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Abstract. In the last decade a lot of effort has been invested into both theoretical and
experimental analysis of sat phase transition. However, a deep theoretical understanding
of this phenomenon is still lacking. Besides, many of experimental results are based on some
assumptions that are not supported theoretically. In this paper we introduce the notion of
sat–equivalence and we prove that some restrictions often used in sat experiments don’t
make an impact on location of a crossover point. We consider several fixed and random
clause length sat models and relations between them. We also discuss one new sat model
and report on a detected phase transition for it.
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1 INTRODUCTION

In recent years, phase transition for many np-hard problems has been the subject
of both theoretical and experimental consideration (some of the first were the influ-
ential papers by Cheesman et. al. and by Mitchell et. al. published in early 1990s
[2, 15]). A prototypical example of such problems is propositional satisfiability prob-
lem — sat (sat is the problem of deciding if there is an truth assignment for which
a given propositional formula is evaluated to true; it was shown by Cook that sat is
NP-complete problem [3]). We focus on sat problems in conjunctive normal form:
(N,L)-sat problem consists of L clauses over the set of N variables and their nega-
tions (in the rest of the paper, by sat problem we mean problem of this form). By
Mi(N,L) we denote sets of (N,L) formulae satisfying some additional syntactical re-
striction (say, with no multiple occurrences of some clause). Many experiments (over
problem sets with different additional syntactical constraints) suggest that there is
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Fig. 1. Satisfiability and computational cost function for 3-sat problem set (the solid line
represents the satisfiability function, and the dashed line represents the (normalized)

computational cost)

a phase transition in sat problems between satisfiability and unsatisfiability as the
ratio L/N is increased. For different types of problem sets M(N,L), it is conjectured
that there is a critical value c0 of L/N , which we call a crossover point (or a phase
transition point) such that:

lim
N→∞

s(M(N, [cN ])) =

 1, for c < c0

0, for c > c0

where s is a satisfiability function that maps sets of propositional formula into the
segment [0, 1] and corresponds to a percentage of satisfiable formulae. The value of
the crossover point might be (and often is) different for different types of problem
sets. For a fixed problem set, according to the properties of the crossover point,
the sequence of points L/N in which the satisfiability function is (approximately)
equal p (where 0% < p < 100%), converges to the crossover point as N increases;
in most of the experiments, crossover points for different sat problems is estimated
(usually using p = 50%) on the basis of this fact. Additionally, experimental results
suggest that at the crossover point approximately the same percentage of formulae is
satisfiable for all large of N (while that percentage depends on sat model examined)
[14, 7].

For most of sat problem sets M(N,L) it is easy to show that the function
s(M(N,L)) is strictly decreasing in its second argument and limL→∞ s(M(N,L)) =
0. Thus, clearly, if the crossover point exists, there is only one such point (for one
sat problem set). As yet, for none of sat problem sets the crossover point has been
theoretically computed nor even proved that it exists (with the only exception of
2-sat problem). However, recent Friedgut’s results [6] serve as a major step towards
solving this problem: he proved that the transition region for k-sat problems narrows
as the number of variables increases (despite that, as Friedgut says, it is still feasible
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that, though there is a swift transition of the satisfiability function, the critical value
does not converge to any given value).

Experimental results also suggest that in all sat problems there is a typical
easy-hard-easy pattern as the ratio L/N is increased. Indeed, for small values of
L/N , problems are under-constrained and (relatively) easy for all propositional de-
cision procedures because there are many satisfying assignments; for large values of
L/N , problems are over-constrained, thus (relatively) easily shown to be unsatisfi-
able. Interestingly, the most difficult sat problems for all decision procedures for
propositional logic are those in the crossover region (see Fig. 1; Figure 1 shows ex-
perimental results for sat formulae with all lengths of clauses equal 3; we call that
model 3-sat model and the estimated value of the corresponding crossover point is
4.25 [4]). All known decision procedures for propositional logic are of exponential
worst-case complexity. Decision procedures most often considered in sat experi-
ments are Davis-Logemann-Loveland’s procedure (often misattributed to Davis and
Putnam), resolution based procedures and tableau based procedures. This paper
mostly discusses satisfiability function and we are not much concerned by behavior
of particular decision procedures.

Most of sat experiments assume that some additional assumptions on a set of
formulae examined can not significantly change the location of a crossover point. In
all related papers we are aware of, a problem of different restrictions for generating
random sat problems is just tackled: for instance, in experiments conducted using
the most often model it is not checked if generated problems do have N variables
and do have L different clauses; usually, it is assumed that related restrictions could
not have significant impact on final results of experiments. In this paper, we dis-
cuss this issue. We introduce the notion of sat-equivalence as a methodology for
exploring if two models lead to the same crossover point. It could be a step closer to
deeper understanding of sat phase transition phenomenon. We also give one suffi-
cient condition for two models to be sat-equivalent and illustrate it on some typical
examples. This methodology can be important both for theoretical and practical
purposes. For instance, given a proof that some value is the crossover point for one
type of sat problem set, then there are proofs for crossover points for all types
of problems sets that are sat-equivalent with the first one. This methodology can
also be used to support some assumptions in experiments made so far. Besides,
some known experimental results would be useful for different real–world problems
satisfying different constraints.

Another problem which we discuss in this paper is relation between different
fixed and random clause length sat models. We briefly discuss one new sat model
and report on a detected phase transition. We also discuss relationship between the
fixed and the random clause length sat models.

Overview of the paper. In Sect. 2 we discuss most often models used in random
generation of sat problems and in Sect. 3, we describe different types of sat problem
sets (sets of sat problems meeting different syntactical restrictions). In Sect. 4 we
introduce the notion of sat–equivalence and in Sect. 5 we prove that some often used
types of sat problem sets are sat–equivalent. In Sect. 6 we introduce one new ran-
dom clause length sat model and report on the phase transition detected. In Sect. 7
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we discuss the relation between the fixed and random clause length sat models. In
Sect. 8 we discuss further work and in Sect. 9 we draw some final conclusions.

2 MODELS FOR GENERATING RANDOM SAT PROBLEMS

Most of sat experiments are conducted in the following way: for some N and for
L/N varied by some constant (usually between 0.01 and 0.1), generate randomly
(large) number (usually between 1000 and 100000) of formulae of some sat corpora
M(N,L); for large samples of formulae, a percentage of satisfiable formulae ap-
proximates the satisfiability function s(M(N,L)). Usually, it is not checked if some
formula occurs more than once. The crossover point for the model M is usually
determined in the following way: for each N there is approximated a critical point
at which there are 50% satisfiable formulae from the set M(N,L) (actually, instead
of 50%, it can be taken any percentage other than 0% and 100%); the sequence of
these critical points converges to the crossover point as N is increased.

The following models are used most often (the first one is a fixed clause length
model, while the remaining three are random clause length models):

Random k-sat model (Fixed clause length model): For given values N and
L, an instance of random k-sat formula is produced by randomly generating L
clauses of length k. Each clause is produced by randomly choosing k distinct
variables from the set of N available variables, and negating each with probabil-
ity 0.5 [15]. It is known that k-sat is np–complete for natural numbers k such
that k > 2. There is a polynomial decision procedure for 2-sat problem (i.e.,
2-sat ∈ P ), but still there is a phase transition as for k-sat problems for k > 2.
It is proved that the crossover point for 2-sat problems is 1 [8]. For random
3-sat the phase transition occurs at L/N ≈ 4.25 [4]. For random 4-sat the
phase transition occurs at L/N ≈ 9.76 [7]. For large k, Kirkpatrick and Selman
estimate the crossover points for k-sat at L/N = −1/ log2(1 − 1/2k) [13]. It
has been shown theoretically that the crossover point for 3-sat is (if it exists)
between 3.003 and 4.87 [12]. Friedgut proved that the transition region for k-sat
problems narrows as the number of variables increases [6].

Constant probability model: In this model [9], given N variables and L clauses,
each clause is generated so that it contains each of 2N different literals with
probability p. Some experiments use a variant of this model: if an empty clause
or a unit clause is generated, it is discarded and another clause is generated in
its place. Parameter p can be chosen such that 2Np = 3 and then the mean
clause length remains approximately constant as N varies [7]. It is shown that
there is a phase transition between satisfiability and unsatisfiability for constant
probability model as L/N is varied and for 2Np = 3, the crossover point is
approximated as L/N ≈ 2.80 [7].

Random mixed sat: In this model [7], each clause is generated as in random k-
sat except that k (the length of clauses), is chosen randomly according to a
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finite probability distribution φ on integers. For instance, if φ(2) = 1/3 and
φ(4) = 2/3, clauses of length 2 appear with the probability 1/3 and clauses of
length 4 with the probability 2/3 (this problem is then called 2, 4, 4-sat). For
random 2, 4, 4-sat, the phase transition occurs at L/N ≈ 2.74 [7].

2 + p-sat model In this model [16], a formula with L clauses has (approximately)
(1 − p)L clauses of the length 2 and pL clauses of the length 3 (this model is
closely related to the random mixed sat and can be considered as its special
case). Hence, a model smoothly interpolates between 2-sat and 3-sat model.
Crossover points are approximated for different values between 0 and 1. For
p ≤ 0.4 it has been proved that the crossover point is at L/N = 1/(1 − p) [1].
In addition, 2 + p-sat behaves as 2-sat for p ≤ 0.4 and as 3-sat for p > 0.4.

3 TYPES OF CORPORA OF SAT PROBLEMS

In this section we discuss several different restrictions on corpora of sat problems.
Some of these restrictions are used in most of sat experiments. These restrictions
are rather general and applicable to different classes of sat problems. The corpora
of (N,L)–sat problems are considered (N is a number of variables, L is a number
of clauses in problem). We discuss the following restrictions:

1. only formulae with all clauses having exactly k literals are considered (k is a
fixed value);

2. only formulae with all clauses different are considered;

3. only formulae with all N variables are considered;

4. only formulae with all clauses not containing multiple occurrences of some vari-
able (either in positive or in negative form) are considered.

We will by M1(N,L) a corpus meeting restriction 1, by M1,2(N,L) a corpus
meeting restrictions 1 and 2 etc. For instance, if d = (2N)k (k is a fixed value), then
there are dL formulae in M1(N,L); d · (d− 1) · · · (d−L+ 1) formulae in M1,2(N,L)
etc.

In every fixed clause length problem all clauses contain the same number of
literals (so the first restriction is met). The random k-sat model corresponds to
the corpus M1,4(N,L); note that it is not checked if generated formula does have
N variables and L literals. In other words, in the set of formulae generated in this
way, there are some formulae which are not from the corpus M1,2,3,4(N,L). The
question is whether these two corpora lead to the same crossover point. We discuss
this question in the further text.

The random clause length problems are based on some distribution of clause
lengths. In this paper we consider both fixed clause length problems and random
clause length problems and relations between them.
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4 SAT-EQUIVALENCE BETWEEN DIFFERENT TYPES OF COR-
PORA

In this section, we introduce a sat-equivalence relation over the set of different
types of corpora of sat problems. Two types of corpora are in the same class if their
satisfiability functions are asymptotically (as the number of variables increases) the
same. In this section we also give one sufficient condition for two types of corpora
to be in the same class.

Definition 4.1. We say that the value c0 is a crossover point for a corpora of the
type M if it holds that

lim
N→∞

s(M(N, [cN ])) =

 1, for c < c0

0, for c > c0

(c ranges over the set of positive reals numbers; N ranges over the set of natural
numbers).

Definition 4.2. We say that two types of corpora M ′ and M ′′ of sat problems are
sat-equivalent (and we write M ′ ∼SAT M ′′) if it holds that

(∀c) lim
N→∞

|s(M ′(N, [cN ]))− s(M ′′(N, [cN ]))| = 0

(c ranges over the set of positive reals numbers).

It is easy to prove the following two statements:

Theorem 4.1. The relation ∼SAT is an equivalence relation.

Theorem 4.2. If M ′ and M ′′ are two types of corpora of sat problems such that
M ′ ∼SAT M ′′ and if the value c′ is the crossover point for a corpora of the type M ′

then it is also the crossover point for a corpora of the type M ′′.

Thus, all types of corpora in one class of sat-equivalence relation lead to the
same crossover point. The following theorem gives one sufficient condition for two
types of corpora of sat problems to be sat-equivalent.

Theorem 4.3. If M ′ and M ′′ are two types of corpora of sat problems such that
M ′(N,L) ⊆ M ′′(N,L) and such that for every positive real number c it holds that

limN→∞
|M ′(N,[cN ])|
|M ′′(N,[cN ])| = 1, then M ′ ∼SAT M ′′.

Proof. Let us denote by M(N,L) the set M ′′(N,L) \ M ′(N,L). It holds that:
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|M ′′(N,L)| = |M ′(N,L)|+ |M(N,L)|, and for the number of satisfiable formulae in
M ′′(N,L) (there are s(M ′′(N,L))|M ′′(N,L)| of them) it holds that:

s(M ′(N,L))|M ′(N,L)| ≤ s(M ′′(N,L))|M ′′(N,L)| =

= s(M ′(N,L))|M ′(N,L)|+ s(M(N,L))(|M ′′(N,L)| − |M ′(N,L)|)

and

s(M ′(N,L))
|M ′(N,L)|
|M ′′(N,L)|

≤ s(M ′′(N,L)) =

= s(M ′(N,L))
|M ′(N,L)|
|M ′′(N,L)|

+ s(M(N,L))

(
1− |M

′(N,L)|
|M ′′(N,L)|

)
.

Let c and ε be arbitrary positive real numbers. From

lim
N→∞

|M ′(N, [cN ])|/|M ′′(N, [cN ])| = 1 ,

since |M ′(N,L)| ≤ |M ′′(N,L)|, it follows that there is a value N0 such that

N > N0 ⇒ 1− ε ≤ |M ′(N, [cN ])|/|M ′′(N, [cN ])| ≤ 1 .

For N > N0, since s(M ′(N, [cN ])) ≤ 1 and s(M(N, [cN ])) ≤ 1, we have

s(M ′(N, [cN ]))− ε ≤ s(M ′(N, [cN ]))(1− ε) ≤

≤ s(M ′(N, [cN ]))
|M ′(N, [cN ])|
|M ′′(N, [cN ])|

≤ s(M ′′(N, [cN ])) =

= s(M ′(N, [cN ]))
|M ′(N, [cN ])|
|M ′′(N, [cN ])|

+ s(M(N, [cN ]))

(
1− |M

′(N, [cN ])|
|M ′′(N, [cN ])|

)
≤

≤ s(M ′(N, [cN ])) + s(M(N, [cN ]))ε ≤ s(M ′(N, [cN ])) + ε

i.e.

s(M ′(N, [cN ]))− ε ≤ s(M ′′(N, [cN ])) ≤ s(M ′(N, [cN ])) + ε

and

|s(M ′′(N, [cN ]))− s(M ′(N, [cN ]))| ≤ ε .

Therefore,

(∀c)(∀ε)(∃N0)( N > N0 ⇒ |s(M ′′(N, [cN ]))− s(M ′(N, [cN ]))| ≤ ε) ,

i.e.

(∀c) lim
N→∞

|s(M ′′(N, [cN ]))− s(M ′(N, [cN ]))| = 0 .

which yields M ′ ∼SAT M ′′. 2
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5 FIXED CLAUSE LENGTH PROBLEMS AND SAT-EQUIVALENCE

In this section, we show that the given sufficient condition for two types of corpora of
sat problems (with fixed clause length) to be sat-equivalent holds in some important
cases. We also discuss some other cases in which this condition does not hold.

5.1 M1 ∼SAT M1,2 and M1,3 ∼SAT M1,2,3

In all experiments that followed [15] (which is the dominant model) it is not checked
if generated formulae do indeed have all clauses different — actually, some of the
formulae don’t and therefore they don’t belong to the set M1,2. Usually, just some in-
formal argument is given saying that there are not too many such formulae and that
this assumption probably will not have an impact on the location of the crossover
point. As we are aware, the formal proof for this has not been given as yet. We prove
that this assumption is valid, i.e., we show that it holds that M1 ∼SAT M1,2.

Lemma 5.1. M1 ∼SAT M1,2 .

Proof. Let us denote by d the total number of different clauses in M1 and M1,2

(d = (2N)k; k is a fixed natural number and k > 2). In the corpus M1(N,L) there
is a finite number of k−sat formulae: |M1(N,L)| = dL. Some of them contain
only different clauses (these formulae make corpus M1,2(N,L)) and some of them
contain multiple occurrences of some clauses (thus M1,2(N,L) ⊂ M1(N,L)). There
are d(d− 1)(d− 2) · · · (d− L + 1) formulae in M1,2(N,L) (it has to be L < d). For
L ≥ 2 it holds:

1 >
|M1,2(N,L)|
|M1(N,L)|

=
d(d− 1)(d− 2) · · · (d− L+ 1)

dL
=

=
(

1− 1

d

)(
1− 2

d

)
· · ·

(
1− L− 1

d

)
≥

≥
(

1− L− 1

d

)L−1

≥ 1− (L− 1)2

d
≥ 1− L2

d

Let c and ε be arbitrary positive real numbers.

1 >
|M1,2(N, [cN ])|
|M1(N, [cN ])|

≥ 1− [cN ]2

d
= 1− [cN ]2

(2N)k
> 1− ([c+ 1]N)2

(2N)k
> 1− [c+ 1]2

Nk−2
.

Thus, for N0 =
[

[c+1]2

ε

]
+ 1 and for N > N0 it holds that

1 >
|M1,2(N, [cN ])|
|M1(N, [cN ])|

≥ 1− ε .

Therefore,

(∀c) lim
N→∞

|M1,2(N, [cN ])|
|M1(N, [cN ])|

= 1 ,
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and by Theorem 4.3 it follows M1 ∼SAT M1,2. 2

Therefore, in the random k-sat model, formulae that contain less than L differ-
ent clauses don’t make an impact on the location of the crossover point.

Now we prove that the corpora M1,3 and M1,2,3 are sat–equivalent, i.e., we prove
that in the corpus of sat formulae with all N variables the restriction on formulae
having all clauses different does not change the location of the crossover point.

Lemma 5.2. M1,3 ∼SAT M1,2,3 .

Proof. Let us denote by M
(m)
1,3 (N,L) the set of formulae from M1,3 such that they

have exactly m different clauses. Note that M
(L)
1,3 (N,L) = M1,2,3(N,L). Since all

formulae from M
(m)
1,3 (N,L) contain all N variables, it follows that km ≥ N , i.e., all

sets M
(m)
1,3 (N,L) are empty for m < N/k.

Let us associate to each formula F from M
(m)
1,3 (N,L) (m < L) a class of formulae

from M
(m+1)
1,3 (N,L) such that they differ from F only in its last duplicate clause and

let F ′ be one of these formulae. The corresponding clause in a formula F ′ from

M
(m+1)
1,3 (N,L) is not a duplicate clause (otherwise it would have less than m + 1

different clauses), so the formula F ′ occurs in at most (m+ 1) ·m classes (a critical
clause in the formula F has to be from the set of m different clauses). In one such

class, there are (2N)k −m formulae from M
(m+1)
1,3 (N,L) (all these formulae indeed

include all N variables, because the formula F includes all variables with or without

the critical clause). Therefore, it holds |M (m+1)
1,3 (N,L)| ≥ (2N)k−m

(m+1)·m |M
(m)
1,3 (N,L)| ≥

(2N)k−L
L2 |M (m)

1,3 (N,L)|. It can be easily shown by mathematical induction that it holds

|M (L)
1,3 (N,L)| ≥

(
(2N)k−L

L2

)L−m
|M (m)

1,3 (N,L)| for m ≤ L. Thus,

L∑
m=1

|M (m)
1,3 (N,L)| ≤

L∑
m=1

1

(((2N)k − L)/L2)L−m
|M (L)

1,3 (N,L)|

≤ |M (L)
1,3 (N,L)| 1

1− L2/((2N)k − L)
.

Union of the sets |M (m)
1,3 (N,L)| (L ≥ m ≥ 1) is the set M1,3(N,L) and thus we have

|M1,2,3(N,L)|
|M1,3(N,L)|

=
|M (L)

1,3 (N,L)|∑L
m=1 |M

(m)
1,3 (N,L)|

≥

≥
|M (L)

1,3 (N,L)|
1

1−L2/((2N)k−L)
|M (L)

1,3 (N,L)|
= 1− L2

(2N)k − L
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Therefore, it holds

1 ≥ |M1,2,3(N, [cN ])|
|M1,3(N, [cN ])|

≥ 1− [cN ]2

(2N)k − [cN ]

Since k is greater than 2, for every ε > 0 there is sufficiently large value N0 such
that it holds |M1,2,3(N, [cN ])|/|M1,3(N, [cN ])| > 1− ε. Thus,

lim
N→∞

|M1,2,3(N, [cN ])|/|M1,3(N, [cN ])| = 1

and by Theorem 4.3 it follows M1,3 ∼SAT M1,2,3. 2

5.2 M1 ∼SAT M1,3? and M1 ∼SAT M1,2,3, M1,4 ∼SAT M1,2,3,4?

In the random k-sat experiments (that followed [15]) it is not checked if the formulae
generated do indeed have all N variables. We question this assumption (this issue
is discussed from the probability point of view in [11]).

Theorem 4.3 gives a sufficient condition for two types of sat corpora to be sat-
equivalent. Let us check if the preconditions of Theorem 4.3 are fulfilled for the
corpora M1 and M1,3.

There are (2N − 2)k clauses that do not contain one variable from the set of
N given variables; thus, there are ((2N − 2)k)L formulae that do not contain one
variable. Having chosen one formula from M1(N,L), the probability that it does
not contain one variable is ((2N − 2)k)L/((2N)k)L = (N − 1)kL/NkL. Therefore, the
probability that it does contain this variable is 1 − (N − 1)kL/NkL. There are N
variables, so the probability that the chosen formula contain each of N variables is(

1− (N − 1)kL

NkL

)N
.

It holds M1,3(N,L) ⊆M1(N,L) and

|M1,3(N, [cN ])|
|M1(N, [cN ])|

=

(
1− (N − 1)k[cN ]

Nk[cN ]

)N
=

(
1−

(
1− 1

N

)k[cN ]
)N

.

Therefore, the preconditions of Theorem 4.3 are not fulfilled. In addition, the ratio
|M1,3(N, [cN ])|/|M1(N, [cN ])| is asymptotically the same as (1− e−ck)N and it does
not converges to 1 (for N → ∞), but to 0. However, for k = 3, c = 4.25 and for
N = 10, the ratio |M1,3(N, [cN ])|/|M1(N, [cN ])| is approximately equal to 0.999986,
for N = 100 to 0.999728, for N = 1000 to 0.99712. Thus, in random k-sat model,
formulae containing less than L different clauses don’t make an significant impact on
the location of the crossover point at least for small values of N (say, for N < 1000);
this means that results in [15] can be considered as correct. Additionally, most
of formulae in M1(N, [cN ]) contain almost N variables, so it is still possible that
M1 ∼SAT M1,3 and M1,4 ∼SAT M1,3,4, but some deeper knowledge on nature of sat
problems has to be used to prove it. In any case, it seems that this usual assumption
has to be reconsidered.
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We have proved M1,3 ∼SAT M1,2,3, (and M1 ∼SAT M1,2). We have also shown
that it can be considered that it holds M1 ∼SAT M1,3 (or, more precisely, it can be
considered that satisfiability functions for M1 and M1,3 are the same at least for small
values for N — say, for N < 1000). With this assumption, since sat-equivalence is
equivalence relation, it holds that M1 ∼SAT M1,2,3.

By analogy with M1 ∼SAT M1,2,3 it can be proved (with similar assumptions)
that it holds M1,4 ∼SAT M1,2,3,4. This means that restrictions 2 and 3 make no
difference in location of a crossover point. This also supports experiments made
following [15].

6 GD-SAT MODEL

In this section we briefly discuss one new model for generating sat problems with
random clause length. We report on results showing that there is a phase transition
for this model too.

Definitions of random sat problems include information on the distribution
of clause lengths. For instance, the constant probability model [7] has a limiting
distribution on clause lengths determined by the Poisson distribution with parameter
2Np (adjusted for the omission of clauses of length 0 and 1); random mixed sat
has a discrete distribution on clause lengths. We consider sat model based on a
geometric distribution, and hence denote it by gd-sat. In this model, generating
of clauses over the set of N variables, for the probability parameter p (0 < p ≤ 1),
is specified by the stochastic context–free grammar given in Table 1 (a stochastic
context–free grammar is a context–free grammar with a stochastic component which
attaches a probability to each of the production rules and controls its use).

# Rule Probability

1. 〈clause〉 := 〈literal〉 ∨ 〈literal〉 p

2. 〈clause〉 := 〈clause〉 ∨ 〈literal〉 1− p

3. 〈literal〉 := 〈variable〉 | ¬〈variable〉 0.5

4. 〈variable〉 := v1 | v2 | . . . | vN 1/N

Table 1. Stochastic grammar for generating gd-sat clauses

We point out that we do not perform a check whether some variable occurs more
times in one clause, whether in some clause there is both a variable and its negation
or whether there are multiple occurrences of some clause in a formula generated.
These questions we have discussed in detail in the previous sections and we can
obtain similar results for the gd-sat model. Thus, we won’t discuss these variants
of the gd-sat model.
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By the given stochastic grammar, only clauses of length equal or greater than 2
can be generated (therefore there is no need for discarding any of generated clauses
so the original distribution on clause lengths is kept intact, which is not the case
in the constant probability model). Lengths of clauses in the gd-sat model have a
geometric distribution. The most probable clause length is 2 (with the probability p),
while the expected clause length is 1 + 1/p. For p = 1, the gd-sat model is exactly
2-sat model (and, hence, it belongs to the class p). For p < 1, gd-sat problem is
np-complete. As p decreases, gd-sat problems smoothly interpolate between 2-sat
and np-complete gd-sat problems. This makes the gd-sat model convenient for
exploring a computational cost for directly related p and np-complete problems (in
a similar manner as in 2 + p-sat model).

We performed the following series of experiments for p = 0.5 and for N =
25, 50, 75, 100, 200, 300, 400, 500 we generated 10000 formulae in the gd-sat model
for values from L/N varying from 0.1 to 10.0 by the step 0.1. For checking satisfia-
bility we used Davis–Logemann–Loveland’s procedure [5] with the following simple
heuristic: when using a split rule, we apply it on a variable with most occurrences.
We measured the percentage of satisfiable formulae and the number of branches
made by the decision procedure. (The programs were written in C; experiments
were ran on a PC Dual Pentium 256Mb running under Linux.)

The results we obtained show that there is a typical phase transition in the gd-
sat model (see Fig. 2). There is also a typical easy-hard-easy pattern concerning
the computational cost for Davis–Logemann–Loveland’s procedure as the ratio L/N
is increased. The most difficult gd-sat problems are those in the crossover region
(see Fig. 3). The expected clause length in gd-sat for p = 0.5 is 3, but the average
difficulty of the generated problems was less than for 3-sat problems; this is due to
the clauses of the length 2 which make gd-sat problems (for p = 0.5) easier (the
same behaviour is reported for the constant probability model [7]).

0
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0.8

1

0 1 2 3 4 5 6 L/N

N=50
N=100
N=200
N=400

Fig. 2. Satisfiability function for the gd-sat model as a function of ratio L/N (for
N = 50, 100, 200, 400).
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Fig. 3. Satisfiability function and a branching factor function for the gd-sat model as functions
of ratio L/N (for N = 100).

N 25 50 75 100 200 300 400 500

critical value L/N 2.740 2.521 2.432 2.380 2.268 2.229 2.203 2.179

Table 2. Experimental estimates of the crossover point for the gd-sat problem for p = 0.5

For each N we located a point L/N with 50% satisfiable formulae via linear
interpolation between the two closest points with the satisfiability percentage deter-
mined experimentally (these values are given in Table 2). These values converge to
the crossover point for gd-sat for p = 0.5, but this converging is very slow (much
slower than in 3-sat model) and without giving clear estimate for the crossover point
even after N = 400. Thus, instead, we tried to locate a point with approximately the
same percentage of satisfiable formulae for all values of N . The satisfiability func-
tion is approximately constant for L/N = 2.0, and thus we estimate the crossover
point at L/N = 2.0. In order to check this estimate, we additionally generated 1000
formulae in the gd-sat model in the points L/N = 1.9, 2.0, 2.1 for N = 1000
and N = 2000 and measured the percentage of satisfiable formulae (for N = 2000
at both L/N = 2.0 and L/N = 2.1 there were respectively 16 and 7 formulae
not decided within the 1hr time limit; we didn’t count these formulae). Figure 4
shows the satisfiability functions as functions of N for different values of L/N . For
L/N = 1.9 (and hence for L/N ≤ 1.9) the satisfiability function (as a function of
N) is (slightly) increasing, for L/N = 2.1 (and hence for L/N ≥ 2.1) it is decreas-
ing, so the crossover point is between these two values. The satisfiability function
at L/N = 2.0 is approximately 85% for all larger values N and this supports the
estimate that the crossover point is close to L/N = 2.0. (All these percentages of
formulae satisfiable at L/N = 1.9, 2.0, 2.1 for different values of N are given in Ta-
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N 25 50 75 100 200 300 400 500 1000 2000

L/N = 1.9 0.917 0.911 0.914 0.912 0.912 0.924 0.923 0.924 0.930 0.951

L/N = 2.0 0.889 0.874 0.871 0.858 0.846 0.850 0.849 0.839 0.854 0.846

L/N = 2.1 0.866 0.824 0.814 0.787 0.743 0.727 0.711 0.683 0.620 0.513

Table 3. Experimental estimates of the satisfiability function at L/N = 1.9, 2.0, 2.1 for gd-sat
problem for p = 0.5

ble 3; note that the critical point with 50% satisfiable formulae is greater than 2.1
even for N = 2000).
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Fig. 4. Satisfiability function as a function of N for different values of L/N — 1.9 (top), 2.0
(middle), 2.1 (bottom).

As the parameter p varies, the crossover point for gd-sat changes its value and it
is reasonable to expect that small changes of p lead to small changes of corresponding
crossover point. Consider a function c such that c(1/p) is equal to a crossover point
for gd-sat with a parameter p. It appears that this function c (defined for values
≥ 1) is continuous and it determines a curve which we will call a crossover curve for
the gd-sat model. This curve passes through the point (1, 1) (because the crossover
point for 2-sat problem is 1) and through the point (2, c(2.0)). More extensive
experiments [10] also suggest that c(2.0) is between 1.9 and 2.0 and, moreover, they
suggest that the crossover curve is linear (i.e., c(1/p) = α/p+β). This elegant result
further suggests that there is a unique parameter for all gd-sat problems — instead
of the parameter L/N , we can consider a parameter which gathers all satisfiability
functions for gd-sat problems into one such function. However, these results go
beyond the scope of this paper and we won’t discuss them further.
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The results we obtained by the described experiments show that sat problems
with geometric distribution on clause lengths behave like other sat problems known
from the literature. Moreover, this distribution seems more elegant than one in cp
model: in the gd-sat model, for each N there is geometric distribution on clause
lengths, while in cp model there is Poisson distribution only as a limit and for each
particular value N this distribution is different. On the other hand, the gd-sat
model is also convenient for exploring a behavior of computational cost for solving
p and np-complete gd-sat problems.

7 RELATION BETWEEN FIXED AND RANDOM CLAUSE LENGTH
MODELS

The relation between fixed and random clause length models is not trivial. These
two class of models can be related via different parameters: the most probable clause
length, the expected clause length or via density (as introduced in [7]). However,
neither of these gives the desired result, i.e., fixed and random clause length models
with one of above parameters in common are still not sat-equivalent. Indeed, in
the gd-sat model (with p = 0.5) the most probable clause length is 2, but the
crossover point is close to 2 and is not 1 as for 2-sat model. In the gd-sat model
(with p = 0.5) the expected clause length is 3, but the crossover point is not at
4.25 as in 3-sat model. In [7] it was shown that there are models with the same
density which do not have the same crossover point. Thus, the relation between
fixed and random clause length models must be more involved. In [7] there is an
interesting conjecture on this relation: let ck be the crossover point for k-sat model
(for k = 2, 3, 4, . . .) and let cφ be a crossover point for some random clause length
model with the distribution φ on clause lengths, thus it holds:

1

cφ
=
φ(2)

c2
+
φ(3)

c3
+
φ(4)

c4
+ . . .

The above conjecture gives good estimates for random mixed sat model and for
constant probability model [7]. We used the given conjecture for the gd-sat model
with p = 0.5 having geometric distribution φ(2) = 0.5, φ(3) = 0.25, φ(4) = 0.125,
. . .. We took the well known estimates for the crossover points for k-sat (k = 2, 3, 4)
problems (c2 = 1, c3 = 4.25, c4 = 9.76) and we used used Kirkpatrick/Selman’s ap-
proximations for crossover points for k-sat (k > 4): −1/ log2(1− 1

2k ) [13]. We com-
puted the given sum in iterations and the values for the first eight iteration are given
in Table 4. After thirty iterations the first three decimal places remained the same as
in the sixth iteration and it suggests, by Gent/Walsh conjecture, that the crossover
point for gd-sat problem for p = 0.5 is ≈ 1.738. However, the experimental results
suggest that the crossover point is close to 2.0. This shows that, even the above
conjecture is valid, it is not always of practical use since the Kirkpatrick/Selman’s
approximations are good only for the large values of k.
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number of summands 1 2 3 4 5 6 7 8

estimated crossover point 2.000 1.789 1.749 1.741 1.739 1.738 1.738 1.738

Table 4. Estimates of crossover point for gd-sat problem for p = 0.5 based on Gent/Walsh
conjecture (using the approximations for crossover points for k-sat based on

Kirkapatrick/Selman’s estimates).

8 FUTURE WORK

We have shown that it holds (or at least it can be considered that it holds) M1 ∼SAT
M1,2,3 and M1,4 ∼SAT M1,2,3,4. However, we haven’t discussed if it holds M1 ∼SAT
M1,4 (as it can’t be established by Theorem 4.3). Experiments made following [15] use
only clauses with no multiple occurrences of one variable (e.g., they meet restriction
4). In future work we will try to investigate whether it holds M1 ∼SAT M1,4.

In future work, we will try to define classes of sat problem sets with more
relaxed conditions: we are planning to explore relations between satisfiability func-
tions for types of corpora that are not sat–equivalent. These attempts rely on the
hypothesis that there are some more involved parameter (different than L/N) made
links between different types of sat corpora. Some of these attempts will be based
on the gd-sat model which we also further investigate in much more details. We
will also investigate behavior of the computational cost for directly related p and
np-complete gd-sat problems.

9 CONCLUSIONS

In this paper we have introduced the notion of sat–equivalence relation which links
different types of sat problem sets that have same crossover points. We have given
one sufficient condition for two types of sat corpora to be sat–equivalent. By using
this condition we proved that some restrictions often used in sat experiments (such
as restriction on (N,L)–sat formulae that contain L different clauses) don’t make an
impact on location of a crossover point. These results support many of experiments
made so far (which used these conjectures as assumptions).

We have briefly discussed one new random clause length sat model — a model
with geometry distribution on clause lengths (denoted gd-sat). We performed ex-
periments that showed the typical phase transition behavior in the gd-sat model.
We have also discussed the relationship between the fixed and the random clause
length sat models.

We are planning to further investigate relations between different types of sat-
corpora and between crossover points of corpora that are not sat–equivalent. We
are also planning to further investigate the gd-sat model and the behavior of the
computational cost for p and np gd-sat problems.
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