A comparison of decision procedures in Presburger arithmetic

Predrag Janičić Ian Green Alan Bundy
Department of Artificial Intelligence
University of Edinburgh, 80 South Bridge
Edinburgh EH1 1HN, Scotland
E-mail: janicic@opennet.org, \{I.Green, A.Bundy\}@ed.ac.uk

A comparison of decision procedures in Presburger arithmetic ${ }^{1}$

Predrag Janičić Ian Green Alan Bundy

Abstract

It is part of the tradition and folklore of automated reasoning that the intractability of Cooper's decision procedure for Presburger integer arithmetic makes is too expensive for practical use. More than 25 years of work has resulted in numerous approximate procedures via rational arithmetic, all of which are incomplete and restricted to the quantifier-free fragment. In this paper we report on an experiment which strongly questions this tradition. We measured the performance of procedures due to Hodes, Cooper (and heuristic variants thereof which detect counterexamples), across a corpus of 10000 randomly generated quantifier-free Presburger formulae. The results are startling: a variant of Cooper's procedure outperforms Hodes' procedure, and is fast enough for practical use. These results contradict much perceived wisdom that decision procedures for integer arithmetic are too expensive to use in practice.

1 Introduction

A decision procedure for some theory is an algorithm which for every formula tells whether it is valid or not. The role of decision procedures is critical in many areas, including theorem proving. As Boyer and Moore wrote [2, §1]
"It is generally agreed that when practical theorem provers are finally available they will contain both heuristic components and many decision procedures."

Indeed, even (generally) inefficient decision procedures could reduce the search space of heuristic components of a prover and increase its abilities: a decision procedure can both close a branch in a proof, and reject non-theorems. Decision procedures can also have a important role in other areas such as geometry and type checking, for example.

A core part of automatic theorem proving involves reasoning with integer and natural numbers. Since the whole of integer arithmetic is undecidable, we are forced to look for 'useful', decidable sub-theories; there is a trade-off between usefulness and the complexity of associated decision procedures. In this paper, we take Presburger arithmetic: it is useful and there are a number of decision procedures.

In this paper we want to compare two decision procedures (and some simple variations thereof): that due to Hodes for Presburger rational arithmetic and

[^0]that due to Cooper, for Presburger integer arithmetic. It is part of the tradition and folklore of automated reasoning that Cooper's decision procedure for Presburger integer arithmetic is too expensive to be of practical use. More than 25 years of work has resulted in numerous approximate procedures via rational arithmetic, all of which are incomplete and restricted to the quantifier-free fragment. It is known that the (worst-case) time complexity of Cooper's procedure is $2^{2^{2^{n}}}$ in the size of the formula, ${ }^{2}$ and moreover, this is much worse than Hodes' procedure. Boyer and Moore state [2, §3]
"... integer decision procedures are quite complicated compared to the many well-known decision procedures for linear inequalities over the rationals [...]. Therefore, following the tradition in program verification, we adopted a rational-based procedure..."

It is this 'tradition' of work in the rationals $[1,9,10,2]$ that we question in this paper. Anecdotal testimonies to this tradition abound in the literature but we are not aware of any experimental comparison of procedures.

Here we report on an experimental comparison of procedures on 10000 randomly generated formulae. However, the results are very surprising-broadly, they show that a simple variant of Cooper's procedure outperforms Hodes' procedureon our sample corpus!

These results cast some doubt on the perceived wisdom in the automated reasoning community that full decision procedures for integer arithmetic are too expensive to use in practice.

Overview of paper. $\S 2.1$ defines Presburger arithmetic, procedures and notation. $\S 3$ describes the test corpus and the experiments we made on it; $\S 4$ shows the results. $\S 5$ and $\S 6$ discusses further work and draws conclusions.

2 Background

We write $\models_{T} f\left(\not \models_{T} f\right)$ to mean f is valid (invalid) in theory T. A decision procedure for theory T is a total function d from formulae to the set $\{\mathrm{yes}, \mathrm{no}\}$, having for any f the properties of soundness $d(f)=$ yes implies $T \models f$, and completeness, $T \models f$ implies $d(f)=$ yes. An incomplete decision procedure is sound but not complete.

2.1 Presburger arithmetic

Presburger arithmetic is (roughly speaking) a theory built up from the constant 0 , variables, binary + , unary s, relations $<,>,=, \leq, \geq$ and the standard connectives and quantifiers of first-order predicate calculus. ${ }^{3}$ The notions of

[^1]term, atomic formula and formula are formally defined in the usual way (a grammar is given in figure 1 for the quantifier-free part). In Presburger integer arithmetic (PIA), variables range over the integers. It was Presburger who first showed that PIA is decidable [8]. Presburger rational arithmetic (PRA) is defined analogously and is also decidable [7].

The restriction of Presburger integer arithmetic to Peano numbers (i.e., to non-negative integers) we call Presburger natural arithmetic (PNA). ${ }^{4}$

2.2 Related work

Some decision procedures for Presburger arithmetic are based on the idea of quantifier elimination described by Kreisel and Krivine [7]-these are Hodes' procedure for Presburger rational arithmetic [6] and Cooper's procedure for Presburger integer arithmetic [5]. There is also the Sup-Inf family of procedures due to Bledsoe [1] and latterly improved by Shostak [9, 10].

The rational-based procedures are an attempt to overcome the complexity of integer-based procedures. It can be easily seen that there are formulae valid in rational arithmetic and invalid in natural arithmetic and vice versa. For instance, $\exists x .2 x=3$ is valid over the rationals, but not over the naturals. Also, $\forall x . x \leq 1 \vee x \geq 2$ is valid over the naturals, but not over the rationals. Therefore, we cannot use a decision procedure for one of these two theories in the other, not even as an incomplete decision procedure.

However, if some universally quantified PNA formula is decided valid by Hodes' procedure (i.e., taking it to be a formula of PRA), then it must be valid in PNA. That is, $\models_{P R A} s$ implies $\models_{P N A} s$, for the universally quantified formula s. The reverse implication does not hold, and so Hodes' procedure is not a decision procedure for PNA.

This idea of applying decision procedures for rationals to the integer case is at the heart of Bledsoe's Sup-Inf method [1], and can be seen as the start of the tradition of incomplete decision procedures. The tradition continued with Shostak's improved Sup-Inf [9, 10]; he showed it could decide invalid formulae, and so was indeed a decision procedure. However, the class of formulae for which Shostak's Sup-Inf decides has not been characterized syntactically: it is not a decision procedure for universally quantified PIA, but for some "semantically characterized" fragment.

Boyer and Moore too followed this track [2], although they reverted back to Hodes' procedure rather than using Sup-Inf. Their choice was unsurprising in some sense, since the Nqthm logic is quantifier-free, so the restriction for soundness is vacuous. Somewhat curiously, Boyer and Moore conclude in that same paper that efficiency of the DP is largely irrelevant in the wider setting of a heuristic prover: in that case why not use Cooper's procedure, and have a

[^2]complete procedure to boot? ${ }^{5}$ There is a question as to what degree negative results from a decision procedure can be used in a heuristic theorem prover. Some systems, such as CLaM [3], can use this information, for example, in controlling generalization, and other non-equivalence preserving heuristics. This is undoubtedly true of other theorem provers.

3 Experiments

3.1 Generating Presburger formulae

We randomly generated a corpus of 10000 formulae of Presburger arithmetic. This was done using the grammar shown in figure 1 to generate quantifier-free formulae containing free variables (taken from a set of five symbols). Each rule was chosen with a probability given in the right-hand column.

Rule	Probability
\langle formula $\rangle:=\langle$ atomic formula \rangle	0.75
\langle formula $\rangle:=\neg\langle$ formula \rangle	0.1
\langle formula $\rangle:=\langle$ formula $\rangle \vee$ formula \rangle	0.05
\langle formula $\rangle:=\langle$ formula $\rangle \wedge\langle$ formula \rangle	0.05
\langle formula $\rangle:=\langle$ formula $\rangle \Rightarrow\langle$ formula \rangle	0.05
\langle atomic formula $\rangle:=\langle$ term $\rangle=\langle$ term \rangle	0.2
\langle atomic formula $\rangle:=\langle$ term $\rangle\langle\langle$ term \rangle	0.2
\langle atomic formula $\rangle:=\langle$ term $\rangle \leq\langle$ term \rangle	0.2
\langle atomic formula $\rangle:=\langle$ term $\rangle\rangle\langle$ term \rangle	0.2
\langle atomic formula $\rangle:=\langle$ term $\rangle \geq\langle$ term \rangle	0.2
\langle term $\rangle:=\langle$ term $\rangle+\langle$ term \rangle	0.2
\langle term $\rangle:=s(\langle$ term $\rangle)$	0.2
\langle term $\rangle:=0$	0.2
\langle term $\rangle:=\langle$ variable \rangle	0.4

Figure 1: Grammar of Presburger arithmetic and probabilities assigned to rules for generating a corpus

3.2 Algorithms considered

In addition to Hodes' procedure and Cooper's procedure, we also used variants of these, using a heuristic that quickly rejects invalid formulae (we will call it the QR heuristic).

[^3]The heuristic is as follows: to invalidate $\forall \vec{x} . \Phi(\vec{x})$ we show that a particular instance $\Phi(\vec{c})$ is invalid. That is, we instantiate all universally quantified variables in a formula $\forall \vec{x} . \Phi(\vec{x})$ with particular ground values (say 0 and 100) in all ways. In that way we get a quantifier free formula $\Phi(\vec{c})$, for which validity is quickly decided. This simple heuristic is obviously sound, but not complete. However, our experiments showed that this heuristic could be very important and very useful. ${ }^{6}$

Thus we compared the following four procedures:
Hodes' procedure. For PRA. Recall from $\S 2.2$ that this procedure is incomplete even for the universally quantified fragment of PNA.

Cooper's procedure. For PNA. (Cooper presented two such procedures: we used the second, improved version [5]. Besides, Cooper's procedure is originally defined for Presburger integer arithmetic, and in our experiments we used our version, slightly modified for PNA.)

DP-A . For a given formula try to disprove it using the QR heuristic; if it succeeds, the formula is invalid; otherwise, apply Cooper's procedure; if Cooper's procedure says yes, the formula is a theorem, otherwise it is not.

DP-B . For a given formula try to disprove it using the QR heuristic; if QR succeeds, the formula is invalid; otherwise, if the given formula is universally quantified, apply Hodes' procedure; if the answer is yes, then the formula is valid, if the answer is no or if a given formula is not universally quantified, then apply Cooper's procedure; if the answer is yes, then the formula is valid, otherwise the answer is no, and it is invalid.

4 Results

We ran the procedures described in $\S 3.2$ on each formula of the corpus, recording whether the formula was valid or invalid, and CPU time taken to decide, subject to a time limit of 100s. The following tables show the results with CPU time measured in milliseconds. ${ }^{7}$

4.1 QR heuristic contribution

Of the 10000 formulae in the corpus, roughly 8000 were invalid, the remainder valid. DP-A using values of 0 and 100 was able to quickly reject all but 70 of these invalid formulae. (We decided to take values 0 and 100 because our experiments showed that additional values were not significantly contributing to the rejection rate, and on the other hand, using just 0 , the heuristic rejected less than 5000 formulae.)

[^4]
4.2 CPU time distribution

Table 1 shows number of formulae handled by procedures within a given time interval, together with mean CPU time (in ms). Each entry in the table is a pair, the first part of which is the number of formulae in that time interval, the second part is the mean time taken by the procedure. The totals column shows the total number of formulae handled by each procedure within 100 seconds, and the mean time for these formulae.

	CPU time (ms)				Totals
Procedure	$<10^{2}$	$10^{2}-10^{3}$	$10^{3}-10^{4}$	$10^{4}-10^{5}$	
Hodes	$9213 / 27$	$639 / 265$	$106 / 2546$	$28 / 30120$	$9986 / 154$
Cooper	$5678 / 48$	$3566 / 292$	$509 / 2620$	$120 / 31372$	$9873 / 650$
DP-A	$9361 / 18$	$552 / 278$	$51 / 2467$	$17 / 29012$	$9981 / 94$
DP-B	$9254 / 18$	$605 / 286$	$95 / 2298$	$22 / 30189$	$9982 / 122$

Table 1: Number of formulae decided vs. CPU time

4.3 Effect of number of variables

Table 2 shows that the mean CPU time spent by the procedures increases with the number of variables. The number of formulae in the corpus containing a certain number of variables is shown, with a pair the first part of which is a percentage, the second is the mean CPU time.

The percentage is of those formulae having a particular number of variables completed within the 100 second time limit. In the 5 -variable case Hodes' procedure processed 95.9%, but for Cooper's procedure this figure was 78.8%. This discrepancy seems to suggest that Cooper's procedure degrades with increasing number of variables; however, notice that DP-A performed better then Hodes' procedure. Thus the correct explanation is that Cooper's procedure is slower on invalid formulae, an effect seem more clearly in $\S 4.5$.

	\# variables/\# formulae					
Procedure	$0 / 598$	$1 / 3362$	$2 / 3603$	$3 / 1503$	$4 / 693$	$5 / 241$
Hodes	$100 / 3$	$100 / 17$	$100 / 39$	$100 / 130$	$99.4 / 683$	$95.9 / 2883$
Cooper	$100 / 3$	$100 / 42$	$100 / 169$	$98.6 / 1202$	$92.1 / 3608$	$78.8 / 8306$
DP-A	$100 / 6$	$100 / 16$	$100 / 22$	$99.9 / 171$	$99.0 / 315$	$95.9 / 1432$
DP-B	$100 / 7$	$100 / 17$	$100 / 27$	$99.9 / 202$	$98.7 / 443$	$94.5 / 1978$

Table 2: \% completed/CPU time (ms) vs. number of variables

4.4 Effect of size of formula

The efficiency of Hodes' and Cooper's procedure is governed not just by propositional structure but by term structure too. To investigate this aspect of performance, we define the size of a formula/term as the sum of the sizes of its immediate subformulae/subterms plus one, taking the size of variables and constants as 0 . Table 3 shows the results.

Cooper's procedure is most exposed here: the percentage of formulae decided within the time limit drops dramatically as the size increases. Hodes' on the other hand fares quite well. Once again though, the better performance of DPA reveals that Cooper's procedure is struggling with invalid formulae which are more easily dealt with by the QR heuristic.

	Size/\# formulae					
Proc.	$1-10 / 8785$	$11-20 / 1029$	$21-30 / 150$	$31-40 / 29$	$41-50 / 5$	$51-60 / 2$
Hodes	$100 / 35$	$99.7 / 687$	$97.3 / 2772$	$79.3 / 4661$	$80.0 / 2430$	$100 / 1560$
Cooper	$99.8 / 225$	$93.7 / 3238$	$80.0 / 8655$	$55.2 / 10657$	$60.0 / 24690$	$50 / 38530$
DP-A	$100 / 24$	$99.3 / 460$	$94.7 / 1059$	$93.1 / 3156$	$80.0 / 4320$	$100 / 295$
DP-B	$100 / 31$	$99.2 / 647$	$94.0 / 1800$	$82.8 / 572$	$80.0 / 4537$	$100 / 310$

Table 3: CPU time vs. size

4.5 Effect of validity

Table 4 shows CPU time spent by the procedures according to validity of a formula (considering only those formulae decided by all procedures within the time limit). ${ }^{8}$

The first column pertains to formulae valid in both rational and natural arithmetic $;{ }^{9}$ the second is for those invalid in the rationals and valid in the naturals; the third for those invalid in both theories. Notice that those in the second column would not be found to be valid formulae of natural arithmetic by Hodes' procedure. Note that the heuristic versions dramatically improve the performance of Cooper's procedure in the invalid cases.

We considered the procedure DP-B , anticipating that it would take advantage of Hodes' procedure on formulae valid both in PRA and PNA. We expected

[^5]that these gains would outweigh losses in other cases and therefore we expected, in general, DP-B to be faster than DP-A . However, surprisingly, it turned out that Hodes' procedure performed worse than Cooper's procedure in this group of formulae. Consequently, DP-B failed to improve upon DP-A in any of groups of formulae according to validity. Of course, DP-B cannot exploit Hodes' procedure in the case of formulae on which Hodes' procedure returns no, since Hodes' procedure is incomplete; in such cases, Cooper's procedure must be called, and time spent in Hodes' procedure is wasted.

Validity	$\models_{P R A} F$ $\models_{P N A} F$	$\models_{P R A} F$ $\models_{P N A} F$	$\not \models_{P R A} F$ $\vDash_{P N A} F$	Total
\# formulae	756	1214	7898	9868
Hodes	117	256	81	105
Cooper	33	204	758	634
DP-A	66	267	49	77
DP-B	148	523	58	122

Table 4: CPU times according to validity/invalidity of formula

4.6 Summary of results

On our corpus Cooper's procedure performed better than Hodes', on valid formulae, but it was much worse on invalid formulae. However, this is mitigated entirely by using the QR heuristic. Our conclusion then is that the combination of Cooper's procedure and QR performs better than Hodes' procedure.

5 Future work

It would be interesting to compare Hodes' and Cooper's procedures with Sup-Inf procedures.

The assignment of probabilities to the rules of the grammar for Presburger formulae was chosen somewhat arbitrarily-we have yet to investigate the effect these parameters have on validity, time to decide etc. A quickly computed measure of expected run time might be useful in a heuristic theorem prover. One can imagine pursuing a line of enquiry similar to that in the propositional satisfiability community.

According to results of Boyer and Moore [2], an essential role of using an arithmetic decision procedure is to contribute to the proofs of deeper theorems in other theories (not just arithmetic). We have done some preliminary work in this direction in the CLaM proof-planning system [3]. Transformation of a problem to a Presburger formula should be done by a communication module. We used an extension of our procedure DP-A , which could handle defined arithmetic
functions (double, half, minus, p) and relations (odd, even). For that purpose, we use rewrite rules, which, for instance, using the theorem $\forall x . \forall y . \operatorname{double}(x)=y \Leftrightarrow$ $y=2 x$, it is sound to rewrite $F(\operatorname{double}(x))$ into $\forall y .2 x=y \Rightarrow F(y)$. Similarly, $\forall x \cdot \operatorname{even}(\operatorname{double}(x))$ can be rewritten to $\forall x \cdot \exists u \cdot \forall v \cdot 2 x=v \Rightarrow v=2 u$. Notice that these translations move outside the quantifier-free fragment of Presburger arithmetic, so we are using DP-A in an area where Hodes' procedure would be unsound, and so useless. Preliminary results are encouraging, but much more work needs to be done. We also want to deal with non-arithmetic functions (e.g., length of a list), using more powerful techniques: our aim is to explore Bundy's idea of proof-plans for normalization [4].

6 Conclusions

The effectiveness of DP-A (and hence any claim that Cooper's procedure is useful in tandem with the QR heuristic) must be offset by the fact that 80% of the corpus is invalid. Although Cooper's procedure outperforms Hodes' procedure on valid formulae, it did so to a lesser degree than DP-A outperformed Cooper's procedure on invalid formulae. Furthermore, another factor must be borne in mind. The corpus we generated did not contain many large constants, and the presence of these in formulae will often slow both Hodes' and Cooper's procedure, and hence DP-A . Note that the Sup-Inf family of procedures is not affected in this way.

We need to be cautious when advocating the use of DP-A more widelymore experiments on other corpora are required, especially on "real problems" generated during (say) inductive verification proofs. With these caveats, we draw the following conclusions from the corpus we used:

- Cooper's procedure was faster than Hodes' procedure on valid formulae; it was an order of magnitude slower on invalid formulae.
- Many invalid universally quantified formulae can be identified simply and quickly by checking ground instances over a small set of values.
- Cooper's procedure with the simple QR heuristic outperformed Hodes' procedures. This is a startling result. It goes against the grain of much work and commentary made on decision procedures in the past 25 years.
- When efficiency is comparable, it is highly preferable to use a decision procedure in a heuristic theorem prover rather than an incomplete decision procedure. Hodes' procedure (which is incomplete for quantifier-free PNA) fails to prove many PNA theorems; for such theorems much extra work may be incurred in trying other techniques (e.g., induction). We speculate that for most invalid PNA conjectures, even a slow decision procedure will be faster and more robust than heuristic techniques.
- Worst case analysis of complexity may be misleading: experimental evaluations can be useful.

On the basis of these experiments, we conclude that for quantifier-free Presburger arithmetic over the natural numbers, Cooper's procedure augmented with a 'quick reject' heuristic is superior to Hodes' procedure. This is a startling result that questions much of the perceived wisdom in the automated reasoning community.

References

[1] W.W.Bledose. A new method for proving certain Presburger formulas. In Proceedings of the 4 th International Joint Conference on Artificial Intelligence, Tbilisi, Georgia, U.S.S.R., 3-8 September 1975.
[2] R.S.Boyer and J.S.Moore. Integrating decision procedures into heuristic theorem provers: A case study for arithmetics. In J.E.Hayes, J.Richards and D.Mitchie, editors, Machine Intelligence 11, pages 83-124, 1988.
[3] Alan Bundy, F. van Harmelen, C. Horn and A.Smaill. The Oyster-Clam system. In M.E.Stickel, editor, 10th International Conference on Automated Deduction, pages 647-648. Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence No. 449. Also available from Edinburgh as DAI Research Paper No. 507.
[4] Alan Bundy. The use of proof plans for normalization. In R.S.Boyer, editor, Essays in Honor of Woody Bledsoe, pages 149-166. Kluwer, 1991. Also available from Edinburgh as DAI Research Paper No. 513.
[5] D.C.Cooper. Theorem proving in arithmetic without multiplication. In B.Meltzer and D.Mitchie, editors, Machine Intelligence 7, pages 91-99. Elsevier, New York, 1972.
[6] Louis Hodes. Solving problems by formula manipulation in logic and linear inequalities. In Proceedings of the 2nd International Joint Conference on Artificial Intelligence, pages 553-559. Imperial College, London, England, 1971.
[7] Georg Kreisel and Jean Louis Krivine. Elements of mathematical logic: Model theory. North Holland, Amsterdan, 1967.
[8] M.Presburger. Über die vőllstandigkeit eines gewissen systems der arithmetik ganzer zahlen in welchem die addition als einzige operation hervortritt. In C.R 1er Congr. des Mathematiciens des PAys Slaves, pages 92-101, Warsaw, 1930.
[9] Robert E. Shostak. On SUP-INF method for proving Presburger formulas. JACM, 24(4):529-543, October 1977.
[10] Robert E. Shostak. A practical decision procedure for arithmetic with multiplication for arithmetic with function symbols. JACM, 26(2):351360, April 1979.

[^0]: ${ }^{1}$ The first author is supported by The British Scholarship Trust. The other authors are supported in part by grants EPSRC GR/L/11724, and British Council ROM/889/95/70. Authors' address: Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, Scotland. Email: predragj@dai.ed.ac.uk, \{I.Green, A.Bundy\}@ed.ac.uk

[^1]: ${ }^{2}$ Shostak [9] attributes this result to Oppen.
 ${ }^{3}$ Multiplication of a variable by a constant is also Presburger: $n x$ is treated as $x+\cdots+x$, where x appears n times. We shall write 1 instead of $s(0)$, etc.

[^2]: ${ }^{4}$ For the same theory and some related theories there are a few different terms used. For instance, Hodes calls Presburger rational arithmetic a theory EAR ("the elementary theory of addition on the reals"). Boyer and Moore [2] describe a universally quantified fragment of Presburger rational arithmetic as linear arithmetic (although in fact they work over the integers); that same theory sometimes goes by the name Bledsoe real arithmetic.

[^3]: ${ }^{5}$ We emphasize that the Nqthm decision procedure is stronger than Hodes' procedure since it also has heuristics to deal with non-Presburger formulae by calling the inductive part of the prover.

[^4]: ${ }^{6}$ Obviously, this procedure could be used for all types of formulae (not just universally quantified ones): using this procedure we could transform (simplify) a formula to existentially quantified formula and try to disprove it using Cooper's procedure.
 ${ }^{7}$ Programs were written in Quintus Prolog; experiments were run on a 32 Mb Sun SPARC 4.

[^5]: ${ }^{8} 9868$ formulae from our corpus were treated by all procedures-so, 132 formulae are 'missing' in table 4. However, our QR heuristic rejected 107 of them, and thus, at most 25 formulae could change the first two columns in the table 4 if we had taken higher time limit.
 (Among the 'missing' formulae, there are formulae decided by one decision procedures and not decided by others, and some of them weren't decided by neither procedure. Generally, these formulae are formulae of large complexity, but it is a very difficult task to give some precise characterization of them - such a characterization would have to involve some deeper semantic knowledge.)
 ${ }^{9}$ Out of 756 formulae valid in both rational and natural arithmetic 330 are ground, 311 with 1,51 with 2,29 with 3,27 with 4 and 8 with 5 variables.

