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1 Introduction

Geometry is one of the mathematical disciplines demanding a big deal of the
human intuition. That’s why it is chalenging task to make a program solving
a geometry problems. Program EUCLID proves theorems of geometry in
a intuitive, geometrical way (more geometrico), and presents proves in a
natural language form. Besides, the mechanism and the basic principles of
the prover EUCLID led us to the new form of the foundation of geometry
and the new classification of geometrical axioms.

Program EUCLID was written in Arity PROLOG, but essential mach-
anism of the prover does not rely on PROLOG mechanisms. Despite the
limited resources of Arity PROLOG, the program was written in PROLOG
because of its suitable characteristics: flecsibility, mechanism of unification
etc.

2 Prover EUCLID - The Basic Principles

There are three modules in program EUCLID: the module of axioms, the
knowledge-pool and the proving mechanism. Although these modules are
independent they are built as a coherent system. Besides, these modules
are related by internal language in which all knowledge and conclusions are
expressed. The final output - proof of the certain theorem is written in a
natural language form. Because of its importance, first of all, let us focus
our attention at internal language.
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3 Internal Language

The internal language L of the prover covers all objects and relations ac-
curing in geometrical axioms. Also, theorem that is to be proved has to be
expressed in the internal language, so the internal language is important for
user, also. All relations of the internal language L (including unary relations
defining objects) are shown in table 1.

predicate meaning

t(a) a is a point
l(b) b is a line
p(c) c is a plane
identical(a, b) a and b are identical
non identical(a, b) a and b are not identical
i(a, b) a and b are incident
non i(a, b) a and b are not incident
b(a, b, c) b lies between a and c
non b(a, b, c) b does not lie between a and c
c(a, b, c, d) pair (a, b) is congruent to pair (c, d)

collinear(a, b, c) a, b and c are collinear
non collinear(a, b, c) a, b and c are not collinear
coplanar(a, b, c, d) a, b, c and d are coplanar
noncoplanar(a, b, c, d) a, b, c and d are not coplanar
intersect(a, b) a intersects b
non intersect(a, b) a does not intersect b

Table 1. Relations (primitive and defined) in system EUCLID

Internal representation of relations (except for unary relations) has one
argument more then in a table, and a value of that argument is an index of
relation in a knowledge-pool.

We denoted by EL the class of all geometry theorems that can be ex-
pressed either as:

∀x1,∀x2, ...∀xn, ∃Y1, ∃Y2, ...∃Ym(φ(x1, x2, ...xn ⇒ ψ(x1, x2, ...xn, Y1, Y2, ...Ym))

or as:
∀x1, ∀x2, ...∀xn,∃Y1,∃Y2, ...∃Ym(φ(x1, x2, ...xn ⇒

2



ψ1(x1, x2, ...xn, Y1, Y2, ...Ym) ∨ ψ2(x1, x2, ...xn, Y1, Y2, ...Ym) ∨ ...

... ∨ ψk(x1, x2, ...xn, Y1, Y2, ...Ym))

or as:
∀x1,∀x2, ...∀xn(φ(x1, x2, ...xn)⇒ ψ(x1, x2, ...xn))

or as:
∃Y1, ∃Y2, ...∃Ym(ψ(Y1, Y2, ...Ym))

where φ, ψ and ψi are conjunctions of L relations ranging over some of
the arguments x1, x2, ...xn and Y1, Y2, . . . Ym.

The first mentioned form we shall call universal-existential form (∀ −
∃), the second universal-existential-disjunctive form (∀ − ∃ − ∨), the third
universal form (∀) and the fourth existential form (∃). All of them we shall
denote by F .

We interpret the EL theorems in program EUCLID in a appropriate
PROLOG way. The class EL will be the subject of the following text.

4 The Module of Axioms

Module of axioms consists of all geometrical axioms whithout continuity
axioms and so called ADT module. ADT module consists of the following
axiom, definitions and trivial theorems:

• The additional geometry axiom:

∀a,∀b,∀c(i(a, b) ∧ i(b, c))⇒ i(a, c))

• The identity axioms:
∀a identical(a, a)

∀a,∀b (identical(a, b)⇒ identical(b, a))

∀a,∀b, ∀c (identical(a, b) ∧ identical(b, c)⇒ identical(a, c))

• The substitution axioms:

∀a1, . . .∀ai, . . .∀an,∀b(φ(a1, . . . ai, . . . an)∧ identical(ai, b)⇒ φ(a1, . . . b, . . . an)).

where φ is a L relation.
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• The definitions:

If points a, b and c and line l are such that i(a, l), i(b, l), i(c, l), then
we shall say that the points a, b and c are collinear.

If points a, b, c and d and plane p are such that i(a, p), i(b, p), i(c, p), i(d, p),
then we shall say that the points a, b, c and d are coplanar.

If a is a point and i(a, b), i(a, c), then we say that b intersects c.

• The trivial theorems:

If points a, b and c and line l are such that i(a, l), i(b, l), non i(c, l),
then we shall say that the points a, b and c are non collinear.

If points a, b, c and d and plane p are such that i(a, p), i(b, p), i(c, p), non i(d, p),
then we shall say that the points a, b, c and d are not coplanar.

Let us note that all axioms, definitions and theorems just listed above
are of one of the F forms. Also, each geometry axiom (excluding continuity
axiom) can be put in one of the F forms 1 .

We denoted by E the class of all EL theorems which can be established
by use of the elements from the module of axioms. It can be shown that
program EUCLID can prove all E theorems.

Although prover EUCLID does not use any set-theory segment, class E
is wide enough to cover great part of usual elementary geometry courses.
Also, any geometry theorem could be included into the module of axioms
for the sake of more efficient and simplier proving process.

According to the mechanism of the prover, order of the axioms is very
important and determine the way of establishing of a theorem. Efficience of
the prover is related to the order of axioms and this inspired us for the new
classification of geometrical axioms. There are divided into five groups:

-”identity” axioms;
-”unproductive” axioms;
-”branching” axioms;
-”productive” axioms;
-”strongly productive” axioms.
Each group of axioms has a different status, and order of the axioms in a

each group is also of the great importance. This order determines efficience
of the prover.

1Tarski wrote about these forms of geometry axioms in a quite different context!
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Proving mechanism is the essential part of the program EUCLID and it
is based upon so called ”sentinel-principle”. That principle enables proving
of all E theorems in a finite number of steps.

5 The Knowledge-pool

All objects and knowledge which are used in prover EUCLID are expressed
in the knowledge-pool. In the begining of the proving process for a certain
theorem, knowledge-pool contains only datas about objects (denoted by
letters) and relations given by theorem itself. During the proving process,
all objects and relations inferenced upon module of axioms are being added
to knowledge-pool with their unique (natural number) index. For unary
predicates (defining objects) this index is their only argument and it is their
identifier.

The state of the knowledge-pool is determined by value of the so-called
sentinel. The sentinel determines the set of objects from the knowledge-pool
that are accesable for certain axioms in a process of proving.

The current state of the knowledge-pool is determined by the proving
mechanism. In case of branching (in process of theorem proving) parts of
knowledge-pool related to disjunctive branches are independent and this
saves integrity of the knowledge-pool as a knowledge base.

6 The Proving Mechanism

For sake of illustration, let us see the key PROLOG predikate of the proving
mechanism:

proof :- contradiction.
proof :- proved.
proof :- adt(M),proof.
proof :- ax u(M),proof.
proof :- assumption(P,NotP),

index(B),
retract(comments(true)),assert(comments(fail)),
push(B,0),justified(P,IP),pop(B,0),
push(B,0),justified(NotP,INotP),pop(B,0),
retract(comments(fail)),assert(comments(true)),
((IP=true,INeP=true,proofp([P,NeP]));
(IP=true,INeP=false,proofp([P]));
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(IP=false,INeP=true,proofp([NeP]))).
proof :- ax b(M).
proof :- ax p(M),proof.
proof :- sentinel(G),

first object(G,N),N1 is N+1,
retract(sentinel(G)),
assert(sentinel(N1)),
proof.

proof :- ax sp(M),proof.

In the very beginning of the program’s work, there are to be given as-
sumptions of a certain geometry theorem and its conclusion. Before acti-
vating the key PROLOG predicate in the proving mechanism - predicate
”proof”, knowledge-pool contains only datas about objects (denoted by let-
ters) and relations given by theorem assumptions, and all that objects are
accesable for the module of axioms.

The key part of the algorithm can be (unpresicely) defined as follows:
(1) Check if there is a contradiction in the knowledge-pool; if there is,

report it and finish proving process in the current branch of a proof; if there
is not, go to step (2);

(2) Check if there are enough knowledge in the knowledge-pool to con-
clude that the theorem is proved; If there are, report it, define objects and
relations making conclusion of the given theorem and finish proving process
in the current branch of a proof; if there are not, go to step (3);

(3) If possible, apply one of the ADT element and go to step (1); if not,
go to step (4);

(4) If possible (according to current state of knowledge-pool and sentinel
value), apply one of the unproductive axioms and go to step (1); if not, go
to step (5);

(5) If possible, assume that some relation over some objects from current
knowledge-pool holds and add this assumption to the knowledge-pool as
a fact; similary, assume negation of that relation; make proves for both
cases; if it is not possible to assume any ralation over objects from current
knowledge-pool, go to step (6);

(6) If possible (according to current state of knowledge-pool and sen-
tinel value), apply one of the branching axioms and make proves for all its
branches; if not, go to step (8);

(7) If possible (according to current state of knowledge-pool and sentinel
value), apply one of the productive axioms and go to step (1); if not, go to
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step (8);
(8) If possible (according to current state of knowledge-pool and sentinel

value), apply one of the strongly productive axioms and go to step (1); if
not, go to step (9);

(9) Select the object with the least index greater then current value of
the sentinel; give the value of this index to the sentinel; go to step (1).

This algorithm can be modified in such a way to prove many theorems
more efficiently, but that version of the prover can not prove all E theorems.

The sentinel has a key role in determining which objects from the knowledge-
pool are accesable in certain moment of the proving process. It is a sentinel
principle which guaranatee ability of proving all E theorems.

7 The Sentinel Principle

The sentinel value in each moment of the proving process is determining
a set of accesable objects for geometry axioms. In the proving process all
elements of ADT module could be applied no matter to the sentinel value
(i.e. all objects from the knowledge-pool are accesable for them). Immidiate
after entering the assumtions of the theorem which is to be proved, all
objects occuring in these assumtions are accesable. During the proving
process, the knowldge-pool is spreading (according to foregiven algorithm
and by application of the geometry axioms and ADT elements). If step
(9) of the algorithm is reached in the proving process, none axiom or ADT
element could be applied according to current state of the knowledge-pool
and the sentinel value. Then the set of accesable objects, i.e. the sentinel
value is to be changed. The sentinel is getting a least index value of all
objects which have indexes greater then current sentinel value. It means
that the first object whose existency was established since the last change
of the sentinel value will be added to the set of accesable objects. Then the
proving process is continuing with application of axioms. That is how there
is ensured inferencing of all possible conclusions for given set of relations
and accesable objects. Also, that is how there is ensured inferencing of all
concluslions relevant for the given theorem, and enabled occuring of any
”infinite” branch in the proving process.

Let’s point out (once again) that forementioned mechanism ensures prov-
ing of all E theorems in a finite number of steps (but, many theorems could
not be proved because of the limited recources of the Arity PROLOG). Also,
let’s point out that it is not a difficult task to extend the program EUCLID
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in such a way to optimize its finished proves (i.e. to eliminate all unneccesary
steps).

8 The EUCLID Axiomatic System of Elementary
Geometry

In the axiomatic system of elementary geometry (geometry without axiom
of continuity) inspired by the program EUCLID, as the primitive notions
we take one fixed set G (geometry objects set) and seven primitive relations
over geometry objects: three unary relations is a point, (denoted by t),
is a line (l) and is a plane (p), two binary relations identical (denoted by
identical) and incidental (i), one ternary relation between (denoted by b)
and one quaternary relation congruent (denoted by c). (Instead of writing
For a such that it holds t(a) ... we shall write For point a ....) We also use
negations of these relations (except for congruence - its negation does not
occur in any axiom). As a defined relations, we use relations colliner and
coplanar (with their negations) and relation intersect (we don’t use definition
for relation non-intersect, but we use it as a assumtion of a theorem or as
a assumption during the proving process). We don’t use any set-theory
segment. We use ”classical” geometry axioms, additional incidence axiom
and ”identity” axioms (see section 4) and use them according to rules of
Gentzen’s NK calculus. All axioms are divided into five groups:

-”identity” axioms (see section 4);
-”unproductive” axioms (axioms of the form ∀);
-”branching” axioms (axioms of the form ∀ − ∃ − ∨);
-”productive” axioms (axioms of the form ∀ − ∃);
-”strongly productive” axioms (axioms of the form ∃).
(according to foregiven classification additional incidence axiom belongs

to group of unproductive axioms)
In the forementioned modified version of the program EUCLID some of

the productive axioms was put into the group of stronly productive axioms.
That version of the program makes some proves more efficiently, but can’t
prove all E theorems.

During the proving proces prover EUCLID is denoting all new geometry
objects by natural numbers and practicaly is making a model (or models)
of elementary geometry in a set of natural number, or more precisely, part
of that model sufficient to prove the given theorem. It means that, indepent
of any concrete theorem, algorithm EUCLID could generate a model of ele-
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mentary geometry in a set of natural numbers in an infinite (but recursive!)
process.

Appendix

For the sake of traditional approach, a prover EUCLID gives proves
according to traditional sense of relation incidence as a set relation.

Predicates occuring in the program’s proves (except unary ones) have
one additional argument and that is their unique index (see section 3).

Example 1.
Theorem: Just one plane passes through two intersecting and distinct

lines.
***** EUCLID v4.00 - Geometry Theorems Prover *****
Enter list of assumtions:
[l(a),l(b),non identical(a,b),intersect(a,b)].
There exists a point 3 such that i(3,a) and i(3,b).
Enter conclusion of the theorem:
p(X),e(a,X, ),e(b,X, ),unique(X).
By axiom 1.1, there exists a point 6, distinct from 3, such that 6 i(6,a).
Let us assume i(6,b).
By axiom 1.3, lines a and b are identical.
Conradiction: non identical(a,b) and identical(a,b)!
Let us assume non i(6,b).
By axiom 1.1, there exists a point 14, distinct from 3, such that i(6,b).
There must be non identical(6,14) (oposite assumtion is obviously in

contradiction to other assumtions).
We have i(3,b), i(14,b) and non i(6,b), so points 3, 6 and 14 are non collinear,
Points 3, 6 and 14 are non collinear so we have non i(14,a).
By axiom 1.2, there exists a line 26, such that i(6,26) and i(14,26).
Points 6, 14 and 3 are non collinear so we have non i(3,26).
By axiom 1.5, there exists a plane 30, such that i(3,30), i(6,30) and

i(14,30).
By axiom 1.7, since i(3,30) and i(6,30), we have i(a,30).
By axiom 1.7, since i(3,30) and i(14,30), we have i(b,30).
Therefore there exists the plane we are seeking.
Let us prove that this is only one such plane.
Let us assume the opposite - there exists one more such plane (36), planes

30 and 36 are non identical and let us prove contradiction.
Since i(3,a) and (a,36), we have i(3,30).
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Since i(6,a) and (a,36), we have i(6,30).
Since i(14,b) and (b,36), we have i(14,30).
By axiom 1.7, since i(6,30) and i(14,30), we have i(26,30).
There must be non identical(a,26) (opposite assumtion is obviously in

contradiction to other assumtions).
There must be non identical(b,26) (opposite assumtion is obviously in

contradiction to other assumtions).
* By axiom 1.6, since points 3, 6 and 14 are common for planes 30 and

36 there are identical.
Conradiction: non identical(30,36) and identical(30,36)!
Therefore p(30),e(a,30,34),e(b,30,35),unique(30), QED.
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