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Abstract

In this paper we present an investigation into whether and how decision proce-
dures can be learnt and built automatically. Our approach consists of two stages.
First, a refined brute-force search procedure applies exhaustively a set of given ele-
mentary methods to try to solve a corpus of conjectures generated by a stochastic
context-free grammar. The successful proof traces are saved. In the second stage, a
learning algorithm (by Jamnik et al.) tries to extract a required supermethod (i.e.,
decision procedure) from the given traces. In the paper, this technique is applied
to elementary methods that encode the operations of the Fourier-Motzkin’s deci-
sion procedure for Presburger arithmetic on rational numbers. The results of our
experiment are encouraging.

1 Introduction

Learning proof methods and programs is a challenging task. Jamnik and
colleagues [7] devised a framework for proof planning [4] systems where new

1 The first author was supported by the EPSRC Advanced Research Fellowship, and the
second author was supported partly by EPSRC grant GR/R52954/01 and partly by the
Serbian Ministry of Science research grant 1379.
2 Email: mateja.jamnik@cl.cam.ac.uk
3 Email: janicic@matf.bg.ac.yu

Preprint submitted to Elsevier Preprint



proof methods can be learnt automatically (the implementation of this frame-
work is called LearnΩmatic [8]). In this approach, a proof planning system
is used to construct examples of proofs that use similar reasoning patterns.
These proofs consist of low level inference steps or proof methods that are
available to the system initially. The goal is to learn a procedure which uses
these methods in some structured and efficient way. In order to learn such a
procedure, a series of example proofs is generated automatically. The traces
of example proofs are then fed into the learning mechanism which learns the
so-called method outline, which captures the pattern common to all of the
example proofs. Finally, the representation of a learnt method outline is en-
riched into a fully specified proof method so that it can be used by a specific
proof planning system of choice. Such a learnt proof method is then used in
subsequent proof planning attempts for other conjectures.

In this paper, we discuss how the learning approach in LearnΩmatic (for
background, see §2.1) can be extended and used for a wider range of domains
and procedures. In particular, we apply LearnΩmatic to developing deci-
sion procedures (for background, see §2.2). This is a challenging task as the
learnt method should be terminating, sound and complete. Building decision
procedures automatically would be beneficial for a reasoning system, espe-
cially for user defined theories or when for some theory a decision procedure
is not available. So, our main motivation is a mechanisation of building and
discovery of new decision procedures (while learning existing decision proce-
dures serves as an illustration of an important step towards the final goal).
Learning new decision procedures automatically can reduce the time required
for developing them, it can prevent human implementation flaws, and presents
a generic approach (that is independent of the theory) to generating decision
procedures. We propose the programme and demonstrate how it can yield one
specific procedure — Fourier-Motzkin’s decision procedure [12] (the proposed
framework can, of course, be used for other proof methods as well).

While our larger aim is to discover new procedures, we start by learning
an existing procedure. This is a difficult task, since even if the idea of the
required procedure is known and all the building blocks are available, it is
still very challenging to combine them correctly into the required decision
procedure. Our framework does not provide full automation (or guaranteed
formal properties, such as termination, soundness and completeness), however,
it can be used as a very useful mechanised assistant. The user needs to provide
the necessary building blocks and also some guidance to refine the brute force
search according to the specific theory, in order to construct examples for
learning mechanism which generates the decision procedure.

In the research presented in this paper, we used the system LearnΩmatic [8],
while all other discussed/used algorithms and modules were newly developed
(and serve as an extension to LearnΩmatic).
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Our programme (which also reflects the structure of this paper) consists
of the following steps (we illustrate our approach with the example of linear
arithmetic and the Fourier-Motzkin’s procedure):

• the methods that can make up a decision procedure are provided (§3);

• the examples of proofs using the given methods are constructed (§4); this
requires:
· a number of conjectures is generated randomly (4.1);
· implementing a simple prolog deduction system (which essentially car-

ries out a brute force search) that applies the given methods (4.2);
· grouping and ordering of methods to direct the brute force search and

to prevent non-termination in the process of generating proof examples
(4.3);
· all example proofs are divided into groups according to a number of vari-

ables; from each group the most illustrative proofs are taken; all these
selected proofs make the learning set (4.4).

• the selected example proofs are input into the learning mechanism which
learns a procedure that captures the pattern of reasoning employed in all of
the example proofs (§5);

• on the basis of the learnt pattern, a prolog mechanism automatically
generates a corresponding supermethod (also in prolog), which should be
our required decision procedure (§6);

• the learnt procedure is tested on the original set of examples (§7).

We finish the paper with a brief discussion of related work in §8, and
conclusions and future directions in §9.

2 Background

2.1 Automatic learning

Jamnik et al. [7] devised a framework within which a proof planning [4] sys-
tem can learn frequently occurring patterns of reasoning automatically from a
number of typical examples, and then use them in proving new theorems [9].
The availability of such patterns, captured as proof methods in a proof plan-
ning system, reduces search and proof length. Jamnik et al. implemented this
learning framework for the proof planner Ωmega [2] — they call the system
LearnΩmatic. The entire process of learning and using new proof methods
in LearnΩmatic consists of the following steps:

(i) The user chooses informative examples and gives them to Ωmega to be
automatically proved. Traces of these proofs are stored.

(ii) Proof traces of typical examples are given to the learning mechanism
which automatically learns so-called method outlines.
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(iii) Method outlines are automatically enriched by adding to them additional
information and performing search for information that cannot be recon-
structed in order to get fully specified proof methods that Ωmega can
use in proofs of new theorems. 4

The methods LearnΩmatic aims to learn are complex and are beyond
the complexity that can typically be tackled in the field of machine learning. 5

Therefore, LearnΩmatic learns method outlines, which are expressed in the
following language L, where P is a set of known identifiers of primitive methods
used in a method that is being learnt:

• for any p ∈ P , let p ∈ L,

• for any l1, l2 ∈ L, let [l1, l2] ∈ L,

• for any l1, l2 ∈ L, let [l1|l2] ∈ L,

• for any l ∈ L, let l∗ ∈ L,

• for any l ∈ L and n ∈ N, let ln ∈ L,

• for any list such that all li ∈ list are
also li ∈ L, let T (list) ∈ L.

“[” and “]” are auxiliary symbols used to separate subexpressions, “,” denotes
a sequence, “|” denotes a disjunction, “∗” denotes a repetition of a subexpres-
sion any number of times (including 0), n a fixed number of times, and T is
a constructor for a branching point (list is a list of branches), i.e., for proofs
which are not sequences but branch into a tree. For more information on the
expressiveness of this language, the reader is referred to [9].

Our learning technique considers some typically small number of positive
examples which are represented in terms of sequences of identifiers for prim-
itive methods, and generalises them so that the learnt pattern is in language
L. The pattern is of smallest size with respect to a defined heuristic measure
of size [9], which essentially counts the number of primitives in an expression.
The pattern is also most specific (or equivalently, least general) with respect
to the definition of specificity spec. spec is measured in terms of the number
of nestings for each part of the generalisation [9]. Again, this is a heuristic
measure.

4 Here we refer to the mechanism of transforming a method outline (the expression learnt
by LearnΩmatic and expressed in the specific language L, defined subsequently) into the
method that can be used by a proof planner, in LearnΩmatic’s case Ωmega. We do not
describe this mechanism in this paper, as it is Ωmega specific in LearnΩmatic. In our
framework, this step corresponds to the step that automatically generates prolog code
from the learnt method outline (see §6).
5 LearnΩmatic’s methods (i.e., in the language used by Ωmega) are typically complex
and recursive, with preconditions and parameters, etc. Basically, they are programs. Syn-
thesising programs is a well-known challenging problem, and so is machine learning of com-
plex procedures without much human provided background knowledge. Hence, there are
no off-the-shelf machine learning algorithms that we could use. Rather, we help ourselves
by reasonably simplifying the problem as much as possible (e.g., by learning expressions in
language L, described next, rather than fully specified methods).
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The algorithm is based on the generalisation of the simultaneous com-
pression of well-chosen examples. Here is just an abstract description of the
learning algorithm, but the detailed steps with examples of how they are ap-
plied can be found in [9]:

(i) Split every example trace into sublists of all possible lengths.

(ii) If there is any branching in the examples, then recursively repeat this
algorithm on every element of the list of branches.

(iii) For each sublist in each example find consecutive repetitions, i.e., pat-
terns, and compress them using exponent representation.

(iv) Find compressed patterns that match in all examples.

(v) If there are no matches in the previous step, then generalise the examples
by joining them disjunctively.

(vi) For every match, generalise different exponents to a Kleene star, and the
same exponents to a constant.

(vii) For every matching pattern in all examples, repeat the algorithm on both
sides of the pattern.

(viii) Choose the generalisations with the smallest size and largest specificity.

The learning algorithm is implemented in SML of NJ v.110. Its inputs
are the sequences of methods extracted from proofs. Its output are method
outlines.

2.2 Decision procedures

A theory T is decidable if there is an algorithm (which we call a decision pro-
cedure) such that for an input sentence (i.e., a closed formula) F of the theory
T , it returns true if and only if F is valid in T (i.e., T |= F ) and returns false
otherwise. The role of decision procedures is often very important in theorem
proving (e.g., see [10]). Decision procedures can reduce the search space of
heuristic components of a prover and increase its abilities. Decision proce-
dures can usually be much more efficient than some other proving strategies
(e.g., induction). There are many decision procedures in standard use, includ-
ing decision procedures for fragments of arithmetics, theories of lists, theory
of equality etc. Due to their importance in hardware and software verifica-
tion, decision procedures for fragments of arithmetic (like pra — Presburger
Rational Arithmetic) are of particular interest.

Instead of using basic inference rules, decision procedures are usually built
from some higher-level building blocks. We start with methods in the spirit
of Bundy’s proof plans for normalisation [5].

We look at the ideas from Fourier-Motzkin’s decision procedure [12] (which
is essentially the same as the well-known implementation of Hodes’ decision
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procedure for Presburger arithmetic [6]). Fourier-Motzkin’s algorithm is a
decision procedure for rational numbers, but it is also often used (because of
its better efficiency) as a sound (but incomplete) procedure for the universal
fragment of pia — Presburger Integer Arithmetic (see, for instance, [3]).

3 Building blocks

We use a simple stand-alone prolog implementation of a deduction system
based on the proof-planning paradigm, but it is simplified as it does not require
preconditions and postconditions of methods.

Decision procedures can be implemented as compact, optimised procedures
or they can be built from separate methods (some of which can be general-
purpose methods, i.e., methods used also within other procedures). The lat-
ter approach often leads to additional overhead processing and is thus less
efficient. However, it is much more flexible and gives easily understandable
algorithms, and hence we use it in our programme.

We use the following sorts of normalisation methods (in the spirit of
Bundy’s proof plans for normalisations [5]):

Remove is a normalisation method used to eliminate a certain function
symbol, predicate symbol or a quantifier from a formula. For instance, we can
eliminate a connection ⇒ by exhaustive application of the following rewrite
rule: f1 ⇒ f2 −→ ¬f1 ∨ f2.

Stratify is a normalisation method used to stratify a class of formulae into
two (or more) syntactical layers containing just some specific predicate sym-
bols, function symbols or connectives. For instance, stratify puts a formula
into prenex normal form, moves negations inside disjunctions and conjunc-
tions, moves conjunctions inside disjunctions etc.

Thin is a normalisation method that exhaustively applies thinning rewrite
rules, such as elimination of multiple negations: ¬¬f −→ f or elimination of
multiple unary minus symbols: −− t −→ t.

Reduce is a method that reduces the number of occurrences (to at most
one) of a certain function symbol, predicate symbol or a connective in a for-
mula. For instance, it reduces the number of symbols > and ⊥ in a formula
being proved.

Left Association is one of the normalisation methods for reorganisation
within a class. If a syntactical class contains only one function symbol and if
that function symbol is both binary and associative, then members of this class
can be put into left associative form. For instance, we can use this method
for left association of addition and multiplication (given the needed rewrite
rules).

Poly-form is a method which we will use for putting a formula into poly-
nomial normal form. It uses rewrite rules such as: i1 · i2 −→ i3 where i1, i2, i3
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represent numbers and i1 · i2 = i3.

Reorder is one of the methods for reorganisation within one syntactical
class. If a class contains only one function and if that function is commutative
and associative, this method is used to reorder arguments within a term (which
is supposed to be in left associative form). We can use it to reorder arguments
in a term which is in polynomial normal form or in a formula in disjunctive
normal form. This transformation requires an ordering on variables as an
additional device.

Collect is a method which we will use to reduce multiple occurrences of
some variable in a term.

Isolate is a method which we use to isolate a specific variable in an atomic
formula.

The normalisation methods (or, more precisely, families of normalisation
methods) described above are general ones. They can be useful and used
for proof methods for a range of theories. These methods (together with
some other general-purpose methods) can make a catalogue of methods that
can be used for building different proof procedures for different theories (and
so there is no need for inventing all building blocks each time). Of course,
some theories may require certain specific methods. 6 Note that even if all the
necessary methods (general or theory-specific) are available, it may still be
very challenging to combine them correctly into a required decision procedure.

Once the building blocks (general-purpose and special-purpose) are given,
our learning mechanism can use them uniformly and without any consideration
of their nature (they can be arbitrarily simple or complex, they can be atomic
or compound, etc.).

4 Generating solved examples

We generated a set of solved examples in several stages: we generated a corpus,
grouped and ordered the methods, ran brute force search for proofs and chose
solved examples.

4.1 Generating corpus

We generated 1000 Presburger arithmetic conjectures by using the stochastic
context-free grammar 7 given in Table 1. The probabilities used were chosen
without some strict formal argument (a similar stochastic grammar was used
in [11]). We believe that choosing different (positive) probabilities would give

6 For example, in order to build the Fourier-Motzkin’s procedure, we need a method which
performs cross-multiply and add step [12] (see also §4.3).
7 A stochastic context-free grammar is a context-free grammar with a stochastic component
which attaches a probability to each of the production rules and controls its use.
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very similar final results to the ones we got in this study. Namely, any formula
that can be described by the given context-free grammar can be generated
(with some positive probability) by any corresponding stochastic grammar
with positive stochastic components. So, sets of formulae generated in the
described way are, in that sense, representative.

For simplicity, we generated only quantifier-free formulae, and then took
their universal closure. 8

# Rule Probability

1. 〈formula〉 := 〈atomic formula〉 0.5

2. 〈formula〉 := (¬ 〈formula〉) 0.125

3. 〈formula〉 := (〈formula〉 ∨ 〈formula〉) 0.125

4. 〈formula〉 := (〈formula〉 ∧ 〈formula〉) 0.125

5. 〈formula〉 := (〈formula〉 ⇒ 〈formula〉) 0.125

6. 〈atomic formula〉 := (〈term〉 = 〈term〉) 0.20

7. 〈atomic formula〉 := (〈term〉 < 〈term〉) 0.20

8. 〈atomic formula〉 := (〈term〉 ≤ 〈term〉) 0.20

9. 〈atomic formula〉 := (〈term〉 > 〈term〉) 0.20

10. 〈atomic formula〉 := (〈term〉 ≥ 〈term〉) 0.20

11. 〈term〉 := (〈term〉+ 〈term〉) 0.20

12. 〈term〉 := 1 0.20

13. 〈term〉 := 0 0.20

14. 〈term〉 := var 0.40

15. 〈var〉 := x 0.30

16. 〈var〉 := y 0.25

17. 〈var〉 := z 0.20

18. 〈var〉 := u 0.15

19. 〈var〉 := v 0.10

Table 1
A stochastic grammar for the quantifier-free fragment of Presburger arithmetic.

8 Note that closed formulae without redundant quantifiers cannot be generated by a
context-free grammar. However, this restriction in our set of formulae is not critical.
Namely, most quantifier elimination procedures (including the Fourier-Motzkin’s proce-
dure) eliminate universal quantifiers by reducing them to existential quantifiers. So, the
learning process would be about the same if we considered full Presburger arithmetic and
(somehow) generated formulae with both, universal and existential quantifiers. Moreover,
the learnt procedure (presented in §5) is indeed a decision procedure for full Presburger
arithmetic.
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4.2 Search for proofs

We implemented (in prolog) a simple mechanism for brute-force search for
proofs of the given conjectures. The mechanism works as follows:

• if the current formula is equal to > or ⊥, then stop the search;

• if the current list of applied methods exceeds the given limit, then stop the
search;

• try to apply one of the available methods to the current formula; if the
method changes the current formula, add that method to the list of applied
methods and try to prove the obtained (now new current) formula (the
ordering in which the methods are tried is discussed in §4.3).

If a current formula is transformed to > or ⊥, we consider it solved and
we call a sequence of applied methods a proof trace. 9 We put the limit (100)
for the number of applied methods in order to prevent infinite loops in this
search. Some of the generated formulae were huge (one of them had 409
functions symbols, predicate symbols and connectives) so we also put a time
limit for solving each conjecture. We used the time limit of 1 minute. 10

4.3 Grouping methods and ordering of methods

On the basis of the generic normalisation methods discussed in §3, we imple-
mented (in prolog) a set of concrete methods. We also added the method
for elimination of an existentially quantified (and isolated) variable based on
Fourier-Motzkin’s cross-multiply and add step [12]. For the sake of simplicity,
we grouped some of these methods (in a natural, expected way), yielding the
following set of 9 methods (some of them compound):

M1: remove ⇒
M2: remove 6=, >,<,≥
M3: adjust the innermost quantifier (transforms ∀xF to ¬∃x¬F )

M4: stratify ¬s beneath ∨s and ∧s; thin ¬, remove ¬
M5: delete the innermost redundant quantifier (cross-multiply and add step)

M6: isolate the innermost variable (provided it is isolated in each atomic
formula)

M7: stratify · beneath +, left-assoc ·, left-assoc +, poly-form

M8: stratify ∧s beneath ∨s and eliminate the innermost variable

M9: reduce > and ⊥

9 If the underlying theory is complete (and linear arithmetic is), then each formula of the
theory is logically equivalent either to > or ⊥ (modulo that theory). For incomplete (yet
decidable) theories, the above approach cannot be used.
10 All modules were implemented in SWI Prolog; experiments were ran on a 64Mb PC
466Mhz. All source files are available upon request from the authors.
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Despite having only 9 methods after grouping, a simple depth first search
over them does not always produce proofs, because 9 methods still give a large
search space 11 and, more importantly, some rules cancel each other out, which
can lead to non-termination. Namely, most of the available methods consist
of sets of rewrite rules. Even though each set of these sets of rewrite rules
is terminating (but not always confluent), the union of sets is not necessarily
terminating. Therefore, our set of methods is not terminating. Hence, in order
to simplify and direct search, we also had to change the ordering of methods.
Methods are tried on given goals in the following order: M1, M2, M3, M4, M5,
M6, M7, M8, M9. In our experiments we tried several orderings and we chose
this as the most appropriate one.

The two strategies just described, i.e., grouping and ordering, involve some
human knowledge based on experiments in this context, and present a control
information for search for proofs. Notice that the ordering and grouping phase
is not expected to provide the termination argument for the learnt procedure.
It can be viewed as a heuristic which directs and improves the brute force
search. Moreover, ordering and grouping can be helpful when considering the
properties (such as termination and completeness) of the generated procedure
(see §5).

4.4 Running brute force search and choosing examples

We ran the described search engine on the set of 1000 generated conjectures/
examples. 76.8% of conjectures were solved (proved or disproved) by this en-
gine; results are given in Table 2. Table 2 also shows how the percentage of
solved examples decreases as the number of variables increases. This is reason-
able as the search space is rather big and the brute-force search is practically
lost on very complex conjectures.

# of variables 0 1 2 3 4 5 total

total 121 340 249 118 77 95 1000

solved 121 301 189 77 45 35 768

% solved 100 88.5 75.9 65.2 58.4 36.8 76.8

longest trace 5 10 15 18 23 30 N/A

# of examples with longest traces 6 8 10 4 5 2 35

Table 2
Results of the brute force method.

11 The situation is even worse if we consider low level inference rules, rather than higher
level methods (since the proofs would be much longer, and the search space would be much
larger).
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Having 768 solved examples, we needed to choose the subset of examples
which would be used in the learning process (well-chosen examples are essential
for this phase of the program). Good examples are demonstrative examples,
i.e., the ones that involve as many methods as possible that should be in
the decision procedure that we are learning. But these methods should be
used in a concise way in good examples. The search for a proof (given our
set and ordering of methods) stops as soon it reaches > or ⊥. Thus, the
available proofs are the shortest ones that the brute force engine can find.
Amongst such proofs of different conjectures, we select as the most illustrative
and descriptive proofs the longest ones. Namely, in some cases some methods
(that form some parts of the procedure we are learning) leave certain formulae
under consideration unchanged, but in other cases they transform (rewrite)
them. So, such methods must be considered in order for the system to learn
a general decision procedure. To learn such pieces of our sought procedure
it was sensible to choose examples that use as many of the relevant methods
as possible (i.e., examples that are the most difficult and demanding, and
not trivial or easy ones). In other words, we choose, in a sense, the longest
amongst the shortest proofs.

Since the number of variables has a critical role in proving Presburger
arithmetic conjectures (the same holds for almost all theories), we separated
all solved examples into groups according to the number of variables. We
considered formulae with 0, 1, 2, 3, 4 and 5 variables. From each group we
selected the longest proof traces (see Table 2).

Within the groups of formulae with 0, 1, and 2 variables all conjectures
with the longest proof traces had the same traces (respectively):

[M1, M2, M4, M7, M9]

[M1, M2, M3, M4, M6, M8, M5, M4, M7, M9]

[M1, M2, M3, M4, M6, M8, M5, M3, M4, M6, M8, M5, M4, M7, M9]

Within the groups of formulae with 3 and 4 variables there were 4 and
5 conjectures with the longest proof traces, but these traces were not equal
(within each respective group). Since it is not clear which amongst these are
the most descriptive ones, we did not use them for learning. 12 Within the
group of formulae with 5 variables there were 2 conjectures with the (same)
longest proof trace. Finally, we took the longest traces for formulae with 0, 1
and 2 variables and put them into the learning mechanism.

12 Namely, considering a possibly very complex procedure, it is not likely that within 1000
formulae we will have conjectures with 3, 4, 5,... variables whose proofs contain all the
needed steps of the procedure in all iterations. Larger corpus would perhaps contain such
conjectures (but then we may want to consider more variables, so the problem remains).
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5 Learning and generating supermethods

From the given sequences, the learning mechanism (described in §2.1) learnt
the following general pattern: 13

[M1, M2, [M3, M4, M6, M8, M5]∗, M4, M7, M9].

We notice that in each run of the loop ([M3, M4, M6, M8, M5]∗), one quan-
tifier is eliminated. Since their number is finite in any conjecture, this pro-
cess eventually terminates. Provided that all the used primitive methods are
sound, the generated supermethod is also sound. Provided the methods are
complete, then each conjecture is transformed by the above supermethod to
⊥ or >, and hence, the learnt procedure is a decision procedure for pra.
Although our proposed programme does not provide a guarantee about the
properties of a learnt procedure (such as termination, soundness and com-
pleteness), often these properties can be easily proved (as we can see in the
above informal discussion).

6 Automatic programming for learnt methods

We implemented (in prolog) a system for automatic generation of prolog
predicates on the basis of sequences provided from the learning mechanism.
The system supports all constructions that the LearnΩmatic system can
make (see §2.1), and can generate corresponding prolog code. Given the
sequence [M1, M2, [M3, M4, M6, M8, M5]∗, M4, M7, M9], our system gener-
ated the following prolog code (which we finally applied to the original set
of conjectures):

pa(Fa,FF) :-
method(’M1’,Fa,Fb),
method(’M2’,Fb,Fc),
pb(Fc,Fd),
method(’M4’,Fd,Fe),
method(’M7’,Fe,Ff),
method(’M9’,Ff,FF).

pb(Fa,FF) :-
method(’M3’,Fa,Fb),
method(’M4’,Fb,Fc),
method(’M6’,Fc,Fd),
method(’M8’,Fd,Fe),
method(’M5’,Fe,Ff),
pb(Ff,FF),!.

pb(F,F).

13 As expected, it turns out that if examples with 5 variables were used for learning as well,
then this learnt pattern would still be the same.
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The generated procedure is practically the same as Hodes’ implementation
of Fourier-Motzkin’s procedure [6]. On the other hand, a procedure made by a
human can be implemented also by some tightly integrated methods, or by us-
ing some special data structures. In this case, our generated procedure would
probably show poorer performance. However, at this stage we are more con-
cerned with building easily understandable and flexible decision procedures,
rather than with efficiency issues.

7 Evaluation

Given the learnt method and the generated prolog program, we ran it on the
original set of 1000 generated conjectures. While the brute force method solved
768 conjectures (within the given time limit), the learnt decision procedure
solved 991 conjectures (see Table 3). Nine unsolved examples had hundreds
of symbols and the method had not failed to solve them, but exceeded the
time limit. For each conjecture solved by the brute force search, we measured
the speed-up when using the newly generated procedure (see Table 3). The
overall speed-up average was 1.0619. However, the main gain from the learnt
procedure is in 223 conjectures that were not solved at all by the brute force
method. We can see in Table 3 that the speed-up increases as the number of
variables increases. The speed-up for 5-variable case would probably be much
higher if we used a higher time limit.

# of variables 0 1 2 3 4 5 total

total 121 340 249 118 77 95 1000

solved 121 340 249 118 77 86 991

% solved 100 100 100 100 100 90.5 99.1

speed-up 1 1.0001 1.0287 1.0990 1.4394 1.4181 1.0619

Table 3
Results of the learnt method.

This evaluation was performed on the original set of formulae (the set
used for learning). Since this set can be considered representative (see §4),
we consider this evaluation relevant. We believe that similar results would be
obtained for other sets of formulae as well.

8 Related work

The work presented in this paper uses the learning mechanism of LearnΩmatic,
which is related to the least general generalisation, and to some more recent

13



work on learning regular expressions, grammar inference and sequence learn-
ing [13]. For details, see [9].

Our work is related to ideas from [5]. In Bundy’s programme a decision
procedure should be synthesised given all needed rewrite rules and several
general patterns for normalising formulae. Considering automatic derivation
of decision procedures our work is also related to work presented in [1] which
is aimed at deriving decision procedures using superposition.

9 Conclusions and future work

Our conclusion is that automatic building of decision procedures is not an
easy task (even when all the needed primitive methods are given), but it is
possible. It is difficult to have the process of learning a complex decision
procedure fully automated, so at some stages human interaction and human
help is needed. We presented a methodology consisting of a number of steps,
techniques and ideas (including a mechanism for generating a corpus of con-
jectures, a controlled brute force search, strategies for choosing examples, the
learning mechanism, and the system for automatic programming based on the
learnt sequences). Automation in this field is important as it can prevent
human flaws in analysing decision procedures or in implementing them. We
believe that this methodology (and learning decision procedures in general)
can be useful, especially for new or user defined theories. Here are some of the
main lessons we learnt during the development of the proposed programme:

• Despite the fact that the implementation of decision procedures based on
autonomous, independent building blocks (i.e., methods) is less efficient,
we find that this approach is flexible and suitable for both, analysing and
synthesising decision procedures.

• The same building blocks (i.e., methods) can be used for different proof
procedures and for different theories. Such methods can make a catalogue
of methods which can serve as a main source of methods for building proof
procedures for different theories.

• Even if the key idea of the required procedure is known, and a set of methods
sufficient to solve any conjecture of a selected theory is given, it is still not
an easy task to build a decision procedure for that theory. Brute force
search can solve a number of conjectures, but it is difficult to make brute
force search complete, efficient and terminating (even when all the building
blocks are terminating). Automatic assistance in this can be very important.

• In order to make brute force search more efficient, it is useful to provide
some sort of control information. We used grouping and ordering of methods
(where it was sensible to do so). This task requires human assistance (but
allows also some automation, see further).
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• Having a number of solved examples, it is essential to make a good selection
of examples to be used in the learning process. Our strategy was the fol-
lowing: we selected the longest proofs among the shortest proofs that were
found by the brute force search. The rationale is that the most demanding
conjectures are the most illustrative ones for learning.

• Provided that we have good examples and a choice of good methods, the
learning mechanism can learn a decision procedure from just a few example
proofs.

• A system can be made which for a given learnt proof sequence generates a
corresponding implementation.

• The learnt method outperforms the brute force search both in the number
of conjectures solved and in the cpu time spent.

• We believe that the methodology presented in this study is very well suited
to the proof planning paradigm (or its simplified version, as described here),
and can be applied to other environments as well.

It is difficult to provide a characterisation of theories for which the proposed
approach is successful, since some very deep theory-specific knowledge may be
required. However, we can give a characterisation of decision procedures which
cannot be learnt: the proposed framework cannot learn procedures which
cannot be expressed with the language used in LearnΩmatic (unless we used
a different learning algorithm). All other procedures can potentially be learnt.
In other words, our system can only learn what LearnΩmatic’s language L
expresses and LearnΩmatic’s learning algorithm can learn. This is by no
means everything. We believe that other expressions could be learnt as well
(but currently LearnΩmatic’s learning algorithm cannot learn them). At
the moment, LearnΩmatic covers a wide range of languages, while further
extensions are under consideration. Learning procedures expressed in another
language would require that we replace in our framework LearnΩmatic’s
learning mechanism with another one that uses the desired language, but
the other modules of our framework (e.g., generating examples, automatic
generation of code from the learnt pattern) can remain unchanged. We also
plan to extend the learning approach and the realm of covered languages
so that the mechanism could learn recursive methods, which would enable
automatic learning of a new range of decision procedures.

Another limitation of our proposed programme is that it may require non-
trivial human assistance (e.g., in ordering and grouping). We plan to further
develop our methodology and to try to automate (at least to some extent) the
steps which now need human interaction. Instead of choosing suitable order-
ings of methods for brute force search, in some cases it may be possible (given
acceptable time) to systematically try all possible orderings or, instead, to
perform breadth first search within our brute force search engine. Although
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such extensions would be very time consuming, this may not be critical as
a proof procedure can be learnt/built off-line and only once. Another direc-
tion for further automation is automated dealing with methods that can serve
as (general-purpose) building blocks: on the one hand, we will try to auto-
matically learn/build some general building blocks by using the methodology
described here (e.g., build normalisation methods out of rewrite rules); and
on the other hand, we will try to make a system that can use a catalogue of
general methods and choose suitable building blocks for specific theories.

A comparison between a direct implementation of the decision procedure
and a learnt decision procedure would be interesting for further work. But this
is out of the scope of the present paper, as we are interested in a larger picture
of discovering new decision procedures, rather than in efficient implementa-
tions of the existing ones. Mechanised learning of existing decision procedures
is an important step towards mechanised learning and discovery of decision
procedures. In this sense, the work presented in this paper is an encouraging
preliminary step towards discovery. Our hope is that such a framework will
be used as a useful assistant in such a process, and moreover, it will lead to
automatic discovery of new decision procedures.
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