tangent point of the line BC with the
inscribed circle, Pa the tangent point of the line BC with the escribed circle
that corresponds to the vertex A, and P ′ the point symmetric to the point P

with respect to the point S (which is the centre of the inscribed circle of the
triangle ABC). On the basis of Lemma 2, the point A1 is the midpoint of the
segment PPa and B(A, P ′, Pa) holds. Since AA1

∼= ta, the point A lies on the
circle l with the centre A1 and the radius ta. The point A is the intersecting
point of the circle l and the line PaP ′. The points B and C lie on the line PPa

and on the tangents through the point A touching the circle with the centre S

and the radius SP .

Construction:

1. Let us construct the segment PPa congruent to the given segment d.
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C

A

B P A1 Pa

P ′

S

Figure 4: Illustration for Problem 2

2. Let us construct the perpendicular to the line PPa at the point P .

3. On the constructed perpendicular, let us determine the point S such that
PS ∼= r holds.

4. Let us denote by P ′ the point symmetric to the point P with respect to
S.

5. Let us denote by A1 the midpoint of the segment PPa.

6. Let us construct the circle l with the centre A1 and the radius ta.

7. Let us denote by A the intersecting point of the circle l and the line P ′Pa.

8. Let us construct the circle k with the centre S and the radius r.

9. If B(A, P ′, Pa) holds, then let us construct (on the basis of the auxiliary
construction, see Problem 1) the tangents through the point A touching
the circle k.

10. Let us denote the intersecting points of these tangents and the line PPa

by B and C.

If B(A, P ′, Pa) holds, the triangle ABC fulfills the conditions of the problem.

Proof:
On the basis of the construction, the lines BC, AB and AC touch the circle

k, therefore the circle k with the radius r is the inscribed circle of the triangle
ABC.

The point S is the centre of the inscribed circle of the triangle ABC, while
the point P is its touching point with the side BC. The point P ′ is, on the
basis of the construction, symmetric to the point P with respect to the point S.
On the basis of Lemma 2, the lines AP ′ and BC intersect at the point which
is the tangent point of the line BC with the escribed circle of the triangle that
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corresponds to the vertex A. On the basis of the construction, the point Pa is
the intersection point of the lines AP ′ and BC, therefore Pa is the tangent point
of the line BC with the escribed circle of the triangle that corresponds to the
vertex A. On the basis of Lemma 2, PPa = AC −AB holds, while on the basis
of the construction PPa

∼= d holds, therefore it follows that AC − AB = d.3

The points P and Pa are the tangent points of the line BC with the inscribed
circle and the escribed circle (that corresponds to the vertex A), respectively.
On the basis of Lemma 2, the midpoint of the segment BC is the midpoint of
the segment PPa. On the basis of the construction, A1 is the midpoint of PPa,
hence it follows that A1 is the midpoint of the segment BC. On the basis of the
construction, the point A lies on the circle with the centre A1 and the radius
ta, from where it follows that AA1

∼= ta, which we wanted to prove.
Therefore, the constructed triangle ABC fulfills the conditions of the prob-

lem.

Discussion:
On the basis of the analysis it follows that in the triangle which fulfills the

conditions of the problem B(A, P ′, Pa) holds, hence the condition AA1 > A1P
′

must also hold, as well as the following:

ta >

√

PP ′2 + PA2
1

=

√

(2r)2 +

(

d

2

)2

.

The solution exists if and only if this condition is fulfilled and then the solution
is unique up to congruence.

4 DOs and DON’Ts

The worked example (Section 3) illustrates some of criteria important both in
stating and in solving construction problems. Here are some DOs and DON’Ts:

3We use the symbol ∼= to denote the congruence of the segments, and the symbol = to
denote the measure of the segments. Depending on the context, it is sometimes more suitable
to use the former, and sometimes the latter symbol.
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DON’Ts DOs

Never state the problem this way: Make a self-contained statement.
“Construct a triangle ABC if In place of the confusing b − c

b − c, r, ta are given”. (b and c are measures, so b − c

cannot be a line segment), introduce
a new line segment and state the
condition in terms of vertices A,
B, C or defined objects
(e.g., “... such that AC − AB = d”).

Never replace a construction by a Provide a figure, but keep in
figure. Never refer to a figure mind that it is just an illustration,
(either in the statement, or in not a part of the solution.
the solution).
Never refer to a proved conjecture Prove that the constructed object
without caution. (For instance, in meets the conditions of a lemma
the worked example (Section 3) before using the lemma.
one must not use PPa = b − c before
it has been proved that P and Pa

meet the conditions of Lemma 2.)
In the construction never refer or Always define all objects being
use the objects that have not yet been used in the construction. The only
constructed (even the corresponding objects available (defined) at the
objects were defined in the analysis). beginning of the constructions are
(For instance, in the worked example the given objects (in the worked
one cannot say: “Denote by B and C example: d, r, ta).
the intersection points of these
tangents with the line BC”.)
Never use terms like “let us In the construction, use terms like
construct...” in other parts of the “Let us construct...” or “Let us
solution apart from the construction. denote by”, while in other parts

terms like “Let ... be a/an”
should be used.

5 WinGCLC and interactive support

WinGCLC package4 [13] is a tool for teaching and studying geometry, and es-
pecially studying construction problems. Students can make different attempts
in making constructions and/or exploring some geometrical properties. Inter-
active work makes these attempts more interesting and more fruitful. This

4WinGCLC is freely available on-line from www.matf.bg.ac.yu/~janicic/gclc/. The
mirrored version is available from emis (The European Mathematical Information Service)
www.emis.de/misc/index.html. There exists a Windows version, as well as command-line
versions gclc for dos and for linux. The name gclc is derived from Geometry Construc-

tions ⇒ LATEX Converter.
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way of solving construction problems helps computer science students to better
understand geometry notions and vice versa.

Constructions for a certain problem are described in gclc language. These
descriptions are compiled by the WinGCLC processor (and can be exported
to different output formats, such as LATEX format or the bitmap format). It
provides an easy-to-use support for all primitive constructions, but also for a
range of higher-level constructions. In addition, WinGCLC provides support
for isometric transformations, general conics, etc.5

While a construction is an abstract procedure, in order to make its represen-
tation in Cartesian plane (or, more precisely, in Cartesian model of Euclidean
plane), we still have to make some link between these two. For instance, given
three vertices of a triangle we can construct a center of its inscribed circle (by
using primitive constructions), but in order to represent this construction in
Cartesian plane, we have to take three particular Cartesian points as vertices
of the triangle. Thus, figure descriptions in WinGCLC are usually made by a
list of definitions of several (usually very few) fixed points (defined in terms of
Cartesian plane, i.e., by pairs of coordinates) and a list of construction steps
based on these points.

The example given in Fig. 5 illustrates one simple geometrical construction.
Groups of commands are explained in comments within the description itself.
The output (in LATEX format) is presented in Fig. 6. In this example we con-
struct three bisectors of the angles of a triangle ABC. It is very well-known that
these three lines intersect at one point (at the center of the inscribed circle).
This simple property (as well as much more complex properties or hypothe-
ses) can be, in a sense, explored and investigated by WinGCLC. Namely, d is
the distance between S and S’, and one can use the so called “watch window”
(or “geometry calculator”) to check that d= 0 (for these and other particular
vertices).

As an example, we also present the construction for Problem 2 (d is given
as D1D2, r is given as R1R2, and ta is given as T1T2). Figure 7 presents the
gclc description, Figure 8 presents the LATEX output and Figure 9 shows the
corresponding WinGCLC screenshot.

WinGCLC can also serve as a tool for making digital illustrations. It is
guided by the idea of geometrical construction problems and by the idea of
“describing figures” rather than of “drawing figures” (so, in a sense, this system
is in spirit close to the TEX/LATEX system [15, 16], or it is parallel to it). There is
an interface which enables simple and interactive use of a range of functionalities,
including making animations, “watch window”, interactive changing of a figure
description, etc.

5Although motivated by the formal geometrical constructions, WinGCLC provides sup-
port for some non-constructible objects, too (for instance, in WinGCLC it is possible to
determine/use a point obtained by rotation for 1◦, although it is not possible to construct
that point by a ruler and a compass).
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% fixed points

point A 5 5

point B 50 5

point C 20 50

% determining bisectors

bis a B A C

bis b A B C

bis c A C B

% determining intersections of bisectors

intersec S a b

intersec S’ a c

distance d S S’

% marking points

cmark b A

cmark b B

cmark t C

cmark t S

% drawing sides of the triangle ABC

drawsegment A B

drawsegment B C

drawsegment C A

% drawing the circle inscribed in ABC

line a1 B C

perp a2 S a1

intersec P a1 a2

drawcircle S P

Figure 5: Example 1 — a gclc description of a construction

6 Links

In this section we discuss several interesting and important links between geo-
metrical construction problems and some other mathematical or computer sci-
ence fields (this overview is brief and simplified). These links should be useful for
better understanding of both their sides. They shed a new light on some fields
and give a unifying view even for some areas that seem not very close at the first
glance. We believe that these links provide evidence and supply a range of ideas
for potential multiple usefulness of studying construction problems (especially
at the university level of education).

6.1 Constructions as programs

Due to their constructive, effective nature, geometrical constructions are, in a
sense, similar to programs. As we have already said, a construction is not a
picture, but a procedure of abstract construction steps. The language of con-
structions can be seen as one programming language (although such language
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A B

C

S

Figure 6: Output for Example 1

does not need to be very expressive as constructions usually do not require
devices like loops and arrays). Geometrical construction problems can help
students skilled in programming to understand geometry, while they can also
help students acquainted with geometry and construction problems to under-
stand programming, and the above-said applies to all education levels. More on
representing geometric constructions as programs see in [23, 11].

We believe that this link is very fruitful in education, while the benefits are
multiplied and increased if some geometry interactive/dynamic software tools
are used (e.g., WinGCLC (Section 5), Cinderella [19] etc.).

6.2 Construction problems and constructive type theory

Martin Löf’s constructive type theory [17] is one of the most interesting and
the most important new theories which try to unify large parts of mathematics
and computer science. In this theory, these are some of the most important
principles: a set is a theorem, an element of a set is a proof of a theorem, a
specification is a theorem, a program is a proof of a theorem. Without going into
more details, we could add the following to these principles: a statement of a
construction problem is a specification, a construction is a program. This unify-
ing view/illustration (with all its meanings and consequences) can be interesting
and useful to the university level of education.

6.3 Abstract constructions and their link with the object-

oriented paradigm

Absolute geometry does not have an axiom on parallel lines and thus is incom-
plete. If we add Euclid’s axiom on parallel lines, we obtain Euclidean geometry,
while if we add the hyperbolical axiom on parallel lines we obtain hyperbolical
geometry. Conjectures valid in absolute geometry are valid in both Euclidean
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dim 120 85

% given objects

point D1 5 80

point D2 20 80

drawsegment D1 D2

midpoint D D1 D2

printat b D {d}

point R1 5 75

point R2 17 75

drawsegment R1 R2

midpoint R R1 R2

printat b R {r}

point T1 5 70

point T2 45 70

drawsegment T1 T2

midpoint T T1 T2

printat b T {t a}

area 5 10 110 60

% step 1

point P 50 5

translate P a D1 P D2

cmark b P

cmark b P a

line p P P a

drawline p

% step 2

perp s P p

% step 3

translate S’ R1 P R2

circle m P S’

intersec2 S S’’ s m

cmark l S

% step 4

sim P’ S P

cmark rt P’

% step 5

midpoint A 1 P P a

cmark b A 1

% step 6

translate T’ T1 A 1 T2

circle l A 1 T’

% step 7

line p’ P a P’

drawline p’

intersec2 A A’ p’ l

cmark rt A

drawsegment A A 1

% step 8

circle k S P

drawcircle k

% step 9

midpoint O A S

circle o O A

intersec2 Tb Tc o k

line t’ A Tb

line t’’ A Tc

drawline t’

drawline t’’

% step 10

intersec B p t’

intersec C p t’’

cmark lb B

cmark b C

Figure 7: The gclc description of the construction for Problem 2

geometry and hyperbolical geometry (while, of course, some conjectures are
valid in Euclidean and not in hyperbolical geometry, and vice versa). Also,
some abstract constructions may be the same in both Euclidean geometry and
hyperbolical geometry. For instance, the construction of a regular triangle ABC

given the points A and B can be described in the following way in both Eu-
clidean and hyperbolical geometry: construct a circle k1, with center A and with
B belonging to it, construct a circle k2, with center B and with A belonging to it,
denote by C an intersection of circles k1 and k2. Note that the construction of
a circle is in this description treated as an abstract step with different treatment
in Euclidean and hyperbolical geometry. There is a link between this hierarchy
and the object-oriented paradigm in programming. Absolute geometry can cor-
respond to an abstract class, while Euclidean and hyperbolical geometry inherit
absolute geometry and interpret its virtual methods. This link very naturally
illustrates and helps understanding both its sides.
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Figure 8: Output for the gclc description of the construction for Problem 2

6.4 Construction problems and WinGCLC as a tool for

explaining a notion of model

We have already drawn attention to the need to distinguish the abstract (i.e.,
formal, axiomatic) nature of geometrical objects from their usual models (e.g.,
Cartesian models). A geometrical construction is a mere procedure of abstract
steps and not a picture. However, for each construction, there is its counterpart
in the standard Cartesian model. On the other hand, a hyperbolical construction
can be interpreted in Poincaré’s disc model of hyperbolical plane, and further
interpreted in Cartesian model of Euclidean plane. There exists WinGCLC

module hyp-euc6 which transforms an abstract hyperbolical construction into
an abstract Euclidean construction in Poincaré’s disc model of a hyperbolical
plane. The corresponding Euclidean construction (in gclc) can then be pro-
cessed in a usual way. By using this module, gclc works as a platform for
both Euclidean and hyperbolical geometry. It is interesting to investigate the
same abstract construction in two geometries: Euclidean and hyperbolical one.
These WinGCLC features enable understanding a notion of Poincaré’s model,
but also a general notion of model.

6Developed by Ivan Trajković (Faculty of Mathematics, University of Belgrade), under the
supervision of the second author.
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Figure 9: A screenshot of WinGCLC (with the description of the construction
for Problem 2)

6.5 Construction problems and theory of computability

There is a number of formalisms for defining computable functions: Turing
machine, Post machine, ur machine, lambda calculus, Markov’s algorithms,
recursive functions etc [6]. The theory of computability is fundamental for
theoretical computer science and it is vital in many practical problems as well.
It is interesting that computable functions can be, under some conventions,
also defined and studied in terms of Euclidean constructions by a ruler and a
compass within, so called, “Euclid’s Abstract Machine” [5].

6.6 Construction problems and automated problem solv-

ing and theorem proving

Some fragments of geometry are decidable [24] and are very interesting domains
for automated theorem proving. Gelernter’s Geometry machine [8], written in
mid-fifties, was one of the first theorem provers. It addressed fragments of con-
structive geometry and introduced a number of ideas and techniques later used
in many systems. Chou’s geometry theorem prover for the constructive part of
geometry [4] based on Wu’s algorithm (and algebraic properties) is considered

19



by many as one of the most successful theorem provers in general. Chou and
colleagues also made a theorem prover that produces traditional proofs of geo-
metrical conjectures [3]. In [12] the authors described a theorem prover which
proves conjectures down to the level of geometry axioms, and can be adapted
to dealing with higher, construction steps (as a basic level, instead of the level
of axioms). There also exist algorithms for solving some classes of construction
problems (see, for instance, [2, 22, 21]). This field strongly links geometry and
construction problems with automated reasoning and algorithmics.

7 Promoting construction problems in educa-

tion

In this work we promote both using the construction problems for exercising
rigorous mathematical reasoning and exploiting new technologies for better un-
derstanding of mathematical/geometrical ideas. Moreover, such technologies
develope students’ need for justification of relationships, improve their reason-
ing skills, support the link between inductive and deductive reasoning and en-
courage students to understand these two more deeply.

Advancing technologies and media shed new light on mathematics and en-
able substantial improvements in education. This is especially the case with
geometry which can be almost often linked to some visualisations. Interac-
tive/dynamic software tools motivate and help students to visualize geometry
notions and statements (both those intuitive and counterintuitive). Technol-
ogy in the form of interactive/dynamic geometry software packages provides
powerful new means of studying geometry. As the value of this technology
has become recognized, many teachers/professors have integrated it into their
geometry courses (see, for instance, [1, 14]).

Within an active classroom environment, and especially within a work sup-
ported by suitable software tools, students can/should be encouraged to make
conjectures that follow through a series of explorations. By using interactive
software tools (such as, for instance, WinGCLC) students have an opportunity
to explore and experiment, to change the set of initial figures or the construction
procedure and consider the resulting effect. This way, students use inductive
reasoning when they perform investigations and make conjectures about some
geometrical properties or about ways for constructing some figures. After this
stage, having some conjectures made (either some general geometrical state-
ments, or some statements within a particular construction problem), students
should be asked to provide a formal, deductive proof of the conjectures. In
such a way, students improve both their inductive and deductive reasoning and
also their understanding of the link between these two. This approach provides
mathematical experiences that proceed from the simple to the complex and from
the concrete to the abstract. Some of possible teaching examples (depending
on the level of students’ knowledge) are constructions of regular polygons, im-
ages of points by a circle inversion, constructions within Poincare’s model of
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hyperbolical plane etc.
The example given in Section 3 provides a sample (presented in full details)

of classroom applications that can be studied both as a rigorously solved ge-
ometrical problem and a problem that can be interactively explored by using
software tools. Such tools stimulate various cognitive processes, actively engage
students and give them deeper understanding of subject matters. Of course, cre-
ative teachers should be able to define other suitable classroom demonstrations
and find many other attractive examples and ways of motivating students to in-
vestigate the subject interactively. We stress that students should not conceive
geometrical construction problems as a mere collection of facts and procedures,
but should also develop higher-level reasoning and understand meta-procedures
for solving whole classes of problems and subproblems.

In addition to the above ideas, we believe that a substantial quality of ed-
ucation can be gained by permanent promoting links between geometry and
construction problems with other mathematical and computer science notions
and fields (some of these links were discussed in Section 6). These links should
enable students better perceiving of horizontal relationships between fields which
are not related at the first glance and to understand families of theories in a
more compact, more uniform way.

8 Related work

The work presented here is, in one way, related to the long line of rigorous
teaching and studying of construction problems, the line that goes back for
several thousands years and is still actual (see, for instance, [10]).

On the other hand, this work and the presented tool WinGCLC are closely
related to a family of modern software tools for interactive studying of geometry.
One of the first such tools and one of the most popular in many classroom
environments is Geometer’s Sketchpad (see, for instance, [20]). Also, there are
other popular tools, such as Cinderella [19] and JavaView [18], that have support
for a range of geometries.

Finally, this work is also related to a number of mathematical and com-
puter science fields with strong links to geometry and construction problems (as
discussed in Section 6).

9 Conclusions

In this paper we have discussed geometrical construction problems and their
role in mathematical education. We have presented one example, worked in full
details, and illustrated the most important features of construction problems, of
their statements and solutions. Several examples show how a range of mathe-
matical and computer science fields can be illustrated by construction problems
or can be studied in conjunction with studying construction problems. The old
construction problems can be interesting from the point of view of some quite
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recent theories, concepts and ideas and this shed a new light upon geometry
and construction problems. In all aspects of studying construction problems
it is fruitfull to use an interactive work and to exploit available software tools.
WinGCLC is one such tool — a tool for teaching and studying construction
problems. In future, we intend to work on further developments of the ideas
presented in this paper and especially on extending WINGCLC by additional
modules, some of them also for non-Euclidean geometries.
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