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Abstract. The efficient and flexible incorporating of decision proce-
dures into theorem provers is very important for their successful use.
There are several approaches for combining and augmenting of decision
procedures; some of them support handling uninterpreted functions, con-
gruence closure, lemma invoking etc. In this paper we present a variant of
one general setting for building decision procedures into theorem provers
(gs framework [18]). That setting is based on macro inference rules
motivated by techniques used in different approaches. The general set-
ting enables a simple describing of different combination/augmentation
schemes. In this paper, we further develop and extend this setting by
an imposed ordering on the macro inference rules. That ordering leads
to a “strict setting”. It makes implementing and using variants of well-
known or new schemes within this framework a very easy task even for
a non-expert user. Also, this setting enables easy comparison of different
combination/augmentation schemes and combination of their ideas.

1 Introduction

The role of decision procedures is very important in theorem proving. Even
an inefficient decision procedure can be more efficient than other techniques
(e.g. induction). However, in most applications only a small number of conjec-
tures fall within the scope of one decision procedure. For instance, the formula
∀x∀y x ≤ y ∧ y ≤ x + car(cons(0, x)) ∧ p(h(x) − h(y)) → p(0) is not a Pres-
burger arithmetic formula. However, if there are available decision procedures
for the theory of lists with car, cdr and cons and for equality with uninter-
preted function and predicate symbols, it is possible to combine them with a
decision procedure for Presburger arithmetic and to prove the above conjec-
ture. This example illustrates situations when several decision procedures have
to cooperate and to be combined into one decision procedure. As another exam-
ple, consider the formula ∀l∀α∀k (l ≤ minl(α) ∧ 0 < k → l < maxl(α) + k)
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which is not a Presburger arithmetic formula and cannot be proved by a deci-
sion procedure for that theory. However, if that decision procedure is aided by
the lemma ∀ξ (minl(ξ) ≤ maxl(ξ)), the above conjecture can be proved. This
example illustrates how the realm of a decision procedure can be extended by
the use of available lemmas. In situations like this one, a decision procedure has
to communicate with other components of a prover, such as a lemma invoking
mechanism, a rewriting mechanism, simplification techniques etc. Then we say
we deal with augmenting a decision procedure (or we say we deal with integrating
or incorporating a decision procedure into a theorem prover).

There are several influential approaches used in handling the problem of effi-
ciently combining and augmenting decision procedures. The research concerning
these issues has gone mostly along different two lines: one concerning combining
decision procedures and one concerning augmenting decision procedures (within
heuristic theorem provers). Combination schemes typically rely on some local,
specific data structures and are focused on combining decision procedures [28,
32, 14, 4, 6, 31, 5], but some of them also use additional techniques (such as the
use of additional rules and lemmas etc). Augmentation schemes use different
functionalities of heuristic theorem provers such as rewriting techniques, lemma
invoking mechanisms, a variety of simplifications etc [7, 20, 21, 1, 19, 2]. Combina-
tion schemes are typically aimed at decidable combinations of decidable theories,
while augmentation schemes are primarily intended for use in undecidable exten-
sions of decidable theories. The research on combination of decision procedures is
rich in theoretical and practical results, while the research on the augmentation
of decision procedures is less well developed theoretically.

Nelson/Oppen’s scheme for combination of theories [27] is used in several sys-
tems including the Stanford Pascal Verifier, [24], esc [15] and eves. [13]. In this
approach, decision procedures for disjoint theories are combined by abstracting
terms which fall outside a certain theory and by propagating deduced equalities
from one theory to another. Shostak’s scheme for combination of theories [32]
is used in several other systems including Ehdm, [16], pvs, [29], STeP [25, 6]
and svc. [4]. In this approach, solvers for specific theories (for instance, solvers
for equational real arithmetic, theory of lists etc) are tightly combined by an
efficient underlying congruence closure algorithm for ground equalities.

One of the most influential methods for augmentation of decision procedures
is a procedure for linear arithmetic integrated within Boyer and Moore’s nqthm

[7]. In this approach, a decision procedure for Presburger arithmetic (based on
Hodes’ algorithm [17]) is combined with a heuristic augmentation which provides
information about alien functions (i.e. provides lemmas) and with a technique
which simplifies one literal in the clause by using the remaining literal as the
context. Probably because of its informal and complicated description there are
very few reimplementations of Boyer/Moore’s procedure, but nevertheless, it in-
fluenced a number of other approaches and techniques (including work on aug-
menting an arithmetic decision procedure into a rewrite based prover Tecton

[20], contextual rewriting [35], constraint contextual rewriting [1] and the epm

scheme [19]).

2



The general setting for building decision procedures into theorem provers (gs)
[18] is aimed at capturing the key ideas shared by the above mentioned systems.
It is built from a set of macro inference rules and it is flexible and general enough
to cover a number of different combination/augmentation schemes. In this paper,
we go one step further and extend the gs framework by an imposed ordering
on the macro inference rules. While in the gs framework one can use the macro
inference rules as building blocks in an (almost) arbitrary way, within the strict
general setting (sgs) it is not the case. With the imposed strict ordering on
the rules, it is still possible to mimic a number of combination/augmentation
schemes and, on the other hand, this ordering makes different schemes very easy
to implement and to use. In addition, this strict setting enables easy comparison
of different combination/augmentation schemes and combination of their ideas.

Overview of the paper In §2 we give some basic background and notation infor-
mation. In §3 we give a brief account of the gs framework. In §4 we discuss the
imposed ordering on the macro inference rules and in the §5 we discuss how com-
bination/augmentation schemes can be implemented within the sgs framework.
In §6 we report on a prototype implementation of the sgs framework and on
some results obtained by different schemes implemented within the framework.
In §7 we discuss the related work. In §8 we discuss future work and in §9 we
draw some conclusions.

2 Background and Notation

In this paper we deal with quantifier-free first-order theories with equality and
we use many-sorted logic. We use the standard notions of formula, theory, decid-
able theory, extension of a theory, combination of theories, valid, satisfiable and
inconsistent formula, the standard notions of term rewriting etc. For simplicity,
in the rest of the paper, instead of the sorted version of equality we will write
just = when sorts are evident from a context or are not important.

In the rest of the paper, special attention will be given to Presburger arith-
metic (according to its significance in verification problems). Presburger arith-
metic is (roughly speaking) a first-order theory built up from the constant 0,
variables, binary +, unary s and relations <, >, =, ≤, ≥. We denote Presburger
arithmetic over natural numbers by pna, over integers by pia and over rationals
by pra. The whole of arithmetic is undecidable, but the theories pna, pia, pra

are each decidable [30, 22].

For a given ordering ≺ on terms, a term t is a maximal in a formula f if for
any other term t′ in formula f it does not hold that t ≺ t′. A term t is called
an alien term w.r.t. T1, . . . , Tj if it is not a term of these theories. We introduce
similar notions for literals.
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3 General Setting for Building Decision Procedures into
Theorem Provers

In this section we give a brief overview of the general setting for building-in de-
cision procedures into theorem provers — the gs framework. A full and detailed
account of the gs framework is given in [18].

3.1 Macro Inference Rules

There are several key steps in different systems for combining and augmenting
decision procedures including abstraction, entailment and congruence closure.
We describe them in the form of macro inference rules.

We use proof by refutation, so if F is a quantifier-free formula to be proved,
we need to show that ¬F is unsatisfiable in T , i.e., we need to show that T ∪¬F
is inconsistent. More precisely, in order to prove a quantifier-free formula F in
a theory T , i.e. to show T ` ∀∗F , we need to show that T , ∃∗(¬F ) ` ⊥ (where
∀∗ and ∃∗ denote universal and existential closure). For now on, we will assume
that the theory T is fixed and by “¬F is unsatisfiable” we will mean “¬F is
unsatisfiable in T ”, etc.

We denote macro inference rules by f1 ⇒X f2, where X is the name of the
specific rule. If a rule X is parametrised by parameters P then we denote it
by X(P ). The soundness of each macro inference rule has to be ensured; i.e.,
for all rules f1 ⇒X f2, it has to be ensured that if f2 is unsatisfiable, then
f1 is unsatisfiable, too. If the inference rule X is (un)satisfiability preserving,
we denote it by ⇔X . We denote by ⇒∗ the transitive closure of ⇒ and by
⇔∗ the transitive closure of ⇔. If ¬F ⇒∗ ⊥ then ¬F is unsatisfiable, so the
original formula F is valid (i.e. T ` F ). If ¬F ⇔∗ > then there is an implicitly
constructed counterexample for F , so it is invalid (i.e. T 6` F ; in a heuristic
theorem prover, negative results can also be important and useful, for example,
in controlling generalisation, and other non-satisfiability preserving heuristics).
If it holds that ¬F ⇒∗ > (and does not hold that ¬F ⇔∗ >), then it is unknown
whether F is valid or invalid. If f ⇔∗ f ′ and f ′ ∈ {>,⊥} then we say that a
corresponding proof branch is closed and f ′ is returned as the result of the
inference process. Additionally, after each macro inference step is applied, if
f ⇔∗ f ′, a formula f ′ can be passed to any other component of a prover and
some other technique (e.g. induction) can be tried.

We assume that there is available an ordering on involved function and pred-
icate symbols that induces a reduction ordering ≺ on terms.

Disjunctive normal form If f is the negation of a formula F to be proved, we
can transform it into disjunctive normal form and then try to refute each of its
disjuncts. We denote this transformation in the following way: f ⇒dnf (f1∨f2∨
. . . ∨ fn). Since transformation into disjunctive normal form is (un)satisfiability
preserving, we also denote it by ⇔dnf .
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Proving disjuncts (case split) If a formula f is of the form (f1 ∨ f2 ∨ . . . ∨ fn)
(where each fi is a conjunction of literals), in order to refute f , we have to refute
each fi. Hence,

f ⇔split ⊥ if fi ⇒
∗ ⊥ for all i, 1 ≤ i ≤ n .

Additionally,
f ⇔split > if fi ⇔

∗ > for some i, 1 ≤ i ≤ n .

We will further deal mostly with conjunctions of literals and we won’t distinguish
between a conjunction l1 ∧ l2 ∧ . . . ∧ ln and a multiset {l1, l2, . . . , ln}.

Simplification Simplification is based on the following simple rules: { } −→ >,
f ∪ {l} ∪ {l} −→ f ∪ {l}, f ∪ {l} ∪ {¬l} −→ ⊥, f ∪ {⊥} −→ ⊥, f ∪ {>} −→ f ,
f ∪ {¬(a = a)} −→ ⊥, f ∪ {a = a} −→ f , f ∪ {x = y} −→ f , where x is a
variable that does not occur in y and f , or y is a variable that does not occur
in x and f . The inference rule which exhaustively applies the above rules we
denote by ⇔simpl. In addition, there are simplifications specific to each theory.
For instance, a literal x ≤ (y + z) − (y − x) can be simplified to 0 ≤ z by a
simplifier for pra. Also, a simplifier for a theory Ti should detect valid and invalid
ground Ti literals and rewrite them to > and ⊥, respectively. Simplification for
a specific theory Ti is performed only on Ti literals. Dealing with a combination
of theories Ti (i = 1, 2, . . . , k), we iteratively use simplifications for theories Ti

(i = 1, 2, . . . , k) and we denote this simplification (the extended form of ⇔simpl)
by ⇔simpl(T1 ,T2,...,Tk).

Abstraction Depending on the dominating functional and relational symbols, we
can conditionally consider that an atomic formula belongs to a theory Ti and
abstract its alien terms (by new, abstraction variables) in order to obtain an
atomic formula of a theory Ti. We can perform abstraction for several theories
T1, . . ., Tk in one step (in such a way that each abstracted literal belongs to one
of T1, . . ., Tk). We can replace all original literals by their abstracted versions
(which is not (un)satisfiability preserving): f ⇒abs(T1,T2,...,Tk) f ′. We can also
add the set C of equations defining newly introduced variables and we denote
that by f ⇔abs+(T1,T2,...,Tk) f ′∪C. Abstraction can be propagated if subterms of
abstracted terms still have alien terms with respect to the theories T1, T2,. . .,Tk.
This form of abstraction always adds equations C defining newly introduced
variables and we denote it by ⇔absp+(T1,T2,...,Tk).

Replacement If a current formula f is a conjunction of literals and if there is
a literal x = t where x is a variable and t is a term which does not include
occurrences of x, then we can replace all occurrences of x in all formulae by t
and delete the literal x = t. We can perform this operation for all variables x
fulfilling the given condition one after another (for simplicity, we don’t discuss
the order of variables and its effect) obtaining a formula f ′ and we denote this
inference by: f ⇔repl f ′. Another version of the replacement is restricted only to
replacement of variables by variables (i.e., in the case where there are equalities
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of the form x = y); such replacement eliminates one variable and does not
introduce new alien terms. We denote it by ⇔repl= .

Unsatisfiability Let us suppose that there is available a procedure which can
detect if a conjunction of some literals {li1 , li2 , . . . , lik

} (ik ≤ n) from a formula
f is unsatisfiable in a theory Ti, where f is a conjunction of literals l1, l2, . . . , ln. If
the conjunction {li1 , li2 , . . . , lik

} (ik ≤ n) is unsatisfiable, then f is unsatisfiable,
too. We denote this inference in the following way: f ⇔unsat(Ti) ⊥.

Entailment Let f be a disjoint union of two sets of literals: A and B. Let us
suppose that literals B = {li1 , li2 , . . . , lik

} entail (in a theory Ti) some con-
junction or disjunction of literals C (which does not occur in A ∪ B). We as-
sume that soundness is guaranteed by the specification (which is denoted by
P for Ti) of this entailment. If we keep the literals from B, we denote it by
A ∪ B ⇔entail+(P,Ti) A ∪ B ∪ C. If we don’t keep the literals from B, we de-
note it by A ∪ B ⇒entail(P,Ti) A ∪ C, while in some cases it also holds that
A ∪ B ⇔entail(P,Ti) A ∪ C. Examples of entailment are:

– Nelson/Oppen style entailment [27, 34]: f ⇔entail+(NO,Ti) f∪{
∨k

i=1 xi = yi}
This sort of entailment (used in Nelson/Oppen’s procedure [27]) yields an
implicit equation (k = 1), or, in case of non-convex1 theory, a disjunction of
equalities.

– Shostak style entailment: if T is algebraically solvable σ–theory and if solve(e) ≡
E then we denote this kind of entailment (used in Shostak’s procedure [32,
14]) by A ∪ {e} ⇔entail(solve,T ) A ∪ {E}.

– Fourier/Motzkin’s entailment: in the Tecton system [20] there is used a
procedure (inspired by Fourier/Motzkin’s method [23]) for entailing implicit
equalities E from Presburger rational arithmetic (pra) inequalities I . We
denote it by A ∪ I ⇔entail+(impl−eqs,pra) A ∪ I ∪ E.

– Variable elimination: let us assume that there is available a quantifier elim-
ination procedure P for a theory T (which might serve as the basis for a
decision procedure for T ), i.e., a procedure which transforms a formula f
(of a theory T ) into an equivalent formula f ′ with fewer variables. Let us
suppose that there is a subset B of given literals F (F = A ∪ B) such
that: (i) all literals from B belong to T ; (ii) there is a variable x such
that it does not occur in A. Then we can perform a variable elimination
procedure P on the literals B and on the variable x, yielding a formula
C (note that C may contain disjunctions). Note that, in our setting, all
variables are (implicitly) existentially quantified (recall that we deal only
with quantifier-free formulae) and, thus, it is sufficient to have available only
elimination of existentially quantified variables. We denote elimination of all
variables fulfilling the given conditions by: A∪B ⇒entail(P,T ) A∪C, or, for
some procedures and theories, by A ∪B ⇔entail(P,T ) A∪C. Some instances

1 A formula F is non-convex if F entails x1 = y1 ∨ x2 = y2 ∨ . . . xn = yn, but for no i

between 1 and n does F entail xi = yi. Otherwise, F is convex. A theory is convex
if every conjunction of its literals is convex. Otherwise, it is non-convex.

6



of variable elimination entailment are: ⇔entail(Cooper,pia), ⇔entail(Hodes,pra),
⇔entail(Fourier,pra), ⇒entail(Hodes,pia) . Fourier’s method for variable elimi-
nation is used in Tecton [20] and is essentially the same as Hodes’ proce-
dure used in nqthm. Note that Hodes’ [17] procedure is an (un)satisfiability
preserving procedure for pra, but not for pia. Cooper’s procedure [12] is
(un)satisfiability preserving for pia and pna.

The entailment rule, typically, has an essential role in combination/augmentation
schemes.

Constant Congruence Closure/Ground Completion Constant congruence closure
and ground completion are substantially the same thing [3]. In our general set-
ting, we perform a constant congruence closure on a set of all equalities in a
formula being proved. This returns a set of equivalence classes; from each class
we choose a minimal element (according to an ordering ≺) and introduce equal-
ities for all remaining terms in that class. The equalities are then oriented as
rewrite rules (according to the ordering ≺) and inter-reduced (while trivial equal-
ities are eliminated). These oriented equalities make a ground canonical system
(note that we treat variables as constants). They replace the initial set of equal-
ities and are further used to normalise other literals in a formula being proved
(literals other than equalities). In addition, if in an obtained formula there is
detected a contradiction in the pure theory of equality (i.e. if there is a literal
¬(t = t) or literals l and ¬l) this rule returns ⊥. This transformation we call
simply constant congruence closure and we denote it by ⇔ccc.

Lemma Invoking We assume that there may be available some additional rewrite
rules, definitional equalities, additional theorems and lemmas all of which we
treat in the same way.2 We consider only conditional rewrite rules (i.e., rules
of the form l → r if p1, p2, . . . , pk and ρ → > if p1, p2, . . . , pk). We assume (in
order to ensure termination) that there is available a reduction ordering ≺ such
that for each rule l → r if p1, p2, . . . , pk it holds that r ≺ l and pi ≺ l (for
i = 1, 2, . . . , k) and for each rule ρ → > if p1, p2, . . . , pk it holds that pi ≺ ρ
(for i = 1, 2, . . . , k). If our proving strategy is based on a decision procedures
for some theories T1, . . . , Tj we assume that the available additional rules make
a consistent conservative extension of each of them. Then it is only sensible to
search for lemmas which are not formulae of these theories and we formulate the
lemma invoking inference with respect to some theories T1, . . . , Tj .

2 Note that these additional rewrite rules does not need necessarily to be lemmas
i.e. theorems of the underlying theory; within our system we don’t examine the
status of these rules and therefore it would be more appropriate to consider these
rules as additional hypotheses. Hence, if this macro inference rule (with the set L
of additional rules) is used in proving a formula F , then we have to write T ,L ` F

(rather than T ` F ). However, because additional rules are often indeed lemmas (in
a strict sense) of the underlying theory and because of tradition reason, we also use
the terminus “lemma invoking” for this rule and for dealing with all of the additional
rules.
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Let t be a maximal alien term with respect to a set of theories T1, . . . , Tj (by
analogy we define the rule with respect to a maximal alien literal) in the formula
f being refuted (and there is no alien literal l such that t ≺ l). Let c be a new
abstraction variable for the term t (if there is no equality t = c in the formula
already). Let us assume that there is a rule ρ → > if p1, p2, . . . , pk available in
the set L such that: a maximal alien term in ρ (w.r.t. T1, . . . , Tj) is a term t′

and there is a most general substitution φ such that t′φ is equal to t. Also, let
us assume that all variables occurring in the lemma are instantiated by φ. The
formula f is transformed into f ∧ (p1∧p2∧ . . .∧pk ⇒ ρ)φ and in this formula all
occurrences of t are replaced by c, yielding a resulting formula f ′ (and leading
to a case split if k > 0). If there is no such lemma then all occurrences of t
are replaced by c yielding the resulting formula f ′. This inference we denote by:
⇒lemma+(L,T1,...,Tj).

If there is more than one lemma fulfilling the required conditions, then in the
case of failing to prove the unsatisfiability, one can backtrack and try with an-
other lemma. Even if all lemmas are unsuccessfully tried, one can try to proceed
with the refuting process with no help from any lemma (for some conjectures
with alien terms, no lemmas are required — for instance, ∀α ∀k (max(α) ≤
k ∨ max(α) > k) can be proved without any lemma). In [20, 21, 1], when using
conditional rules, for each condition there is one subproof and this leads to tree-
structured proofs. It is analogous to the lemma invoking mechanism proposed
here, since for the conclusion and for each condition from the used conditional
rule, there is one disjunction (after ⇔dnf and ⇔split rules applied) that has to
be refuted. Note that that we usually leave the realm of completeness when we
start to rely on lemmas [35, 20, 21, 19].

3.2 Implementing combination/augmentation schemes within gs

framework

A number of combination/augmentation schemes can be represented/implemented
within the gs framework built from the above macro inference rules, including
Nelson/Oppen’s, Shostak’s and Kapur/Nie’s schemes. These representations do
not always fully represent the original methods3 and their efficiency, but give
their key ideas. As an illustration, we give a description of a Nelson/Oppen
style procedure. Let quantifier-free theory T be a combination of theories Ti

(1 ≤ i ≤ k) which do not share non-logical symbols other than equality. Let F
be a formula to be proved. The procedure is as follows (¬F is its input):

1. Apply ⇔dnf

2. Apply ⇔split

3. Apply ⇔absp+(T1,T2,...,Tk)

4. Apply ⇔unsat(Ti), for some i, 1 ≤ i ≤ k
5. Apply ⇔entail+(NO,Ti), for some 1 ≤ i ≤ k; if not successful, return >.

3 This is especially the case with the implementation of Shostak’s scheme, whose orig-
inal version is very compact and optimised.

8



6. Apply ⇔repl=

7. Go to step 1

In the given description we use the terminus “apply [an inference rule]”, while
it would be more precise to say “try to apply [an inference rule]”. Note that if the
theories Ti are convex, then in step 7, we can jump to step 4, instead of to step
1 [27, 34]. In addition, since no rule introduces new alien terms, it is sufficient
to apply the rule ⇔absp+(T1,T2,...,Tk) only once, but, for simplicity, we won’t try
to optimise its use. The replacement carried by the rule ⇔repl= (not used in the
original procedure) is useful since it reduces the number of considered variables
in the search for implicit equalities. Note that returning > in step 5 is not covered
by the introduced macro inference rule — it is a kind of meta level inference.
Under certain conditions, it can be proved that if the above procedure returns
>, a given conjecture is invalid: moreover, if Ti (1 ≤ i ≤ k) are stably-infinite,
signature disjoint, quantifier-free theories, then the above, Nelson/Oppen style
procedure terminates and is complete and sound [18].

4 Ordering on macro inference rules and sgs framework

Merged with each other, a number of (variants of) different known schemes im-
plemented within the proposed general setting have similar structures. Moreover,
some slight changes can be made in order to have these structures clearly compa-
rable in the sense that similar rules are in the same or similar positions. By this
motivation, we impose a fixed ordering on the macro inference rules on the basis
of a number of known schemes and schemes implemented within the gs frame-
work. This ordering makes a basis for a strict general setting (sgs) for building
decision procedures into theorem provers. A combination/augmentation scheme
is, within the sgs framework, simply created by choosing and (de)activating
certain rules at their fixed positions. The imposed ordering on the rules is as
follows:

1. dnf rule ⇔dnf

2. case split rule ⇔split

3. simplification:
– ⇔simpl

– ⇔simpl(T1 ,T2,...,Tk)

4. constant congruence closure ⇔ccc

5. abstraction:
– ⇒abs(T1,T2,...,Tk)

– ⇔abs+(T1,T2,...,Tk)

– ⇔absp+(T1,T2,...,Tk)

– ⇔absp+(T1,T2,...,Tk,E)

6. unsatisfiability ⇔unsat(Ti)

7. entailment:
– ⇒entail(A,Ti)

– ⇔entail(A,Ti)
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– ⇔entail+(A,Ti)

8. replacement:
– ⇔repl=

– ⇔repl

9. lemma invoking ⇒lemma+(L,T1,T2,...,Tj)

10. jump — Go to start

Some rules are parametrised by a set of theories which determines an instance
of a combination/augmentation scheme. In some schemes, it is convenient to give
the pure theory of equality a special treatment and so in the above list we give
the following special case of abstraction rule: ⇔absp+(T1,T2,...,Tk,E). In principle,
we should also list versions of this kind for ⇒abs(T1,T2,...,Tk) and ⇔abs+(T1,T2,...,Tk),
but we haven’t found them very useful. We also include a rule “Go to start” into
the set of the rules.

5 Implementing combination/augmentation schemes
within sgs framework

A scheme within the sgs framework is represented by a sequence of the macro
inference rules used (i.e. by a corresponding sequence of 0s and 1s). In addition,
some rules (entailment rules) have to be instantiated by specific underlying al-
gorithms; for some schemes and some rules, if the rule fails, the scheme has to
return >; for some schemes and some rules, if the rule is successful, a control
has to go to the start of the scheme. For instance, if in an entailment rule we
use Nelson/Oppen style entailment (⇔entail+(NO,Ti)), if the rule has to return >
when unsuccessful and if the rule does not lead to a start of a scheme when suc-
cessful, we denote these additional parameters in the following way: (NO; 1; 0).
We omit these additional parameters if they have default values (the default
values are (/; 0; 0)). For instance, Nelson/Oppen style scheme described in 3.2
is represented in the following way: 1100000101001(NO; 1; 0)1001. Table 1 gives
representations of several combination/augmentation schemes: schemes made in
the style of Nelson/Oppen’s, Shostak’s, Tecton (we discuss only one procedure
from [20] — one concerning pra) and epm procedures. Note that it is sensible
to use only one variant of the abstraction rule, only one variant of the simplifi-
cation and only one variant of the replacement in one scheme. However, it may
be sensible to use more variants of the entailment rule (as in Tecton).

A combination/augmentation scheme is additionally specified by a set {T1,
T2, . . . , Tk} of the underlying theories involved. In the Nelson/Oppen scheme,
an input formula belongs to the union of the underlying theories. In the Shostak
style schemes, an input formula belongs to the union of the underlying theories
and the pure theory of equality (E). In Tecton and the epm style scheme
k = 1 and an input formula belongs to an (conservative) extension of the theory
T1. In the Tecton style scheme T1 is pra. In the epm style scheme T1 is a
theory which admits quantifier elimination (e.g. pra, pia) and A is a quantifier
elimination procedure for T1 (e.g. Hodes’ procedure for pra). If in the epm
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# Rule N/O style Shostak style Tecton style epm style

1. ⇔dnf

√ √ √ √

2. ⇔split

√ √ √ √

3a. ⇔simpl

√

3b. ⇔simpl(T1 ,T2,...,Tk)

√ √

4. ⇔ccc

√ √

5a. ⇒abs(T1,T2,...,Tk)

5b. ⇔abs+(T1,T2,...,Tk)

5c. ⇔absp+(T1,T2,...,Tk)

√ √

5d. ⇔absp+(T1,T2,...,Tk ,E)

√ √

6. ⇔unsat(Ti) (i = 1, . . . , k)
√ √ √

7a. ⇒entail(A,Ti) (i = 1, . . . , k)

7b. ⇔entail(A,Ti) (i = 1, . . . , k)
√

(solve; 1; 0)
√

(Fourier; 0; 1)
√

(A; 0; 0)

7c. ⇔entail+(A,Ti)
(i = 1, . . . , k)

√
(NO; 1; 0)

√
(impl−eqs; 0; 1)

8a. ⇔repl=
√

8b. ⇔repl

√ √

9. ⇔lemma+(L,T1,T2,...,Tk)

√ √

10. Go to start
√ √ √ √

Table 1. Descriptions of some combination/augmentation schemes within the sgs

framework (underlying theories are T1, T2, . . . , Tk).

scheme a procedure which does not preserve unsatisfiability is used (e.g. Hodes’
procedure for pia) we choose the rule ⇒entail(A,Ti) (7a) instead of ⇔entail(A,Ti)

(7b).

All of the represented schemes are sound (because all the macro inference
rules are sound) and terminating. Only the Nelson/Oppen style scheme is com-
plete in its scope. It was recently shown by Rueß and Shankar that the original
Shostak’s algorithm is not complete [31]; the same holds for the Shostak style
scheme represented above. Tecton and the epm scheme rely on lemmas and,
as typical for augmentation schemes, they are not complete.

Instead of a number of implemented combination/augmentation schemes,
within the sgs framework there is only one meta-scheme. It is parametrised by
a specification for a scheme and by a set of underlying theories. There are no
scheme-specific parts built-in or invoked from the meta-scheme. The set of the-
ories can be determined for each conjecture by a grammars library mechanism.
This mechanism, for instance, tries to find a (small) set of available theories such
that a conjecture belongs to their union; if for each of them there is available NO
entailment, then the Nelson/Oppen style scheme can be applied. Similarly, this
mechanism can try to find if a conjecture belongs to an extension of some the-
ory which admits quantifier elimination, while there is available a corresponding
quantifier elimination procedure and the extension is given by some additional
rules and lemmas; if so, epm style procedure can be applied. The ordering of
schemes can be adjusted according to different criteria (for certain theories, the

11



Nelson/Oppen style scheme is complete, but, for instance, the Tecton style
scheme is often more efficient).

6 Prototype implementation and results

We have implemented the sgs framework in swi Prolog, within the Clam system
[8] and on top of the implementation of the gs framework described in [18].
That implementation is not the most efficient possible (e.g. the rule ⇔ccc is
implemented on the basis of the simpler Nelson/Oppen’s algorithm and not on
the basis of the more efficient, Shostak’s algorithm; Nelson/Oppen’s entailment
is implemented on the basis of the connection: f ⇔entail+(NO,Ti) f ∪ {x = y} if
and only if f ∪ {¬(x = y)} ⇔unsat(Ti) ⊥ and not on the basis of some specific
properties of the theories involved; the rule ⇒entail+(NO,pra) is used instead of
⇒entail+(impl−eqs,pra) etc). However, even in this implementation, based on only
few underlying procedures, the framework gives satisfactory results (in terms of
cpu time).

# Conjecture N/O Shostak Tecton epm

1. x ≤ y, y ≤ x + car(cons(0, x)), p(h(x) − h(y)),¬p(0) [27] 0.70 n/i ? ?

2. z = f(x − y), x = y + z,¬(y + f(f(z)) = x) [32] 0.19 0.14 0.28 ?

3. x = y, f(f(f(x))) = f(x),¬(f(f(f(f(f(y))))) = f(x)) [14] 0.01 0.01 0.01 ?

4. y = f(z), x − 2 · y = 0,¬(f(x − y) = f(f(z))) [14] 0.14 0.13 0.09 ?

5. f(x) = 4, f(2 · y − x) = 3, x = f(2 · x − y),

4 · x = 2 · x + 2 · y [14] 0.65 0.51 0.28 ?

6. f(a − 1) − 1 = a + 1, f(b) + 1 = b − 1, b + 1 = a [31] 0.84 ? 0.51 ?

7. f(a) = a, f(b) = b − 1, a = b [31] 0.03 0.03 0.04 0.03

8. p(a), l ≤ f(max(a, b)), 0 < min(a, b), a ≤ max(a, b)

max(a, b) ≤ a,¬(l < g(a) + b) [20]
lemma: p(x) ⇒ f(x) ≤ g(x)

lemma: max(x, y) = x ⇒ min(x, y) = y ? ? 2.33 ?

9. l ≤ minl(α), 0 < k, maxl(α) + k ≤ l [7]
lemma: minl(ξ) ≤ maxl(ξ) ? ? 0.23 0.19

10. lp + lt ≤ maxint, i ≤ lt,¬(i + δ(pat, lp, c) ≤ maxint) [7]
lemma: δ(x, y, z) ≤ y ? ? 0.24 0.10

Table 2. Comparison between the schemes for combining/augmenting decision proce-
dures implemented within the general setting (n/i means “not implemented”; ? means
that the scheme terminated on the conjecture, but failed to prove or disprove it; cpu

time is given in seconds.)

The implementation of the sgs framework consists of a meta-scheme and of
a control mechanism which uses representations of specific schemes and sets of
theories as parameters. Some results obtained on examples from the literature
and on the schemes described in §5 are given in Table 2 (tests were made on a pc

433mhz 64mb, running under Linux). (Note that the Shostak style procedure
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fails to refute the conjunction f(v−1)−1 = v+1, f(u)+1 = u−1, u+1 = v which
also witnesses the incompleteness of the original Shostak’s algorithm [31].) These
results give just as an illustration of efficiency of the combination/augmentation
schemes implemented within the sgs framework, while further tests on larger
corpora are needed.

The given results show that each of the implemented scheme is most success-
ful on some of the examples. This suggests that it is sensible to have more combi-
nation/augmentation schemes available in one theorem prover and to choose be-
tween them on the basis of some heuristic scores. These scores can be dynamically
adjusted according to theorems already successfully proved (see, for instance,
[26]). The sgs system with one general meta-scheme, seems a good framework
for providing possibilities for using different combination/augmentation scheme
in a uniform manner.

7 Related Work

The long line of research concerning combining and augmenting decision proce-
dures is related to the gs framework and its extension discussed in this paper.
Several systems described in the literature and used in practice were the ba-
sis for introducing the given macro inference rules [27, 32, 7, 20, 1]. In the late
90s there were introduced several new approaches aimed at giving a more gen-
eral, uniform view to different combining or augmenting strategies. We briefly
discuss three such approaches: constraint contextual rewriting, the epm scheme
and one flexible framework for cooperating decision procedures. Armando and
Ranise’s constraint contextual rewriting (ccr) [1, 2] is a formal system moti-
vated by the ideas from Boyer and Moore’s system and aimed at the flexible
augmentation/integration of decision procedures into theorem provers. ccr is
an extended form of contextual rewriting [35] which incorporates the function-
alities provided by a decision procedure. It provides a flexible framework which
can be instantiated by a specific decision procedure X for some theory and it can
cover approaches used by Boyer and Moore and by Kapur and Nie (or, at least,
their essential parts). The soundness and termination of ccr is proved formally
for the abstract scheme when certain requirements on the rewriting mechanism
and the decision procedure are satisfied [2]. The epm scheme [19] is in spirit
similar to ccr — it provides a flexible framework for extending the realm of one
decision procedure for a theory T (which admits quantifier elimination) by the
use of available lemmas. The framework can be used for different theories and
for different decision procedures. A new procedure can be simply “plugged in” to
the system only if it provides a small set of functionalities such as checking sat-
isfiability and elimination of quantifiers. The soundness and termination of epm

is proved for the abstract framework, given a decision procedure which provides
the needed functionalities. Barrett, Dill and Stump’s work [5] gives a flexible
framework for cooperating decision procedures. In this framework (built on a
few abstract primitive methods), Nelson/Oppen and Shostak style procedures
can be implemented and their correctness (termination, soundness and complete-
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ness) are formally proved. The gs framework and its extension sgs discussed in
this paper are more general than the above approaches as the gs and sgs frame-
works address both the problem of combining decision procedures and the prob-
lem of augmenting decision procedures. We are not aware of any previous work
on superschemes that can be instantiated to different combination and augmen-
tation schemes. The relationship between combination/augmentation schemes
discussed in this paper is illustrated in Figure 1 (contextual rewriting is not a
combination/augmentation scheme, but is closely related to them).

schemes for combining and augmentating decision procedures

combination schemes augmentation schemes

schemes based on deduc-
ing implicit equalities

schemes based on
congruence closure

Nelson/Oppen,
1979. [27]

Nelson/Oppen,
1980. [28]

Shostak,
1984. [32]

Boyer/Moore,
1988. [7]

contextual
rewriting [35]

Kapur/Nie,
1994. [20]

Armando/Ranise,
1998. [1]

Barrett/Dill/Stump,
2000. [5]

GS, Janičić/Bundy,
2000. [18]

SGS

Janičić/Bundy/Green,
1999. [19]

Fig. 1. Schemes for combining and augmenting decision procedures and their relation-
ship
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8 Future Work

In future work, we will investigate possibilities for proving termination of differ-
ent schemes implemented within the sgs framework. Such an extension of the
framework would be based on some further properties imposed on all rules; it
would serve as a basis for some well-founded ordering of formulae and, hopefully,
lead to a generic termination proof. Proving completeness for more schemes at
the same time is an analogous but even more challenging problem.

We will investigate possibilities for making sgs schemes which combine scopes
of some other sgs schemes; e.g. we will investigate possibilities for combining
the scopes of the schemes described in this paper. There might be difficulties in
achieving this as those schemes are defined for different classes of theories. We
will also investigate possibilities for automatic generating of different instanti-
ations of the specific macro inference rules. We will try to make a mechanism
which for a new theory recognises relevant available rewrite rules and uses them
in implementing specific macro inference rules for that theory — such as simpli-
fication, quantifier elimination etc. That approach follows the ideas from [11].

We will try to extend the sgs system over the quantifier-free fragment. Also,
we will try to refine the lemma invoking mechanism in situations in which there
are no available reduction ordering or additional rules cannot be oriented.

We are planning to investigate and use more efficient versions of specific
macro inference rules. More efficient implementations of the macro inference rules
would lead to much more efficient schemes. We are planning to fully integrate the
sgs framework in the proof-planning system Clam. We believe that the proof-
planning paradigm [10, 9] is a convenient environment for the sgs framework.
The macro inference rules implemented as methods are used by the meta-scheme
represented as a supermethod. Theories would be represented by their signatures,
by their properties (e.g. convex, σ-theory, admits quantifier elimination etc) and
by available primitive procedures (e.g. checking unsatisfiability, solve, variable
elimination etc). Grammar library mechanisms will check the applicability of
each scheme by checking the available theories and will determine the set of
underlying theories (as a parameter for the scheme). If more than one scheme
is applicable, they would be ordered by some heuristic scores which would be
dynamically adjusted according to theorems already successfully proved.

9 Conclusions

In this paper we introduce a general framework for building decision procedures
into theorem provers. It is an extension of the gs framework [18] which is formed
from a fixed set of macro inference rules. These rules are based on the key ideas
of different combination/augmentation schemes. The sgs framework provides a
way of implementing and using a number of schemes in a uniform way. Schemes
implemented within the sgs framework give simple and easy to read proofs. On
the one hand, the sgs framework is very flexible (as all rules are modular and
each rules can be independently implemented/changed/improved as long as it
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meets its specification), and on the other hand it is very rigid (as all macro
inference rules have their fixed positions and they can be just activated or deac-
tivated). All this makes the sgs framework easy to implement and easy to use.
On the basis of only few macro inference rules implemented, a number of com-
bination/augmentation schemes can be obtained. It is easy to explore different
variants of different schemes even for a non-expert user. We believe that the sgs

framework can be used in a wide spectrum of theorem provers as a main or the
only mechanism for using decision procedures. Concerning efficiency, schemes im-
plemented within the sgs framework are typically less efficient that some tightly
integrated procedures, but we believe that potential losses in efficiency will be
dominated by the advantages of the sgs framework. We have implemented a
prototype version of the sgs framework described and have successfully proved
a number of conjectures. We are planning to use this implementation in the
proof-planning system Clam.
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