
A Framework for the Flexible Integration of a
Class of Decision Procedures into Theorem

Provers ?

Predrag Janičić1, Alan Bundy2, and Ian Green2

1 janicic@matf.bg.ac.yu

Faculty of Mathematics, University of Belgrade
Studentski trg 16, 11 000 Belgrade, Yugoslavia

2 {A.Bundy,I.Green}@ed.ac.uk

Division of Informatics, University of Edinburgh
Edinburgh EH1 1HN, Scotland

Abstract. The role of decision procedures is often essential in theorem
proving. Decision procedures can reduce the search space of heuristic
components of a prover and increase its abilities. However, in some ap-
plications only a small number of conjectures fall within the scope of
the available decision procedures. Some of these conjectures could in an
informal sense fall ‘just outside’ that scope. In these situations a problem
arises because lemmas have to be invoked or the decision procedure has
to communicate with the heuristic component of a theorem prover. This
problem is also related to the general problem of how to flexibly integrate
decision procedures into heuristic theorem provers. In this paper we ad-
dress such problems and describe a framework for the flexible integration
of decision procedures into other proof methods. The proposed frame-
work can be used in different theorem provers, for different theories and
for different decision procedures. New decision procedures can be simply
‘plugged-in’ to the system. As an illustration, we describe an instantia-
tion of this framework within the Clam proof-planning system, to which
it is well suited. We report on some results using this implementation.

1 Introduction

Decision procedures have a very important role in heuristic theorem provers —
they can reduce the search space of heuristic components of a prover and in-
crease its abilities. Decision procedure can both close a branch in a proof and
reject non-theorems. Some decision procedures are (generally) inefficient, but
even they could increase abilities of a prover. Some decision procedures, such
as a decision procedure for Presburger arithmetic [18], can have a useful role in
proving some typical conjectures occurring in software and hardware verifica-
tion. In some applications, decision procedures themselves cannot significantly
improve the overall efficiency of a prover; for example, when only a small num-
ber of conjectures fall within the domain of the available decision procedures.
? The second and the third author are supported in part by EPSRC grant GR/M45030.

However, some (or many) of these conjectures could be in a sense “close” to that
domain (see [3]). For instance, the formula

∀l ∀α ∀k (l ≤ min(α) ∧ 0 < k → l < max(α) + k)

is not a Presburger arithmetic formula. Besides, the formula ∀max∀min∀l∀k (l ≤
min ∧ 0 < k → l < max + k) obtained by generalising min(α) to min
and max(α) to max is a Presburger arithmetic formula, but is not a theorem.
The power of decision procedures can be increased by linking them to heuristic
components of the prover so they can communicate; by using already proved
lemmas and by combining different decision procedures. For instance, in the
given example, if the lemma ∀ξ (min(ξ) ≤ max(ξ)) is available, it can be used
(with the right instantiation) and lead to ∀l∀α∀k (min(α) ≤ max(α) → (l ≤
min(α) ∧ 0 < k → l < max(α) + k)). After generalisation, we get the formula
∀max∀min∀l∀k (min ≤ max→ (l ≤ min∧ 0 < k → l < max+ k)) which can
be proved by the decision procedure for the Presburger arithmetic. Procedures
dealing with such problems are built into most state-of-the-art theorem proving
systems. In [3] there is a description of one such system — a procedure for linear
arithmetic based on Hodes’ algorithm. However, in that paper, implementation
details are mixed up with a description of the underlying algorithm. Moreover,
the system itself depends to a high degree on certain specific data structures and
can hardly be described without these devices. All this makes the system from
[3] inapplicable in theories other than linear arithmetic. Besides, even for linear
arithmetic, it is not obvious how a procedure other than that due to Hodes’
could be integrated into the prover.

In this paper we give a kind of rational reconstruction of some of the ap-
proaches presented in [3]. We present a general method that can incorporate dif-
ferent decision procedures into a heuristic theorem prover. This general method
is flexible in its structure and can be used for different decision procedures, for
different theories and in different theorem provers. Within this modular system,
the new decision procedure (with only a syntactical description of a correspond-
ing theory) can be ‘plugged-in’ into a prover without requiring any theoretical
analysis of the corresponding theory. This method is rather general and domain
specific knowledge is encapsulated in smaller subprocedures specialised for cer-
tain theories.

Overview of the paper. In section 2, we give some notation and background;
we introduce the notion of a heaviest non-T -term in section 3; in section 4
we give a description of modules that make up the extended proof method; in
section 5 we define the proposed general method and in section 6 we consider
one example from [3] in order to illustrate how the proposed method works.
Section 7 discusses the termination, the soundness and some other properties of
the proposed method and in section 8 we give some results of the preliminary
implementation of the method. Section 9 discusses some possible refinements.
In section 10 we discuss related work and in section 11 we draw some final
conclusions.

2

2 Background and Notation

Let us define a theory T within first order logic with equality. Let T be some fixed
set of types {τi|i ∈ I}. For each type τi let Vi be a denumerable set of variables
of that type (Vi ∩ Vj = ∅ for i 6= j) and let V = ∪i∈IVi. Let Σ be a finite set of
function symbols, each having either a type τ , τ ∈ T (then we call it a constant of
type τ) or a type of the form τi1×τi2×. . .×τik → τ (τi1 , . . . , τik , τ ∈ T). Let Π be
a finite set of predicate symbols, each having a type truth (with members true
and false) or a type of the form τi1 × τi2 × . . .× τik → truth (τi1 , . . . , τik ∈ T).
We define the notion of a T -term in the following way: function symbols and
variables of type τ are T -terms of type τ ; if t1, t2, . . . , tn are T -terms of types
τi1 , τi2 , . . . , τik respectively and a function symbol f ∈ Σ has a type τi1×τi2×. . .×
τik → τ , then f(t1, t2, . . . , tn) is a T -term of type τ ; all terms could be obtained
using the first two rules. For a term which is a variable x, the set of free variables
is {x}; for a term f ∈ Σ the set of free variables is empty; for f(t1, t2, . . . , tn)
the set of free variables is the union of free variables in t1, t2, . . . , tn. A T -atomic
formula is either an expression p(t1, t2, . . . , tn) (where t1, t2, . . . , tn are T -terms
of types τi1 , τi2 , . . . , τik respectively and p ∈ Π is a predicate symbol of type
τi1 × τi2 × . . . × τik → truth) or an expression t1 =τ t2 (where t1 and t2 are
T -terms of type τ) or a constant of type truth. For p(t1, t2, . . . , tn) the set of
free variables is the union of free variables in t1, t2, . . . , tn; for t1 =τ t2 the set
of free variables is the union of free variables in t1 and t2. If F1 is a T -atomic
formula, then it is also a T -formula. If F1 and F2 are T -formulae and x ∈ V ,
then also ∀x F1, ∃x F1, ¬F1, (F1 ∧ F2), (F1 ∨ F2), (F1 → F2) are T -formulae.
The set of free variables in ∀x F1 and ∃x F1 is the set of free variables in F1

minus {x}. The set of free variables in ¬F1 is the set of free variables in F1.
The set of free variables in (F1 ∧ F2), (F1 ∨ F2), (F1 → F2) is the union of
sets of free variables in F1 and F2. A T -formula with no free variables we call a
closed T -formula or a T -sentence. Further, by T -formulae we will mean closed
T -formulae (unless stated otherwise). A formula F is ground if it has no variables.
A formula F is in prenex normal form if it is of the form Q1x1 Q2x2 . . . Qkxk F

′

where Qi ∈ {∀,∃}, xi ∈ V and there are no quantifiers in F ′. A formula F is
universally closed if it is of the form ∀x1 ∀x2 . . . ∀xk F ′ where xi ∈ V and there
are no quantifiers in F ′. A formula appearing in a formula F has a polarity that
is either positive (+) or negative (−). The top-level formula F being proved
has positive polarity, written F+. The complement of a polarity p is written
p, defined to be + = − and − = +. Polarity is defined recursively over the
structure of formulae: (¬F p)p (if p is the polarity of ¬F then p is the polarity
of F), (∀x F p)p, (∃x F p)p, (F p1 ∧ F

p
2)p, (F p1 ∨ F

p
2)p, (F p1 → F p2)p.

A theory T (or an axiom system T) is some fixed set of T -formulae. If a
formula F can be derived from that set using usual classical logic inference
system we denote that by T ` F and we call the formula F a T -theorem (and
we say that F is valid in T). Otherwise, we write T 6` F and we say that F is
invalid in T .

Let Σe, Πe and V e be some finite sets of function, predicate and variable
symbols over some set of types T e such that Σ ⊆ Σe, Π ⊆ Πe, V ⊆ V e and

3

T ⊆ T e. We define the notions of T e-term, T e-atomic formula, T e-formula and
a theory T e by analogy. If all formulae of the theory T belong to the theory T e,
we say that T e is an extension of the theory T (or the theory T is a subtheory
of the theory T e).1

A theory T is decidable if there is an algorithm (which we call a decision
procedure) such that for an input T -formula F , it returns true if and only if
T ` F (and returns false otherwise). For a number of decidable theories there
are decision procedures that work using the idea of successive elimination of
quantifiers from formula being proved ([13]). When all quantifiers are eliminated,
the formulae is ground and can be easily reduced to true or false. In this paper,
we will be concerned with this kind of theory.

One of such theories is Presburger Natural Arithmetic (pna). In this theory,
all variables are of type pnat (from Peano NATurals), Σ = {0, s,+}, (0 : pnat,
s : pnat→ pnat, + : pnat× pnat→ pnat), Π = {<,>,≤,≥} (all the predicate
symbols are of the type pnat× pnat→ truth). We write 1 instead of s(0), etc.
Multiplication of a variable by a constant can also be considered as in pna: nx
is treated as x+ · · ·+ x, where x appears n times. The axioms of pna are those
of Peano arithmetic without axioms concerning multiplication.

Similarly, we introduce theories Presburger Integer Arithmetic (pia) and
Presburger Real Arithmetic (pra).2 It was Presburger who first showed that
pia is decidable [18]. The decidability of pna can be proved in an analogous
way. pra is also decidable [13]. The arithmetic with multiplication only is also
decidable. The whole of arithmetic is known to be undecidable.

3 Heaviest Non-T -Term

A conjecture attempted to be proved by some specific decision procedure for
some theory T would often “fall just outside its domain”, i.e., a formula F being
proved could be a T e-formula, but not a T -formula. In that case and if Πe \Π is
empty, it would mean that F involves non-T -terms. For now on, we will assume
Πe \ Π = ∅. Recall that all function symbols from Σe have either a type τ or
a type of the form τi1 × τi2 × · · · × τik → τ , where τ ∈ T , so the formula F ′

obtained in such a manner is a T -formula.

Definition 1. For T e-formulae and T e-atomic formulae, we define sets of non-
T -terms in the following way:

– the set of non-T -terms in ∀x F , ∃x F , ¬F is equal to the set of non-T -terms
in F ;

1 Note that it can be determined whether a well-formed formula is a T -formula or a
T e-formula in linear time on the size of a formula.

2 For identical and related theories a number of different terms are used. For instance,
Hodes calls Presburger rational arithmetic a theory EAR — “the elementary theory
of addition on the reals” [9]. Boyer and Moore [3] describe a universally quantified
fragment of Presburger rational arithmetic as linear arithmetic (although in fact
they work over the integers); that same theory sometimes goes by the name Bledsoe
real arithmetic.

4

– the set of non-T -terms in (F1 ∧ F2), (F1 ∨ F2), (F1 → F2) is equal to the
union of sets of non-T -terms in F1 and F2;

– in p(t1, t2, . . . , tn), where p ∈ Π, the set of non-T -terms is the union of sets
of non-T -terms in terms tj, (j = 1, 2, . . . , n);

– in t1 =τ t2, the set of non-T -terms is the set of non-T -terms is the union
of sets of non-T -terms in terms tj, (j = 1, 2);

– in true and false the set of non-T -terms is empty.

Definition 2. For T e-terms, we define sets of non-T -terms in the following
way:

– if t is a T -term, then its set of non-T -terms is empty;
– in f(t1, t2, . . . , tn), where f 6∈ Σ (and n ≥ 0), the set of non-T -terms is
{f(t1, t2, . . . , tn)};

– in f(t1, t2, . . . , tn), where f ∈ Σ (and n ≥ 0), the set of non-T -terms is the
union of sets of non-T -terms in terms tj (j = 1, 2, . . . , n).

In deciding whether a T e-formula F is a theorem, our motivation is to use
a decision procedure for T (either by using the decision procedure itself, or in
a combination with some lemmas). Thus we have to somehow transform the
formula F to some corresponding T -formula. We do it by generalisation: in T e-
formula F , we generalise non-T -terms (from outside in) by new variables in the
following way: we substitute each non-T -term of a type τ by a new variable
of the same type and then take the universal closure of the formula F . Recall
that all function symbols from Σe have either a type τ or a type of the form
τi1 × τi2 ×· · ·× τik → τ , where τ ∈ T , so the formula F ′ obtained in such a man-
ner is a T -formula (with a possible exception of some redundant quantifiers of
some types not in T). For instance, the extended Presburger arithmetic formula
∀α (min(α) ≤ max(α)) (where α has type list of pnats) can be transformed
to ∀min∀max∀α (min ≤ max) (where min and max are of type pnats). In
deciding whether F ′ is a theorem, we use a decision procedure for T by first
eliminating all new variables (either by using the decision procedure itself, or in
a combination with some lemmas). It is preferable to eliminate variables obtained
from the most complicated terms. Thus we have to introduce some total ordering
on T e-terms. First, we define a function | . | that maps the set of T e-terms into
the set of natural numbers (it will correspond to the size of a term).

Definition 3. If a T e-term t is a function symbol of some atomic type τ (τ ∈ T)
or a variable, then |t| = 1. If a T e-term t is of the form f(t1, t2, . . . , tn), then
|t| = 1 +

∑n
i=1 |ti|.

Definition 4. A T e-term t1 is heavier than a T e-term t2 iff

– |t1| > |t2| or
– |t1| = |t2| and a dominant symbol of t1 comes later in the lexicographic

ordering than a dominant symbol of t2 or
– |t1| = |t2|, t1 = f(t′1, t

′
2, . . . , t

′
n), t2 = f(t′′1 , t

′′
2 , . . . , t

′′
n) and there is a value

k (1 ≤ k ≤ n) such that t′i and t′′i are identical terms (for i < k) and t′k is
heavier than t′′k.

5

Definition 5. If terms t1 and t2 are identical or t2 is heavier than t1, then
t1 � t2.

Definition 6. A T e-term t is the heaviest non-T -term in some set S of T e-
terms, if t is a non-T -term and for every non-T -term t′ from S it holds t′ � t.

The relation � defines a total ordering on the set of T e terms and this
ordering fulfils the following condition: provided finitely many variables and
function symbols, for each term t there are finitely many terms t′ such that t′ � t.
(This condition is important for the termination of the method proposed.)

4 Simplification Procedures

In this section we describe four procedures for simplification (and for reducing
the number of quantifiers) of T e-formula being proved. Each of them can be
used in any simplification context, in combination with other components of a
prover and, finally, they can together build an extended proof method for T . All
of the procedures are applicable just to T e-formulae.

We assumed that there is a decision procedure for the theory T based on the
idea of successive elimination of quantifiers. Thus, let us suppose that there are
available two procedures3 dealing with T -formulae — DpElimOneQuantifierT ,A
and DpGroundT :

— let DpElimOneQuantifierT ,A be the procedure which transforms a given
non-quantifier free T -formula4 F to prenex normal form, eliminates the inner-
most quantifier (and the corresponding variable) and returns a formula F ′ such
that it holds T ` F iff T ` F ′ and the number of quantifiers in the formula F ′

is fewer (or one less) than the number of quantifiers in the formula F .
— let DpGroundT be the procedure which for a given ground T -formula F

returns true if T ` F and returns false if T 6` F .
For many decidable theories there are such procedures ([13]).
For the following procedures, we restrict our consideration only to universally

quantified conjectures and lemmas.

4.1 Decision Procedure for T

Let the procedure DpT ,A be defined in the following way: if a formula being
proved is ground, then apply DpGroundT ; otherwise, while a formula being proved
is not ground, apply DpElimOneQuantifierT ,A.

Note that DpT ,A is a decision procedure for theory T , i.e., DpT ,A reduces a
T -formula F to true if T ` F and to false otherwise.

The decision procedure for the theory T defined in this way is more flex-
ible, but usually somewhat slower than some more compact procedures which

3 Often these procedures can be also implemented in a flexible way: as the exhaustive
applications of a series of rewrite rule sets (see [4])

4 In F there could be some redundant quantifiers of some types not in T . This proce-
dure ignores them (but does not eliminate them).

6

avoid unnecessary repetition of some algorithm steps (usually some unnecessary
normalisations). Our extended proof method can also use some other decision
procedure for the theory T instead of DpT ,A.

4.2 Elimination of Redundant Quantifier

The procedure ElimRedundantQuantifier for the elimination of a redundant
quantifier is very simple: if there is a redundant quantifier (no matter of what
type) in a T e-formula F being proved, eliminate it.

It is good if there are some rules for theory T such that we can use them to
simplify the formula F before we try to apply ElimRedundantQuantifier. For
instance, in pna, we can reduce each atomic formula in such a way that it does
not include two occurrences of the same term (for example, k ≤ max(a) + k can
be rewritten to 0 ≤ max(a)).

4.3 Elimination of T -variables

Let a procedure ElimOneVarT ,A be defined in the following way: if F is a T e-
formula and if there is a variable v which does not appear in non-T -terms of
F , then generalise all its non-T -terms (from outside in), then use the procedure
DpElimOneQuantifierT ,A to eliminate the variable v (and the corresponding
quantifier) and then substitute new variables by the original generalised terms.5

(Note that this procedure is applicable to T -formulae, but it is only sensible to
use this procedure for formulae which are T e-formulae and not T -formulae.)

4.4 Elimination of Generalised Non-T -Term Using a Lemma

A procedure ElimGeneralisedTermT ,A is defined (only) for universally quanti-
fied T e-formulae. It is defined in the following way:

– if a formula F being proved is a T e-formula and is not a T -formula, find the
heaviest non-T -term t in it;

– find a set A of all (different) atomic formulae (with their polarities) from F
in which t occurs;

5 Note that we consider only universally closed formulae, so we can freely reorder
quantifiers (in a formula which is in prenex normal form) and the procedure
DpElimOneQuantifierT ,A can be used to eliminate any of the quantifiers. In the gen-
eral case, ElimOneVarT ,A would be defined in the following way: if F is T e-formula in
prenex normal form and if there is a variable v with corresponding quantifier in the
innermost block of the same quantifiers and which does not appear in non-T -terms of
F , then generalise all its non-T -terms, use the procedure DpElimOneQuantifierT ,A
to eliminate the variable v and then substitute new variables by the original gener-
alised terms.

7

– For each member f of the set A, try to find a lemma6 ∀x1∀x2 . . . ∀xnLi such
that:7

(i) if t′ is the heaviest non-T -term8 in Li, and if it occurs in an atomic for-
mula l, there exists a (most general) substitution φi such that dominant
predicates symbols of f and l match, f and l have the same polarity
(in F and Li respectively), terms t and t′ occur in the same argument
positions (in f and l respectively) and t = t′φi.

(ii) all variables in Li are substituted for some T -terms in F (with corre-
sponding types) by the substitution φi;

(iii) the heaviest non-T -term in Liφi is t′φi.
– The new current goal is the formula9 F ∨ ¬L1φ1 ∨ · · · ∨ ¬Ljφj ; generalise

all its non-T -terms and then use the procedure DpElimOneQuantifierT ,A
to eliminate the variable v which corresponds to the term t; then substitute
new variables for the original generalised terms; return the resulting formula
as a current goal.

5 Extended Proof Method

We restrict our consideration only to universally quantified conjectures and lem-
mas. The extended proof method for the theory T (based on its decision proce-
dure) we are proposing is defined in the following way:

(1) if possible (i.e., if there is a redundant quantifier), apply the procedure
ElimRedundantQuantifier and go to step (1); otherwise, go to step (2).

(2) if possible (i.e., if a formula being proved is a T -formula), use the procedure
DpT ,A:
• if it returns true, then the original conjecture is valid,
• if it returns false and
∗ the step (4) has not been applied, then the original conjecture is

invalid,

6 We use instances of substitutivity axioms as lemmas, but we can also use them in the
following way: if f is the dominant function symbol of t, for each pair f(t1, t2, . . . , tm)
and f(u1, u2, . . . , um) of different terms occurring in a formula being proved we use
t1 = u2∧t2 = u2∧· · ·∧tm = um → f(t1, t2, . . . , tm) =τ f(u1, u2, . . . , um) as a lemma.
This approach would have a wider scope, but would probably be less efficient.

7 The motivation is that such lemmas contain information sufficient for proving the
conjecture (although there are no guarantees of that kind).

8 It is only sensible to search for lemmas which are T e and are not T -formulae; any
lemma which is T -formulae cannot contain any information that could not be derived
by DpT ,A; thus, we search just for lemma with non-T -terms.

9 Note that j does not have to be equal to the number of elements of A: for some T e
conjectures to be proved no lemmas are required — for instance ∀α ∀k (max(α) ≤
k ∨max(α) > k) can be proved without any lemma. Therefore, even if some of the
lemmas with given properties are not found, it is still sensible to try to prove the
conjecture by means of other lemmas and the theory T itself.

8

∗ the step (4) has been applied, then return to that point and try to
apply ElimGeneralisedTermT ,A in another way; if it is not possible,
the extended proof method stops failing to prove or disprove the
conjecture and returns the current goal.

otherwise, go to step (3).
(3) if possible (i.e., if a formula F being proved is a T e-formula and if there is a

variable v which does not appear in non-T -terms of F), apply the procedure
ElimOneVarT ,A and go to step (1); otherwise, go to step (4).

(4) if possible (i.e., if a formula being proved is a T e-formula and is not a T -
formula), apply the procedure ElimGeneralisedTermT ,A and go to step (1)
(if ElimGeneralisedTermT ,A can be applied in more than one way, then
keep this position for possible backtracks).

6 Worked Example

Here we consider an example from [3]. We use (pna) as a theory T and Cooper’s
algorithm [6] as an algorithm A.10 Let {i, j, k, l, . . .} be a set of variables of type
pnat and {α, β, γ, . . . , } be a set of variables of type list of pnats. We consider
the conjecture:

∀l ∀α ∀k (l ≤ min(α) ∧ 0 < k → l < max(α) + k) .

(1a) There are no redundant quantifiers in the conjecture, so go to step (2);
(2a) The conjecture is not a pna-formula, so go to step (3);
(3a) There is a variable (k) which does not appear in not-pna-terms (min(α) and

max(α)); generalize min(α) to min, max(α) to max and then use the pro-
cedure ElimOneVarPNA,Cooper to eliminate k from ∀min∀max∀l∀α∀k (l ≤
min ∧ 0 < k → l < max+ k). We get ∀min∀max∀l∀α (1 +min ≤ l ∨ l ≤
max), and after substituting max by max(α) and min by min(α) we get
∀l∀α (1 +min(α) ≤ l ∨ l ≤ max(α)).

(3b) There is a variable (l) which does not appear in not-pna-terms (min(α) and
max(α)); generalize min(α) to min, max(α) to max and then use the proce-
dure ElimOneVarPNA,Cooper to eliminate l from ∀min∀max∀α∀l (1+min ≤
l ∨ l ≤ max). We get ∀min∀max∀α (min ≤ max), and after substituting
max by max(α) and min by min(α) we get ∀α (min(α) ≤ max(α)).

(4) The heaviest non-pna-term in ∀α (min(α) ≤ max(α)) is min(α). Suppose
that there is a lemma L ≡ ∀ξ (min(ξ) ≤ max(ξ)) available. There is a sub-
stitution φ = {ξ 7→ α} such that (min(α)) = (min(ξ))φ. All preconditions
of the procedure ElimGeneralisedTermPNA,Cooper are fulfilled, so gener-
alise all non-pna-terms in the formula ∀α min(α) ≤ max(α) ∨ ¬(min(α) ≤
max(α)) — generalise min(α) to min and max(α) to max and then use the

10 In the system described in [3] Hodes’ algorithm [9] is used, which is incomplete and
is sound only for universally closed pia formulae. Experimental results show [10] that

Cooper’s decision procedure for pna, despite its 222n

worst-case complexity, is, for
practical purposes, no worse than one due to Hodes’, so we use Cooper’s procedure
here.

9

procedure DpElimOneQuantifierPNA,Cooper to eliminate the variable min.
We get ∀max ∀α(0 ≤ 0), and after substituting max by max(α) we get
∀α (0 ≤ 0).

(1b) We can eliminate the quantifier ∀α as α does not occur in 0 ≤ 0 (using
ElimRedundantQuantifier) and we get 0 ≤ 0.

(2b) 0 ≤ 0 is the pna-formula, so we can use the procedure DpPNA,Cooper which
returns true. Thus, the conjecture is valid.

7 Properties of Extended Proof Method

Termination. Each of the simplification procedures returns either a formula
with fewer variables than the original formula or the number of variables are
the same, but the heaviest non-T -term in the original formula is heavier than
the heaviest non-T -term in the resulting formula. Since there are finitely many
variables in the formula being proved and since for each non-T -term there are
finitely many non-T -terms over that set of variables for which it is heavier than,
the simplification procedures can be applied only finitely many times (provided
a finite set of lemmas). Therefore, the described method terminates.

Soundness. We assume that the available procedures DpElimOneQuantifierT ,A
and DpGroundT are complete and sound. Besides, if a formula with non-T -terms
generalised to variables is proved valid, then the initial formula is valid too.
Therefore, the procedures DpT ,A, ElimRedundantQuantifier and ElimOneVarT ,A
are sound.

Let us prove that the procedure ElimGeneralisedTermT ,A is also sound. Let
(∀−→x)F be a formula being proved, let (∀−→u)L be a lemma and let φ be a sub-
stitution that meets the conditions of the procedure ElimGeneralisedTermT ,A
(we consider just the simple case with one lemma used; the general case can be
handled similarly). From T e ` (∀−→u)L it follows11 T e ` (∀−→x)Lφ. Let us suppose
that we proved ∀−→x (F ∨ ¬Lφ). Thus, T e ` (∀−→x)Lφ and T e ` ∀−→x (F ∨ ¬Lφ)
imply T e ` ∀−→x (Lφ ∧ (F ∨ ¬Lφ)) and, further, T e ` ∀−→x (Lφ ∧ F). Finally, it
holds T e ` ∀−→x F , i.e., (∀−→x)F is valid, which is what we wanted to prove.

(For the soundness of the presented extended proof method, it is sufficient
that procedures DpElimOneQuantifierT ,A and DpGroundT are sound. For in-
stance, Hodes’ algorithm can be used for the pna procedure which would be
sound (and incomplete) for universally closed formulae.)

(In)completeness. We do not make any claims about the completeness of our
extended proof method: we do not see this as a severe weakness since we intend
to exploit this approach in undecidable theories — we are trying to build a
proof method that is successful outside the realm of a decision procedure. In
a certain sense, our approach is complete since it is strictly an extension of
some underlying decision procedure: those formula falling with the scope of that
procedure will be decided correctly.

11 We assume that (∀−→u)L is proved valid in T e.

10

Efficiency. In the proposed extended proof method there are some unnecessary
repetitions due to the flexible combination of independent modules. However,
these steps (generalisation of non-T -terms, substitutions, some normalisations
etc) can usually be executed in linear time on the size of a current goal and
therefore do not significantly affect the efficiency of the system. Moreover, usually
all steps of the method can be executed in linear time on the size of the formula
being proved. Thus, the complexity of the presented method is dominated by
the complexity of the procedures DpElimOneQuantifierT ,A and DpGroundT .

Besides, although the proposed method may seem a bit complicated, it is
generally intended to be used for some simpler conjectures, so the described
steps would be simple and fast. Additionally, we could restrict the use of the
method just to some conjectures for which it is likely that the method will be
successful (for this restriction we could use different heuristic scores or stochastic
scores) and we could use some other techniques (e.g. induction) in other cases.

Flexibility. There is a trade-off between generality and efficiency in building an
extended proof method. The proposed method is built by combining independent
modules which could decrease efficiency, though hopefully not significantly. On
the other hand however, the proposed method has a high degree of generality
and flexibility: in a uniform way it can be used in different theorem provers,
for different theories and for different decision procedures for these theories. It
also does not require any specific data structures (for example, a database of
polynomials). We claim that that potential losses in efficiency are dominated by
these advantages.

8 Implementation and Results

We have made a preliminary implementation of the proposed extended proof
method within the Clam system [5]. We have implemented procedures for pia
based on Hodes’ algorithm12 and for pia and pna based on Cooper’s algorithm.13

These implementations are also flexible and based on the idea of the exhaustive
applications of a series or rewrite rule sets (see [4]). This, preliminary version of
the extended proof method successfully proved a number of conjectures. Some
results (obtained on examples from [3]) are given in Table 1.14 We applied the
extended proof method with three different algorithms for Presburger arithmetic
(so, the variable l is of type integer in 1a and 1b and of type pnat in 1c etc.).
The lemmas are formulae valid over natural numbers (but can be used in an
adapted form with procedures working over the integers). It can be seen from
the table that all three variants had problems with the third conjecture (the

12 Hodes’ procedure [9] is the decision procedure for pra and the algorithm for pia
based on it is incomplete and is sound only for universally closed pia formulae.

13 Cooper’s procedure [6] is the decision procedure for pia, but can be adapted to the
decision procedure for pna.

14 The extended proof method is implemented in the Clam proof-planning system under
SWI Prolog. Tests are made on a PC486 16Mb, running under Linux. CPU time is
given in seconds.

11

T A lemmas CPU time (s)

1 ∀l∀α∀k (l ≤ min(α) ∧ 0 < k → l < max(α) + k)

1a pia Hodes’ ∀ξ (min(ξ) ≤ max(ξ)) 3.56

1b pia Cooper’s ∀ξ (min(ξ) ≤ max(ξ)) 5.32

1c pna Cooper’s ∀ξ (min(ξ) ≤ max(ξ)) 4.11

2 ∀lp∀lt∀i∀pat∀c lp+ lt ≤ maxint ∧ i ≤ lt→ i+ delta(pat, lp, c) ≤ maxint
2a pia Hodes’ ∀x∀y∀z delta(x, y, z) ≤ y 1.74

2b pia Cooper’s ∀x∀y∀z delta(x, y, z) ≤ y 2.52

2c pna Cooper’s ∀x∀y∀z delta(x, y, z) ≤ y 12.47

3 ∀a∀b∀cms(c) +ms(a)2 +ms(b)2 < ms(c) +ms(b)2 + 2 ·ms(a)2 ·ms(b) +ms(a)4

3a pia Hodes’ ∀x 0 < ms(x) , ∀i∀j 0 < i→ j ≤ i · j 32.35

3b pia Cooper’s ∀x 0 < ms(x) , ∀i∀j 0 < i→ j ≤ i · j 108.25

3c pna Cooper’s ∀x 0 < ms(x) , ∀i∀j 0 < i→ j ≤ i · j ?

4 ∀a∀b∀cms(c) +ms(a)2 +ms(b)2 < ms(c) +ms(b)2 + 2 ·ms(a)2 ·ms(b) +ms(a)4

4a pia Hodes’ ∀i∀j j ≤ ms(i) · j 9.77

4b pia Cooper’s ∀i∀j j ≤ ms(i) · j 35.49

4c pna Cooper’s ∀i∀j j ≤ ms(i) · j 3.41

5 ∀k∀l 0 < k ∧ 0 < l ∧ 2 · k + 1 ≤ 2 · l→ 2 · k + 2 ≤ 2 · l
5a pia Hodes’ /

5b pia Cooper’s 11.27

5c pna Cooper’s 1.14
Table 1. Results of the preliminary implementation of the extended proof method

variant with Cooper’s algorithm for pna even ran out of the standard stack
size in our system). In this example, lemmas have to be invoked six times and
this leads to very complex intermediate formulae. However, if we change two
lemmas from the third example with one lemma that is sufficient for a proof
(the fourth example), the situation is changed and the system is more efficient.
The explanation is the following: the facts 0 < ms(a) and 0 < ms(b) could not
have been used while the terms ms(a) and ms(b) were not the heaviest non-T -
terms, so the intermediate formulae were very complex (they involved a large
number of formulae 0 < ms(a) and 0 < ms(b)). This was not a problem in the
fourth example. This problem can be avoided in some cases: if the lemma we
use is of the form ∀−→x (H1 ∧ · · · ∧Hk → C) then, after instantiation, we can try
to prove the atomic formulae Hi (i = 1, . . . , k) separately and then, in the main
proof we can use just the atomic formula C (the system [3] uses lemmas in this
way). This approach can significantly increase the performances of the system
in some cases (for instance, for the formula ∀a∀b∀c ms(c) +ms(a)2 +ms(b)2 <
ms(c)+ms(b)2 +2 ·ms(a)2 ·ms(b)+ms(a)4, a speed-up similar to that obtained
in the fourth example would be obtained).

The fourth example also illustrates the fact that Cooper’s procedure for pna
can be much more efficient than the one for pia or Hodes’ procedure for pia.
Thus, it seems that it is sensible to have all these procedures available (while their
ordering could be based on some heuristic scores and adjusted dynamically).

12

The fifth conjecture is invalid over reals and cannot be proved by Hodes’
algorithm (and hence by the system presented in [3]), but can be proved by
Cooper’s algorithms for pia and pna. Thus, this example demonstrates the util-
ity of having available different procedures for ‘Presburger arithmetic’.

9 Future Work

Some of the ways in which the proposed method could be improved by making
it more general are as follows:

– deal with predicates from Πe \Π; this could be done by using lemmas and
generalising to variables of type truth (in a very similar manner we use for
atomic formulae with non-T -terms);

– use substitutivity axioms not only as lemmas;
– broaded scope to non-universally closed formulae;
– use definitions or lemmas about T e functions and predicates expressed in

terms of the theory T (e.g., we can always rewrite double(x) to 2x by using
a lemma ∀x (double(x) =pnat 2x) and we can always rewrite x 6= y to
x < y ∨ y < x by using a lemma ∀x ∀y (x 6= y ↔ x < y ∨ y < x));

Some of the ways in which the efficiency of the proposed method could be im-
proved are the following:

– make the condition (i) in 4.4 more restricted — try to match whole atomic
formulae f and l (not just the heaviest non-T -terms); this approach would
be more efficient for come conjectures, but would have smaller scope: e.g.,
within this approach ∀α∀k min(α) ≤ max(α) + k could not be proved using
the lemma ∀ξ(min(x) ≤ max(x));

– preprocess lemmas or use lemmas having some fixed structure (e.g., those of
the form ∀−→x (H1 ∧ · · · ∧Hk → C));

In future work we will investigate different ways for improving the presented
extended proof method. We intend to make a more systematic study in order to
find an optimum between generality and efficiency. In future work we also intend
to explore possible combinations of this approach with other ones.

10 Related Work

In the last two decades a lot of effort has been invested into efficient and flex-
ible integration of decision procedures (in particular those for arithmetic) into
general-purpose theorem provers or domain specific systems. Our method is
mostly related to a procedure for linear arithmetic integrated within Boyer and
Moore’s nqthm [3]. This system is rather efficient, but involves a lot of spe-
cial data structures and the description of the procedure is often given in terms
of these special data-structures rather than in terms of their logical meaning.
Besides, this system is adjusted for Hodes’ algorithm and cannot be used on
some other theory or some other algorithm. It is also incomplete for pna. Our

13

approach is a kind of rational reconstruction of Boyer and Moore’s linear arith-
metic procedure and is also its generalisation in some aspects. There are some
losses in efficiency, but gains are in generality and flexibility.

Several systems are based on [16], including Stanford Pascal Verifier [14]
and STeP [15]. In this approach, decision procedures for disjoint theories are
combined by abstracting terms which fall outside a certain theory and by prop-
agating deduced equalities from one theory to another. Several other systems
are based on [19], including pvs [17] and Ehdm [8]. In this approach, an ef-
ficient congruence closure procedure is used to handle combinations of ground
equalities involving uninterpreted function symbols, linear arithmetic and arrays.
Congruence closure is used in combination with decision procedures (solvers) for
specific theories (for instance, with a solver for Presburger inequalities). There is
an analysis of Shostak’s algorithm and a partial analysis of an algorithm due to
Nelson and Oppen in [7]. These approaches focus on combinations of (disjoint)
theories in contrast to extensions of theories (which are not disjoint, but move
outside some syntactically defined class). These systems are rather efficient over
their intended domains, however, the method presented in this paper is more
syntactical in its nature and more suited to a proof-planning environment (such
as embodied in Clam [5]). There is also work on incorporating an arithmetic deci-
sion procedure into a rewrite based prover [11] and work in equational reasoning
in resolution and paramodulation based provers [2, 1].

11 Conclusions

We have presented a method for the flexible integration certain decision proce-
dures into theorem provers. It is partly based on [3], but is more general and more
flexible. The method can be used in different theorem provers, for different the-
ories and for different decision procedures for these theories. Specific knowledge
is encapsulated in smaller submodules and decision procedures can be simply
‘plugged-in’ to the system. This framework is well-suited to the proof-planning
paradigm. We have made a preliminary implementation within the Clam system
and the results are most encouraging. In future work we propose to investigate
different refinements of the method (outlined in section 9), including possible
combination with other approaches.

References

1. L. Bachmair and H. Ganzinger. Strict basic superposition. In Kirchner and Kirch-
ner [12], pages 160–174.

2. L. Bachmair, H. Ganzinger, and A. Voronkov. Elimination of equality via transfor-
mation with ordering constraints. In Kirchner and Kirchner [12], pages 175–190.

3. R. S. Boyer and J S. Moore. Integrating decision procedures into heuristic theo-
rem provers: A case study of linear arithmetic. In J. E. Hayes, J. Richards, and
D. Michie, editors, Machine Intelligence 11, pages 83–124, 1988.

4. A. Bundy. The use of proof plans for normalization. In R. S. Boyer, editor, Essays
in Honor of Woody Bledsoe, pages 149–166. Kluwer, 1991.

14

5. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.
In M. E. Stickel, editor, 10th International Conference on Automated Deduction,
pages 647–648. Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence No.
449.

6. D. C. Cooper. Theorem proving in arithmetic without multiplication. In B. Meltzer
and D. Michie, editors, Machine Intelligence 7, pages 91–99. Edinburgh University
Press, 1972.

7. D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s decision procedure for combi-
nations of theories. In M. McRobbie and J. Slaney, editors, 13th International Con-
ference on Automated Deduction, Lecture Notes in Artificial Intelligence, Vol. 1104,
New Brunswick, NJ, USA, 1996. Springer-Verlag.

8. User guide for the Ehdm specification language and verification system, version
6.1. Technical report, SRI Computer Science Laboratory, 1993.

9. L. Hodes. Solving problems by formula manipulation in logic and linear inequal-
ities. In Proceedings of the 2nd International Joint Conference on Artificial In-
telligence, pages 553–559, Imperial College, London, England, 1971. The British
Computer Society.

10. P. Janičić, I. Green, and A. Bundy. A comparison of decision procedures in Pres-
burger arithmetic. In R. Tos̆ić and Z. Budimac, editors, Proceedings of the VIII
Conference on Logic and Computer Science (LIRA ’97), pages 91–101, Novi Sad,
Yugoslavia, September 1–4 1997. University of Novi Sad.

11. D. Kapur and X. Nie. Reasoning about numbers in Tecton. In Proceedings of
8th International Symposium on Methodologies for Intelligent Systems, Charlotte,
North Carolina, USA, October 1994.

12. C. Kirchner and H. Kirchner, editors. 15th International Conference on Automated
Deduction, Lindau, Germany, July 1998.

13. G. Kreisel and J. L. Krivine. Elements of mathematical logic: Model theory. North
Holland, Amsterdam, 1967.

14. D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C.
Oppen, W. Polak, and W. L. Scherlis. Stanford Pascal verifier user manual. CSD
Report STAN-CS-79-731, Stanford University, 1979.

15. Z. Manna et al. STeP: The Stanford Temporal Prover. Technical Report STAN-
CS-TR;94-1518, Stanford University, 1994.

16. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257, Octo-
ber 1979.

17. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T. A. Henzinger,
editors, Proceedings of the 1996 Conference on Computer-Aided Verification, num-
ber 1102 in LNCS, pages 411–414, New Brunswick, New Jersey, U. S. A., 1996.
Springer-Verlag.

18. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Spra-
wozdanie z I Kongresu metematyków slowiańskich, Warszawa 1929, pages 92–101,
395. Warsaw, 1930. Annotated English version also available [20].

19. R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1–12,
January 1984.

20. R. Stansifer. Presburger’s article on integer arithmetic: Remarks and translation.
Technical Report TR 84-639, Department of Computer Science, Cornell University,
September 1984.

15

