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Abstract

It is part of the tradition and folklore of automated reasoning that the
intractability of Cooper’s decision procedure for Presburger integer arith-
metic makes is too expensive for practical use. More than 25 years of
work has resulted in numerous approximate procedures via rational arith-
metic, all of which are incomplete and restricted to the quantifier-free
fragment. In this paper we report on an experiment which strongly ques-
tions this tradition. We measured the performance of procedures due to
Hodes, Cooper (and heuristic variants thereof which detect counterexam-
ples), across a corpus of 10 000 randomly generated quantifier-free Pres-
burger formulae. The results are startling: a variant of Cooper’s procedure
outperforms Hodes’ procedure, and is fast enough for practical use. These
results contradict much perceived wisdom that decision procedures for in-
teger arithmetic are too expensive to use in practice.

1 Introduction

A decision procedure for some theory is an algorithm which for every formula
tells whether it is valid or not. The role of decision procedures is critical in many
areas, including theorem proving. As Boyer and Moore wrote [2, §1]

“It is generally agreed that when practical theorem provers are finally
available they will contain both heuristic components and many de-
cision procedures.”

Indeed, even (generally) inefficient decision procedures could reduce the search
space of heuristic components of a prover and increase its abilities: a decision
procedure can both close a branch in a proof, and reject non-theorems. Decision
procedures can also have a important role in other areas such as geometry and
type checking, for example.

A core part of automatic theorem proving involves reasoning with integer
and natural numbers. Since the whole of integer arithmetic is undecidable, we
are forced to look for ‘useful’, decidable sub-theories; there is a trade-off between
usefulness and the complexity of associated decision procedures. In this paper,
we take Presburger arithmetic: it is useful and there are a number of decision
procedures.

In this paper we want to compare two decision procedures (and some simple
variations thereof): that due to Hodes for Presburger rational arithmetic and

1The first author is supported by The British Scholarship Trust. The other authors are sup-
ported in part by grants EPSRC GR/L/11724, and British Council ROM/889/95/70. Authors’
address: Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge, Ed-
inburgh EH1 1HN, Scotland. Email: predragj@dai.ed.ac.uk, {I.Green, A.Bundy}@ed.ac.uk
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that due to Cooper, for Presburger integer arithmetic. It is part of the tradi-
tion and folklore of automated reasoning that Cooper’s decision procedure for
Presburger integer arithmetic is too expensive to be of practical use. More than
25 years of work has resulted in numerous approximate procedures via rational
arithmetic, all of which are incomplete and restricted to the quantifier-free frag-
ment. It is known that the (worst-case) time complexity of Cooper’s procedure
is 222n

in the size of the formula,2 and moreover, this is much worse than Hodes’
procedure. Boyer and Moore state [2, §3]

“. . . integer decision procedures are quite complicated compared to
the many well-known decision procedures for linear inequalities over
the rationals [. . . ]. Therefore, following the tradition in program
verification, we adopted a rational-based procedure. . . ”

It is this ‘tradition’ of work in the rationals [1, 9, 10, 2] that we question in this
paper. Anecdotal testimonies to this tradition abound in the literature but we
are not aware of any experimental comparison of procedures.

Here we report on an experimental comparison of procedures on 10 000 ran-
domly generated formulae. However, the results are very surprising—broadly,
they show that a simple variant of Cooper’s procedure outperforms Hodes’ pro-
cedureon our sample corpus!

These results cast some doubt on the perceived wisdom in the automated
reasoning community that full decision procedures for integer arithmetic are too
expensive to use in practice.

Overview of paper. §2.1 defines Presburger arithmetic, procedures and no-
tation. §3 describes the test corpus and the experiments we made on it; §4 shows
the results. §5 and §6 discusses further work and draws conclusions.

2 Background

We write |=T f (6|=T f) to mean f is valid (invalid) in theory T . A decision
procedure for theory T is a total function d from formulae to the set {yes, no},
having for any f the properties of soundness d(f) = yes implies T |= f , and
completeness, T |= f implies d(f) = yes. An incomplete decision procedure is
sound but not complete.

2.1 Presburger arithmetic

Presburger arithmetic is (roughly speaking) a theory built up from the constant
0, variables, binary +, unary s, relations <, >, =, ≤, ≥ and the standard
connectives and quantifiers of first-order predicate calculus.3 The notions of

2Shostak [9] attributes this result to Oppen.
3Multiplication of a variable by a constant is also Presburger: nx is treated as x + · · ·+ x,

where x appears n times. We shall write 1 instead of s(0), etc.
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term, atomic formula and formula are formally defined in the usual way (a
grammar is given in figure 1 for the quantifier-free part). In Presburger integer
arithmetic (PIA), variables range over the integers. It was Presburger who
first showed that PIA is decidable [8]. Presburger rational arithmetic (PRA) is
defined analogously and is also decidable [7].

The restriction of Presburger integer arithmetic to Peano numbers (i.e., to
non-negative integers) we call Presburger natural arithmetic (PNA).4

2.2 Related work

Some decision procedures for Presburger arithmetic are based on the idea of
quantifier elimination described by Kreisel and Krivine [7]—these are Hodes’
procedure for Presburger rational arithmetic [6] and Cooper’s procedure for Pres-
burger integer arithmetic [5]. There is also the Sup-Inf family of procedures due
to Bledsoe [1] and latterly improved by Shostak [9, 10].

The rational-based procedures are an attempt to overcome the complexity
of integer-based procedures. It can be easily seen that there are formulae valid
in rational arithmetic and invalid in natural arithmetic and vice versa. For
instance, ∃x.2x = 3 is valid over the rationals, but not over the naturals. Also,
∀x.x ≤ 1∨x ≥ 2 is valid over the naturals, but not over the rationals. Therefore,
we cannot use a decision procedure for one of these two theories in the other,
not even as an incomplete decision procedure.

However, if some universally quantified PNA formula is decided valid by
Hodes’ procedure (i.e., taking it to be a formula of PRA), then it must be valid
in PNA. That is, |=PRA s implies |=PNA s, for the universally quantified formula
s. The reverse implication does not hold, and so Hodes’ procedure is not a
decision procedure for PNA.

This idea of applying decision procedures for rationals to the integer case is
at the heart of Bledsoe’s Sup-Inf method [1], and can be seen as the start of
the tradition of incomplete decision procedures. The tradition continued with
Shostak’s improved Sup-Inf [9, 10]; he showed it could decide invalid formulae,
and so was indeed a decision procedure. However, the class of formulae for which
Shostak’s Sup-Inf decides has not been characterized syntactically: it is not a
decision procedure for universally quantified PIA, but for some “semantically
characterized” fragment.

Boyer and Moore too followed this track [2], although they reverted back
to Hodes’ procedure rather than using Sup-Inf. Their choice was unsurprising
in some sense, since the Nqthm logic is quantifier-free, so the restriction for
soundness is vacuous. Somewhat curiously, Boyer and Moore conclude in that
same paper that efficiency of the DP is largely irrelevant in the wider setting
of a heuristic prover: in that case why not use Cooper’s procedure, and have a

4For the same theory and some related theories there are a few different terms used. For
instance, Hodes calls Presburger rational arithmetic a theory EAR (“the elementary theory
of addition on the reals”). Boyer and Moore [2] describe a universally quantified fragment
of Presburger rational arithmetic as linear arithmetic (although in fact they work over the
integers); that same theory sometimes goes by the name Bledsoe real arithmetic.

4



complete procedure to boot?5 There is a question as to what degree negative
results from a decision procedure can be used in a heuristic theorem prover.
Some systems, such as CLaM [3], can use this information, for example, in
controlling generalization, and other non-equivalence preserving heuristics. This
is undoubtedly true of other theorem provers.

3 Experiments

3.1 Generating Presburger formulae

We randomly generated a corpus of 10 000 formulae of Presburger arithmetic.
This was done using the grammar shown in figure 1 to generate quantifier-free
formulae containing free variables (taken from a set of five symbols). Each rule
was chosen with a probability given in the right-hand column.

Rule Probability
〈formula〉 := 〈atomic formula〉 0.75
〈formula〉 := ¬ 〈formula〉 0.1
〈formula〉 := 〈formula〉 ∨ 〈formula〉 0.05
〈formula〉 := 〈formula〉 ∧ 〈formula〉 0.05
〈formula〉 := 〈formula〉 ⇒ 〈formula〉 0.05
〈atomic formula〉 := 〈term〉 = 〈term〉 0.2
〈atomic formula〉 := 〈term〉 < 〈term〉 0.2
〈atomic formula〉 := 〈term〉 ≤ 〈term〉 0.2
〈atomic formula〉 := 〈term〉 > 〈term〉 0.2
〈atomic formula〉 := 〈term〉 ≥ 〈term〉 0.2
〈term〉 := 〈term〉+ 〈term〉 0.2
〈term〉 := s(〈term〉) 0.2
〈term〉 := 0 0.2
〈term〉 := 〈variable〉 0.4

Figure 1: Grammar of Presburger arithmetic and probabilities assigned to rules
for generating a corpus

3.2 Algorithms considered

In addition to Hodes’ procedure and Cooper’s procedure, we also used variants
of these, using a heuristic that quickly rejects invalid formulae (we will call it
the QR heuristic).

5We emphasize that the Nqthm decision procedure is stronger than Hodes’ procedure since
it also has heuristics to deal with non-Presburger formulae by calling the inductive part of the
prover.
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The heuristic is as follows: to invalidate ∀~x.Φ(~x) we show that a particular
instance Φ(~c) is invalid. That is, we instantiate all universally quantified vari-
ables in a formula ∀~x.Φ(~x) with particular ground values (say 0 and 100) in
all ways. In that way we get a quantifier free formula Φ(~c), for which validity
is quickly decided. This simple heuristic is obviously sound, but not complete.
However, our experiments showed that this heuristic could be very important
and very useful.6

Thus we compared the following four procedures:

Hodes’ procedure. For PRA. Recall from §2.2 that this procedure is incomplete
even for the universally quantified fragment of PNA.

Cooper’s procedure. For PNA. (Cooper presented two such procedures: we used
the second, improved version [5]. Besides, Cooper’s procedure is originally
defined for Presburger integer arithmetic, and in our experiments we used
our version, slightly modified for PNA.)

DP-A . For a given formula try to disprove it using the QR heuristic; if it
succeeds, the formula is invalid; otherwise, apply Cooper’s procedure; if
Cooper’s procedure says yes, the formula is a theorem, otherwise it is not.

DP-B . For a given formula try to disprove it using the QR heuristic; if QR suc-
ceeds, the formula is invalid; otherwise, if the given formula is universally
quantified, apply Hodes’ procedure; if the answer is yes, then the formula
is valid, if the answer is no or if a given formula is not universally quanti-
fied, then apply Cooper’s procedure; if the answer is yes, then the formula
is valid, otherwise the answer is no, and it is invalid.

4 Results

We ran the procedures described in §3.2 on each formula of the corpus, recording
whether the formula was valid or invalid, and CPU time taken to decide, subject
to a time limit of 100s. The following tables show the results with CPU time
measured in milliseconds.7

4.1 QR heuristic contribution

Of the 10 000 formulae in the corpus, roughly 8000 were invalid, the remainder
valid. DP-A using values of 0 and 100 was able to quickly reject all but 70
of these invalid formulae. (We decided to take values 0 and 100 because our
experiments showed that additional values were not significantly contributing to
the rejection rate, and on the other hand, using just 0, the heuristic rejected less
than 5000 formulae.)

6Obviously, this procedure could be used for all types of formulae (not just universally
quantified ones): using this procedure we could transform (simplify) a formula to existentially
quantified formula and try to disprove it using Cooper’s procedure.

7Programs were written in Quintus Prolog; experiments were run on a 32Mb Sun SPARC 4.
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4.2 CPU time distribution

Table 1 shows number of formulae handled by procedures within a given time
interval, together with mean CPU time (in ms). Each entry in the table is a
pair, the first part of which is the number of formulae in that time interval, the
second part is the mean time taken by the procedure. The totals column shows
the total number of formulae handled by each procedure within 100 seconds, and
the mean time for these formulae.

CPU time (ms)
Procedure < 102 102–103 103–104 104–105 Totals

Hodes 9213/27 639/265 106/2546 28/30120 9986/154
Cooper 5678/48 3566/292 509/2620 120/31372 9873/650
DP-A 9361/18 552/278 51/2467 17/29012 9981/94
DP-B 9254/18 605/286 95/2298 22/30189 9982/122

Table 1: Number of formulae decided vs. CPU time

4.3 Effect of number of variables

Table 2 shows that the mean CPU time spent by the procedures increases with
the number of variables. The number of formulae in the corpus containing a
certain number of variables is shown, with a pair the first part of which is a
percentage, the second is the mean CPU time.

The percentage is of those formulae having a particular number of variables
completed within the 100 second time limit. In the 5-variable case Hodes’ pro-
cedure processed 95.9%, but for Cooper’s procedure this figure was 78.8%. This
discrepancy seems to suggest that Cooper’s procedure degrades with increasing
number of variables; however, notice that DP-A performed better then Hodes’
procedure. Thus the correct explanation is that Cooper’s procedure is slower on
invalid formulae, an effect seem more clearly in §4.5.

# variables/# formulae
Procedure 0/598 1/3362 2/3603 3/1503 4/693 5/241

Hodes 100/3 100/17 100/39 100/130 99.4/683 95.9/2883
Cooper 100/3 100/42 100/169 98.6/1202 92.1/3608 78.8/8306
DP-A 100/6 100/16 100/22 99.9/171 99.0/315 95.9/1432
DP-B 100/7 100/17 100/27 99.9/202 98.7/443 94.5/1978

Table 2: % completed/CPU time (ms) vs. number of variables
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4.4 Effect of size of formula

The efficiency of Hodes’ and Cooper’s procedure is governed not just by propo-
sitional structure but by term structure too. To investigate this aspect of per-
formance, we define the size of a formula/term as the sum of the sizes of its
immediate subformulae/subterms plus one, taking the size of variables and con-
stants as 0. Table 3 shows the results.

Cooper’s procedure is most exposed here: the percentage of formulae decided
within the time limit drops dramatically as the size increases. Hodes’ on the
other hand fares quite well. Once again though, the better performance of DP-
A reveals that Cooper’s procedure is struggling with invalid formulae which are
more easily dealt with by the QR heuristic.

Size/# formulae
Proc. 1–10/8785 11–20/1029 21–30/150 31–40/29 41–50/5 51–60/2

Hodes 100/35 99.7/687 97.3/2772 79.3/4661 80.0/2430 100/1560
Cooper 99.8/225 93.7/3238 80.0/8655 55.2/10657 60.0/24690 50/38530
DP-A 100/24 99.3/460 94.7/1059 93.1/3156 80.0/4320 100/295
DP-B 100/31 99.2/647 94.0/1800 82.8/572 80.0/4537 100/310

Table 3: CPU time vs. size

4.5 Effect of validity

Table 4 shows CPU time spent by the procedures according to validity of a
formula (considering only those formulae decided by all procedures within the
time limit).8

The first column pertains to formulae valid in both rational and natural
arithmetic;9 the second is for those invalid in the rationals and valid in the
naturals; the third for those invalid in both theories. Notice that those in the
second column would not be found to be valid formulae of natural arithmetic
by Hodes’ procedure. Note that the heuristic versions dramatically improve the
performance of Cooper’s procedure in the invalid cases.

We considered the procedure DP-B , anticipating that it would take advan-
tage of Hodes’ procedure on formulae valid both in PRA and PNA. We expected

89868 formulae from our corpus were treated by all procedures—so, 132 formulae are ‘miss-
ing’ in table 4. However, our QR heuristic rejected 107 of them, and thus, at most 25 formulae
could change the first two columns in the table 4 if we had taken higher time limit.

(Among the ‘missing’ formulae, there are formulae decided by one decision procedures and
not decided by others, and some of them weren’t decided by neither procedure. Generally,
these formulae are formulae of large complexity, but it is a very difficult task to give some
precise characterization of them — such a characterization would have to involve some deeper
semantic knowledge.)

9Out of 756 formulae valid in both rational and natural arithmetic 330 are ground, 311
with 1, 51 with 2, 29 with 3, 27 with 4 and 8 with 5 variables.
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that these gains would outweigh losses in other cases and therefore we expected,
in general, DP-B to be faster than DP-A . However, surprisingly, it turned
out that Hodes’ procedure performed worse than Cooper’s procedure in this
group of formulae. Consequently, DP-B failed to improve upon DP-A in any
of groups of formulae according to validity. Of course, DP-B cannot exploit
Hodes’ procedure in the case of formulae on which Hodes’ procedure returns no,
since Hodes’ procedure is incomplete; in such cases, Cooper’s procedure must be
called, and time spent in Hodes’ procedure is wasted.

Validity |=PRA F 6|=PRA F 6|=PRA F Total
|=PNA F |=PNA F 6|=PNA F

# formulae 756 1214 7898 9868
Hodes 117 256 81 105
Cooper 33 204 758 634
DP-A 66 267 49 77
DP-B 148 523 58 122

Table 4: CPU times according to validity/invalidity of formula

4.6 Summary of results

On our corpus Cooper’s procedure performed better than Hodes’, on valid for-
mulae, but it was much worse on invalid formulae. However, this is mitigated
entirely by using the QR heuristic. Our conclusion then is that the combination
of Cooper’s procedure and QR performs better than Hodes’ procedure.

5 Future work

It would be interesting to compare Hodes’ and Cooper’s procedures with Sup-Inf
procedures.

The assignment of probabilities to the rules of the grammar for Presburger
formulae was chosen somewhat arbitrarily—we have yet to investigate the effect
these parameters have on validity, time to decide etc. A quickly computed
measure of expected run time might be useful in a heuristic theorem prover.
One can imagine pursuing a line of enquiry similar to that in the propositional
satisfiability community.

According to results of Boyer and Moore [2], an essential role of using an
arithmetic decision procedure is to contribute to the proofs of deeper theorems in
other theories (not just arithmetic). We have done some preliminary work in this
direction in the CLaM proof-planning system [3]. Transformation of a problem
to a Presburger formula should be done by a communication module. We used
an extension of our procedure DP-A , which could handle defined arithmetic
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functions (double, half, minus, p) and relations (odd, even). For that purpose, we
use rewrite rules, which, for instance, using the theorem ∀x.∀y.double(x) = y ⇔
y = 2x, it is sound to rewrite F (double(x)) into ∀y.2x = y ⇒ F (y). Similarly,
∀x.even(double(x)) can be rewritten to ∀x.∃u.∀v.2x = v ⇒ v = 2u. Notice
that these translations move outside the quantifier-free fragment of Presburger
arithmetic, so we are using DP-A in an area where Hodes’ procedure would be
unsound, and so useless. Preliminary results are encouraging, but much more
work needs to be done. We also want to deal with non-arithmetic functions (e.g.,
length of a list), using more powerful techniques: our aim is to explore Bundy’s
idea of proof-plans for normalization [4].

6 Conclusions

The effectiveness of DP-A (and hence any claim that Cooper’s procedure is
useful in tandem with the QR heuristic) must be offset by the fact that 80%
of the corpus is invalid. Although Cooper’s procedure outperforms Hodes’ pro-
cedure on valid formulae, it did so to a lesser degree than DP-A outperformed
Cooper’s procedure on invalid formulae. Furthermore, another factor must be
borne in mind. The corpus we generated did not contain many large constants,
and the presence of these in formulae will often slow both Hodes’ and Cooper’s
procedure, and hence DP-A . Note that the Sup-Inf family of procedures is not
affected in this way.

We need to be cautious when advocating the use of DP-A more widely—
more experiments on other corpora are required, especially on “real problems”
generated during (say) inductive verification proofs. With these caveats, we draw
the following conclusions from the corpus we used:

• Cooper’s procedure was faster than Hodes’ procedure on valid formulae; it
was an order of magnitude slower on invalid formulae.

• Many invalid universally quantified formulae can be identified simply and
quickly by checking ground instances over a small set of values.

• Cooper’s procedure with the simple QR heuristic outperformed Hodes’
procedures. This is a startling result. It goes against the grain of much
work and commentary made on decision procedures in the past 25 years.

• When efficiency is comparable, it is highly preferable to use a decision
procedure in a heuristic theorem prover rather than an incomplete decision
procedure. Hodes’ procedure (which is incomplete for quantifier-free PNA)
fails to prove many PNA theorems; for such theorems much extra work may
be incurred in trying other techniques (e.g., induction). We speculate that
for most invalid PNA conjectures, even a slow decision procedure will be
faster and more robust than heuristic techniques.

• Worst case analysis of complexity may be misleading: experimental eval-
uations can be useful.
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On the basis of these experiments, we conclude that for quantifier-free Pres-
burger arithmetic over the natural numbers, Cooper’s procedure augmented with
a ‘quick reject’ heuristic is superior to Hodes’ procedure. This is a startling re-
sult that questions much of the perceived wisdom in the automated reasoning
community.
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