
SAT Solver Verification Project⋆
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Abstract. In this paper we give an overview of our SAT solver verifi-
cation project. This is the first paper to present this project as a whole.
We summarize the results achieved in the verification of SAT solvers de-
scribed in terms of abstract state transition systems, in the Hoare-style
verification of an imperative implementation of a modern SAT solver,
and in generation of a trusted SAT solver based on the shallow embed-
ding into HOL. Our formalization and verification are accompanied by
a solver implemented in C++ and a trusted, automatically generated
solver implemented in a functional language. One of the main final goals
of our project is reaching to an both efficient and fully trusted SAT solver.
Other goals include rigorous analyzes of existing SAT solving systems.

1 Introduction

One of the most important goals of computer science is reaching trusted software.
This is especially important for algorithms and programs that have numerous
applications, including SAT solvers — programs that test satisfiability of propo-
sitional formulae.

Spectacular improvements in the performance of SAT solvers have been
achieved in the last several years and nowadays SAT solvers can decide satisfia-
bility of propositional formulae with tens of thousands of variables and millions
of clauses. However, this tremendous advance in the SAT solving technology
has not been accompanied with corresponding theoretical results about solvers’
correctness. Descriptions of new algorithms and techniques are usually given in
terms of implementations, while correctness arguments are either not given or
are given only in outlines. This gap between practical and theoretical progress
needs to be filled and first steps in that direction have been made only recently,
leading to the ultimate goal of having modern SAT solvers that are formally
proved correct.

One approach for achieving a higher level of confidence in SAT solvers’ re-
sults, successfully used in recent years, is proof-checking. In this approach, solvers
are modified so that they output not only sat or unsat answers, but also evi-
dences for their claims (models for satisfiable instances and proof-objects for
unsatisfiable instances) which are then checked by independent proof-checkers.

⋆ This work was partially supported by Serbian Ministry of Science grant 144030.



Proof-checking is relatively easy to implement, but it has some drawbacks. First,
the evidence for every solved SAT instance has to be verified separately. Also,
generating unsatisfiability proofs introduces some overhead to the solver’s run-
ning time, proofs are typically large and may consume gigabytes of storage space,
and proof-checking itself can be time consuming [Gel07]. Since proof-checkers
have to be trusted, they must be very simple programs so they can be ,,verified”
by code inspection. On the other hand, in order to be efficient, they must use
specialized functionality of the underlying operating system which reduces the
level of their reliability (e.g., the proof checker used in the SAT competitions
uses Linux’s mmap functionality [Gel07].)

Another approach is to verify a SAT solver itself, instead of checking each
of the solver’s claims. This approach is much harder to realize, since it requires
formal analysis of the complete solver’s behaviour. Still, we opt for this approach,
as we believe that it is much more rewarding:

– Although the overheads of generating unsatisfiability proofs during solving
are not unmanageable, they can still be avoided if the solver itself is trusted.

– Verification of modern SAT solvers could help in better theoretical under-
standing of how and why they work. A rigorous analysis and verification of
modern SAT solvers may reveal some possible improvements in underlying
algorithms and techniques which can influence and improve other solvers as
well.

– Verified SAT solvers can serve as trusted kernel checkers for verifying results
of other untrusted verifiers such as BDDs, model checkers, and SMT solvers
[SV09]. Also, verification of some SAT solver modules (e.g., Boolean con-
straint propagation) can serve as a basis for creating both verified and an
efficient proof-checkers for SAT.

– We want to demonstrate that, thanks to the recent advances in software
verification technology, the time has finally come when it is possible to have
a non-trivial, widely used software fully verified. Such work would contribute
to the Verification Grand Challenge [VSTTE].

In this paper we present our ongoing project on SAT solver verification, with
largest parts already completed. The project aims at producing solvers that are
both efficient and fully trusted. In order to achieve the desired, highest level
of trust, a fully mechanized and machine-checkable formalization (within the
Isabelle proof assistant) is being developed. Within the project and in this paper
we consider three ways of specifying modern SAT solvers and the corresponding
verification paradigms (each with its advantages and disadvantages):

Abstract state transition systems. We have formally verified several ab-
stract state transition systems that describe SAT solvers [NOT06,KG07].
Verification of such systems proves to be of vital importance because it
serves as a key building block in other approaches to formalization.

Imperative implementation. We have made a more detailed (compared to
the abstract state transition systems) description of a SAT solver in an im-
perative pseudo programming language. In parallel, we have developed a



corresponding SAT solver ArgoSAT in C++. The solver properties have
been formalized and verified within the Hoare logic.

Shallow embedding into a proof assistant. We have defined a SAT solver
as a set of recursive functions within higher order logic of the system Is-
abelle (regarded as a pure functional language) and its correctness has been
formally proved, mainly by induction and equational reasoning. Based on
this specification, an executable functional program has been generated by
means of the code extraction.
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Fig. 1. Overall structure of the SAT solver verification project

An overall structure of our project is illustrated in Fig. 1. The basic compo-
nent is a formalization of propositional logic and notions used in SAT solving.
Notice that the confidence in our correctness proofs for a SAT solver, in bottom
line, relies on the definition of satisfiability of propositional formulae. Fortu-
nately, this definition is rather simple and can be checked by human inspection.

In the rest of the paper, we just briefly explain the modern SAT solving
technology and algorithms and we refer the interested reader to other sources
on these matters (e.g, [BHM+09]). Due to the lack of space, we also give just
a very few used definitions and just briefly comment only the central theorems
and proofs. All the definitions, conjectures, and proofs have been completely for-
malized and verified within the Isabelle/Isar system [NPW02] and the complete
proof documents are available in [Mar08]. Parts of the described project have
been already described elsewhere [MJ09a,Mar09a,Mar09b,Mar09c,MJ09b], but
in this paper the project is described as a whole for the first time.

2 Background

SAT Problem and SAT Solvers. SAT is the problem of deciding if there is a val-
uation of propositional variables under which a given propositional formula (in



conjunctive normal form) is true. It is one of the central problems in computer
science. SAT is the first problem that was proved to be NP-complete [Coo71] and
it still holds a central position in the field of computational complexity. There
is a number of SAT solvers — procedures that solve the SAT problem. The
majority of the state-of-the-art complete SAT solvers are based on the branch
and backtrack algorithm called Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm [DP60,DLL62] and we consider only them. Spectacular improvements
in their performance achieved in the last several years are due to (i) several
conceptual enhancements on the original DPLL procedure, (ii) smart heuristic
components, and (iii) better implementation techniques. Thanks to these ad-
vances, modern SAT solvers can handle more and more practical problems in
areas such as electronic design automation, software and hardware verification,
artificial intelligence, operations research.

Program Verification. Program verification is the process of proving that a com-
puter program meets its specification (that describes the expected program be-
haviour). Early results date back to 1950’s and to the pioneers in this field,
including Alan Turing, John von Neumann, and John McCarthy. In the late
1960’s, Robert Floyd introduced reasoning on flowcharts for proving program
correctness and Anthony Hoare introduced the Hoare logic — an axiomatic se-
mantics for programming constructs. Many of early results in mechanical prov-
ing of program properties were carried out by Robert Boyer and J Moore using
their theorem prover. Following lessons from major software failures, an increas-
ing amount of effort has been being invested in this field. To achieve the highest
level of trust, correctness proofs must be mechanically checkable by proof as-
sistants. Many fundamental algorithms and properties of data structures have
been formalized and verified in this way. Lot of efforts has also been invested
into formalization of programming language semantics, compilers, communica-
tion protocols, security protocols, etc. Proof assistants that are most commonly
used for program verification nowadays are Isabelle, HOL, Coq, PVS, Nuprl, etc.

3 Formalization of Logic of Propositional CNF Formulae

Central notions in SAT solving are propositional formulae in conjunctive normal
form (CNF) and their satisfiability. In this section, it will be briefly described
how are these notions formalized within the higher order logic of Isabelle1.

Syntax of CNF formulae. The syntax of propositional logic of CNF formulae is
based on the following types.

Definition 1. A Variable is identified with a natural number. A Literal is either
a positive variable (Pos vbl) or a negative variable (Neg vbl). A Clause is a list
of literals. A CNF Formula is a list of clauses.

1 Our theory builds upon the built-in theory Main which includes that basic notions
of HOL as well as the theory of lists.



Several basic operations on these types are introduced2. For example, the
variable of a literal l is denoted by (var l) and the set of all variables that occur
in a formula F is denoted by (vars F ). The opposite literal of a literal l is denoted
by l, and for Pos vbl the opposite literal is Neg vlb, and for Neg vbl the opposite
literal is Pos vbl.

Semantics of CNF formulae. Semantics of CNF formulae is based on the no-
tion of valuation. Although valuations are usually defined as mappings assigning
Boolean values to variables, we use a definition that more closely relates to the
internal working of modern SAT solvers.

Definition 2. A Valuation is a list of literals

Consistent valuations are of special importance as there is a bijective corre-
spondence between consistent valuations and (partial) mappings of variables to
Boolean values.

Definition 3. A valuation v is consistent, denoted (consistent v), iff it does not
contain both a literal and its opposite.

The notions of truth and satisfiability are introduced by the following two
definitions.

Definition 4. A literal l is true in a valuation v, denoted v � l, iff l ∈ v.
A clause c is true in a valuation v, denoted v � c, iff ∃l. l ∈ c ∧ v � l.
A formula F is true in a valuation v, denoted v � F , iff ∀c. c ∈ F ⇒ v � c.
A literal l is false in a valuation v, denoted v �¬l, iff l ∈ v.
A clause c is false in a valuation v, denoted v �¬c, iff ∀l. l ∈ c ⇒ v �¬l.
A formula F is false in a valuation v, denoted v �¬F , iff ∃c. c ∈ F ∧ v �¬c.

Definition 5. A model of a formula F is a consistent valuation in which F
is true. A formula F is satisfiable, denoted (sat F ), iff it has a model i.e.,
∃v. (consistent v) ∧ v � F

Although these logical notions are sufficient to formulate the correctness con-
ditions for SAT solvers, in order to prove these conditions, many additional no-
tions of propositional logic have to be introduced and their properties have to
be formally proved. For example, entailment of a literal or a clause by a formula
(denoted by F � l or F � c), logical equivalence of two formulae (denoted by
F1 ≡ F2), etc.

SAT solving related notions. Some notions specific to SAT solving are also intro-
duced. For example, a unit clause c (denoted by isUnit c l v), is a clause which
contains a literal l undefined in v and whose all other literals are false in v;
a reason clause c for the literal l (denoted by isReason c l v), is a clause that

2 All the presented definitions have been formalized (most of them by using primitive
recursion), but, in order to simplify presentation and improve readability, we give
them only informally.



contains l (true in v), whose all other literals are false in v, and their opposites
precede l in v; the resolvent of two clauses (denoted by resolve c1 c2 l), etc.

Modern SAT solvers slightly extend the notion of valuation by distinguishing
two different kinds of literals: decision and implied.

Definition 6. An assertion trail (or trail) is a list of (Literal, Bool) pairs. De-
cisions are assigned the value ⊤, and implied the value ⊥.

Example 1. A trail M could be [+1, |−2, +6, |+5,−3, |−7]. Decision literals are
marked by the symbol | and they split the trail into levels, so M has 4 different
levels (marked by 0 to 3): +1, then −2, +6, then +5,−3, and −7.

There is a number of operations on assertion trails used within SAT solvers.
These operations have also been formally defined within our theory and their
properties have been formally proved. Some of these are the list of decisions in
a trail (denoted by (decisions M)), the list of decisions that precede the first
occurrence of a given literal (denoted by decisionsTo l M)), the number of levels
in a trail (denoted by (currentLevel M)), prefix of a trail up to the given level
(denoted by (prefixToLevel level M)), etc.

4 Verification of the State Transition Systems

Modern DPLL-based SAT solvers can be modelled as state transition systems.
Such systems can define the top-level architecture of SAT solvers as mathe-
matical objects that can be rigorously reasoned about and whose correctness
is expressed in pure mathematical terms. During the last few years two such
systems have been proposed [NOT06,KG07]. Both systems are accompanied by
informal pen-and-paper correctness proofs.

Decide:

l ∈ F0 l, l /∈M

M := M |l

UnitPropagate:
c ∈ F isUnit c l M

M := M l

Conflict:
conflict = ⊥ c ∈ F M �¬c

conflict = ⊤ C := c

Explain:

conflict = ⊤ l ∈ C c ∈ F isReason c l M

C := resolve C c l

Backjump:

conflict = ⊤ C ∈ F C = l ∨ l1 ∨ . . . ∨ lk level l > m ≥ level li
conflict = ⊥ M := (prefixToLevel m M) l

Learn:
C /∈ F

F := F ∪ C

Forget:
conflict = ⊥ c ∈ F F \ c � c

F := F \ c

Restart:
conflict = ⊥

M := prefixToLevel 0 M

Fig. 2. Abstract state transition system for a DPLL-based SAT solver

The system presented in [NOT06] is very coarse and it can capture many
different state-of-the art SAT solvers, at a price that it is far from the actual
implementations. The system presented in [KG07] is somewhat more specific



and it gives a more detailed description of some parts of the solving process
(especially the conflict analysis phase). We used this system as a starting point
and developed a slightly modified transition rule system shown in Fig. 2. The
system models the solver’s behaviour as transitions between states that repre-
sent values of the global variables of the solver. Transitions between states are
performed only by using the transition rules. The rules have guarded assignment
form: above the line is a condition that enables the application of the rule, below
the line is an update to the state variables. The solving process is finished when
no transition rule applies and a final state is reached.

A state of the rule-based SAT solver (F, M, C, conflict) consists of the for-
mula F being tested for satisfiability, a trail M , a conflict analysis clause C,
and a Boolean variable conflict that flags if the current formula is false in the
current valuation (i.e., if the conflict analysis is under way).

The transition rules given above informally, have been formalized using rela-
tions over states. For instance,

unitPropagate (M1, F1, C1, conflict1) (M2, F2, C2, conflict2) ⇐⇒

∃c l. c ∈ F1 ∧ isUnit c l M1 ∧

M2 = M1 @ l ∧ F2 = F1 ∧ C2 = C1 ∧ conflict1 = conflict2

We say that two states are in relation →, if they are in one of the relations
describing the transition rules.

Definition 7. A state ([ ], F0, [ ],⊥) is an initial state for the input formula F0.
A state s is final state with respect to →, if and only if it is its minimal

element, i.e., if there is no state s′ such that s → s′.
A final state is an accepting state if it holds that conflict = ⊥.
A final state is a rejecting state if it holds that conflict = ⊤.

Our correctness proof for the above system is based on formulating a set of
suitable invariants and a well-founded ordering defined on states that ensures
termination (as illustrated in Fig. 1). We formulated suitable invariants and
proved that they hold for each state reached from an initial state (i.e., we proved
that each invariant holds for initial states and that each invariant holds after each
rule application).

Definition 8.
Invariantconsistent: consistent M
Invariantdistinct: distinct M
InvariantvarsM : vars M ⊆ vars F0

InvariantvarsF : vars F ⊆ vars F0

Invariantequiv : F ≡ F0

InvariantimpliedLiterals: ∀l. l ∈ M =⇒ F @ (decisionsTo l M) � l
InvariantCfalse: conflict =⇒ M �¬C
InvariantCentailed: conflict =⇒ F � C
InvariantreasonClauses: ∀ l. l ∈ M ∧ l /∈ (decisions M) =⇒

∃ c. (isReason c l M) ∧ F � c



For introducing a required well-founded ordering over states, we had to define
several auxiliary orderings, as follows.

Definition 9.

l1 ≺lit l2 ⇐⇒ (isDecision l1) ∧ ¬(isDecision l2)

M1 ≻trail M2 ⇐⇒ M1 ≺lit
lex M2

M1 ≻restrict
trail M2 ⇐⇒ (distinct M1) ∧ (vars M1) ⊆ (vars F0) ∧

(distinct M2) ∧ (vars M2) ⊆ (vars F0) ∧

M1 ≻trail M2

F1 ≻C
formula F2 ⇐⇒ C /∈ F1 ∧ C ∈ F2

C1 ≻M
cclause C2 ⇐⇒ 〈remdups C2〉 ≺

M
mult 〈remdups C1〉

conflict1 ≻cflag conflict2 ⇐⇒ conflict1 = ⊥ ∧ conflict2 = ⊤.

where ≺lit
lex denotes the lexicographic extension of the ordering ≺lit and ≺M

mult is
the multiset extension of the ordering of literals ≺M induced by their order in
the list M .

The ordering ≻, defined as lexicographic combination of four orderings as
follows, is a well-founded ordering on states.

Definition 10. (M1, F1, C1, conflict1) ≻ (M2, F2, C2, conflict2) ⇐⇒

M1 ≻restrict
trail M2 ∨

M1 = M2 ∧ conflict1 ≻cflag conflict2 ∨

M1 = M2 ∧ conflict1 = conflict2 ∧ C1 ≻M1

cclause C2 ∨

M1 = M2 ∧ conflict1 = conflict2 ∧ C1 = C2 ∨ F1 ≻C1

formula F2

It has been proved that the system is terminating, using the fact that for
any two states s1 and s2 reachable from an initial state it holds that s1 → s2

implies s1 ≻ s2. By the given invariants, it has been also proved that the system
is sound and complete.

Theorem 1 (Correctness). For any satisfiable input formula, the system con-
sisting of the given rules terminates in an accepting state, and for any unsatis-
fiable formula, it terminates in an rejecting state.

The main advantage of the abstract state transition systems is that they are
mathematical objects, so it is relatively easy to make their formalization within
higher order logic and to formally reason about them. Also, their verification can
be a key building block for other verification approaches. Disadvantages are that
the transition systems do not specify many details present in modern solvers’
implementation and that they are not directly executable.

More details on the verification of the abstract state transition systems for
SAT are given in [MJ09b].



5 Hoare-style Verification

Verification of imperative programs is usually done in the Floyd-Hoare logic
[Hoa69]. It is a formal system that provides a set of logical rules for reasoning
about the correctness of computer programs with the rigor of mathematical
logic. The central object in the Hoare logic is a Hoare triple that describes how
the execution of a piece of code changes the state of a computation. A Hoare
triple is of the form {P} code {Q}, where P (the precondition) and Q (the
postcondition) are logic formulae and code is a programming language code.
Hoare triple should be read as: ”given that the assertion P holds at the point
before code is executed and the code execution terminates, the assertion Q will
hold at the point after code was executed”. Hoare triples are manipulated by the
inference rules that are formulated for each construct of the used programming
language. For example, the inference rule for the while statement is:

{P ∧ B} S {P}

{P} while B do S {¬B ∧ P}

Using this approach, we have verified the core of our solver ArgoSAT3 im-
plemented in C++4. Its implementation [Mar09b] supports all standard modern
SAT solving techniques, but in the same time it closely follows the abstract state
transition system given in Sect. 4. For example, the rule UnitPropagate is applied
by using the function applyUnitPropagate, implemented as:

void Solver::applyUnitPropagate() {

assertLiteral(_Q.front(), false);

_Q.pop_front();

}

However, using the Hoare logic for the language complex as C++ was out of
our reach. Therefore, we designed a pseudo language rich enough to support the
implementation of our SAT solver, but simple enough to formulate a convenient
Hoare logic axioms for all its constructs. The whole of the solver’s core has
been expressed within this pseudo language5 and, for example, the function
applyUnitPropagate is expressed as:

function applyUnitPropagate() : Boolean

begin

assertLiteral ((head Q), false);

Q := (tail Q);

end

As already said, although abstract state transition systems give quite clear
descriptions of modern DPLL-based SAT solvers, they are still relatively far
from the actual implementations. For example, the UnitPropagate rule does not

3 The web page of ArgoSAT is http://argo.matf.bg.ac.yu.
4 The core of ArgoSAT, implementing the rules given in Fig. 2 in an efficient way,

counts around 1500 lines, while the whole system counts around 5000 lines.
5 The description of the solver in the pseudo language is somewhat shorter then in

C++, because of the simplified syntax.



specify how are the unit literals found. In the implementation given above, the
unit literals are placed in a unit propagation queue Q from where they are taken
and asserted to M by using the assertLiteral function. Therefore, a precondition
for the applyUnitPropagate function is that all literals of Q are unit literals. The
following example Hoare triple states that this property is preserved after the
function call:

{∀l. l ∈ Q −→ ∃ c. c ∈ F ∧ isUnit c l M}
applyUnitPropagate()

{∀l. l ∈ Q −→ ∃ c. c ∈ F ∧ isUnit c l M}

There is a number of features like this one that are not covered by the state
transition systems, but are present in the implementation that was verified.
These include most techniques used in state-of-the-art SAT solvers (e.g., Min-
iSAT [ES04]), and the most significant ones are the following.

False and unit clause detection. One of the most important aspects for effi-
cient implementation is how to detect whether there are false or unit clauses
in F wrt. the current trail M , i.e., how to detect whether the rules Conflict

and UnitPropagate (shown in Fig. 2) are applicable. This is achieved by using
the two-watch unit propagation scheme, and the unit propagation queue Q
from the example above is introduced as a part of this technique.

Special treatment of single-literal clauses. Clauses that contain only one
literal are not stored in the current set of clauses F , but their literals are
directly asserted to the level zero of the trail M . This simplifies the imple-
mentation of the two-watch propagation scheme (although it complicates
some other parts of the implementation and the corresponding correctness
proofs).

Strategy and implementation of the conflict analysis. During the conflict
analysis process (modelled by the Conflict and Explain rules shown in Fig. 2),
after the Conflict rule has been applied, there is a number of possible ways
to apply the Explain rule. A strategy often employed by SAT solvers (also
used in our implementation) is the first unique implication point (firstUIP).
With it, the Explain rule is always applied to the last falsified literal of C in
M and the explaining is performed until the first point when the Backjump

rule becomes applicable. Also, efficient data-structures are used for storing
the conflict analysis clause C.

Concerning heuristic components, instead of proving correctness of their
implementation, functions that implement them have been specified by Hoare
triples. This way, for any implementation of a heuristic it suffices to prove that
it meets the corresponding Hoare triple. For example, the selection of a literal
for the Decide rule is specified as follows:

{vars M 6= vars F0} selectLiteral() {var ret ∈ vars F0 ∧ var ret /∈ vars M}

Once the solver has been described in the pseudo programming language, the
preconditions and postconditions for each fragment of the code are manually
specified and joint together, following a suitable Hoare logic for our pseudo



language. These correctness conditions express only partial correctness and not
termination of the program. Termination could be proved using the ordering
similar to the one described in Sect. 4. The entry point to the solver is the
solve function which, if terminates, sets the value of satF lag (either to SAT or
UNSAT ). The main verification result is the following theorem.

Theorem 2 (Partial correctness). The SAT solver satisfies the Hoare triple:
{⊤} solve(F0) {(satF lag = UNSAT ∧¬sat F0)∨(satF lag = SAT ∧M � F0)}

The main benefit of using Hoare style verification is that it enabled us to
address imperative code which is the way that most real-world SAT solvers are
implemented. In addition, all verification conditions have formally been proved
within a proof assistant. Thanks to this, the confidence in our solver ArgoSAT
is higher compared to other C/C++ implementations. On the other hand, there
is still a gap between our correctness proof and the C++ implementation. First,
there is no formal link between C++ and our pseudo language implementation.
Second, there has been a number of manual steps in formulating correctness
conditions and joining them together. Isabelle supports automatic conditions
generation of Hoare conditions, but it is for a very simple programming language
that is not powerful enough to express a complex SAT solver implementation.

More details on our description of a solver in an imperative language and its
Hoare-style verification are given in [Mar09a].

6 Shallow Embedding

When using the shallow embedding into HOL approach for verification, a pro-
gram (a SAT solver in our case) is implemented within higher order logic which
is, for this purpose, treated as a pure functional programming language, i.e., the
program is expressed as a set of recursive functions in HOL. Then, the properties
of these functions are proved mainly by induction and equational reasoning.

Although a programming paradigm had to be changed from imperative to
pure functional, we tried to make an implementation that closely follows the one
described in Sect. 5 and that is the core of our solver ArgoSAT. All aspects of
the implementation that are present in the imperative implementation verified
by the Hoare-style approach (and that are not covered by the state transition
systems) are also present in our functional implementation within Isabelle6.

In an imperative or object-oriented language, state of the solver is represented
by using global or class variables. The solver functions access and change the
state variables as their side-effects. In HOL, functions cannot have side-effects,
so the solver state must be wrapped up in a record and passed around with each
function call. In our implementation, the state of the solver is represented by
the following Isabelle record:

record State =
"getF" :: Formula

6 Formal definitions of the solver functions count over 500 lines of Isabelle code.



"getM" :: LiteralTrail
"getC" :: Clause
"getConflictFlag" :: Boolean
. . .

Notice that this record directly correspond to the state of the abstract state
transition systems described in Sect. 4. However, in order to implement more
advanced techniques, the state had to be extended, and in our final definition it
contains 14 components.

All functions in our functional implementation receive the current solver state
as their parameter and return the modified state as their result. For example,
the function applyUnitPropagate is implemented as follows:

definition applyUnitPropagate :: "State ⇒ State"

where

"applyUnitPropagate state =

(let state’ = assertLiteral (hd (getQ state)) False state in

state’L getQ := tl (getQ state’) M)"

This explicit state passing can be hidden if standard monadic bind and re-

turn combinators are used. This support has been recently added to Isabelle
along with a convenient Haskell-like do-syntax [BKH+08]. In this syntax, the
applyUnitPropagate function becomes:

definition applyUnitPropagate :: "State ⇒ State"

where

"applyUnitPropagate =

do

Q ← readQ; assertLiteral (hd Q) False;

Q’ ← readQ; updateQ (tl Q’)

done"

The function readQ gets the current Q from the state, and updateQ sets the
current Q in the state to the specified value. This way the code is much easier
to read and resembles the code in our imperative pseudo language (p9).

Once the solver has been defined in HOL, its properties are formally proved.
Again, it has been proved that all states that are reached during the code exe-
cution (this time these are the states that are returned by the functions of the
solver) satisfy a given set of invariants (as illustrated in Fig. 1). These invari-
ants include all invariants formulated for the abstract state transition systems
(Def. 8). Many functions in the implementation explicitly match the high-level
transition rules, so a number of proofs that the code preserves basic invariants
simply rely on the proven properties of the abstract state transition system. How-
ever, since the implementation employs a number of advances techniques that
are not covered by the state transition systems (most notably the two-watch unit
propagation scheme), the set of invariants is significantly extended, counting 24
invariants in total. Therefore, it had to be proved that the code preserves all the
additional invariants and it turned out that this task was equally hard (if not
harder) as proving the properties of the abstract state transition system.



The entry point to the solver is the solve function, and, for termination
it was required to prove that this function is total. Only three functions have
been defined by general recursion and their termination is not trivial. Since the
function solve is the only entry point to our solver, all these three functions are
called only indirectly by the function solve and all parameters that are passed
to them are computed by the solver. Therefore, it was sufficient to show that
they terminate for those values of their input parameters that could actually be
passed to them during a solver’s execution starting from an initial state. We have
used Isabelle’s built-in features to model this kind of partiality [Kra08]. Once
these partial correctness lemmas have been formulated, they are easily proved
using termination orderings given in Def. 9.

When it has been proved that the invariants are preserved throughout the
code, and that the function solve is total, the main correctness theorem is very
easily formulated and proved.

Theorem 3 (Correctness). solve F0 = sat F0

Unlike the Hoare-style approach which starts with an existing solver imple-
mentation, when using the shallow embedding approach, the executable code
in one of the leading functional languages (Haskell, SML, or OCaml) can be
exported by using the code extraction, supported by Isabelle. When applying
the code extraction, the term language of logic within a proof assistant is iden-
tified with the term language of the target language and the verified program
correctness is transferred to the exported program, up to the simple transfor-
mation rules. As an example, the extracted code in Haskell for the function
applyUnitPropagate is given bellow.

applyUnitPropagate :: State_ext_type () -> State_ext_type ();

applyUnitPropagate state =

let {

state’ = assertLiteral (hd (getQ state)) False state;

} in getQ_update (\ x -> tl (getQ state’)) state’;

Advantages of using the shallow embedding are that, once the solver is defined
within the proof assistant, it is possible to perform its verification directly inside
the logic and a formal model of the operational or denotational semantics of the
language is not required. Also, executable code can be extracted and it can be
trusted with a very high level of confidence. On the other hand, it is required
to build a fresh implementation of a SAT solver within the logic. Also, special
techniques must be used to have mutable data-structures and consequently, an
efficient generated code.

More details on the verification by shallow embedding are given in [Mar09c].
We also used this approach for verification of the classic DPLL procedure, and
details are given in [MJ09a].

7 Proof Management

Although it is hard to quantify the efforts invested in formally proving correct-
ness conditions described in this work, we estimate it to be around one man-year.



The proof scripts make around 30000 lines of Isabelle code and the generated
PDF proof documents have around 700 pages (these numbers are, of course,
heavily dependent on the indentation style used). Proof-checking time by Is-
abelle is under 5 minutes on a 1.6GHz/512Mb RAM machine running Linux.
We estimate that careful investigation of the proof text and its reorganization
mainly by extracting some common parts of different proofs into lemmas could
lead to 10-20 percent reductions.

During this verification effort, some interesting technical issues arose. In or-
der to make such a large-scale verification effort possible, it was necessary to
introduce some kind of modularity to the formalization. The crucial step in this
direction was to prove the properties of the abstract state transition systems
of [NOT06,KG07] and then use these proofs in the correctness proofs of the
low-level implementations (either in the Hoare style or by means of the shallow
embedding into HOL). A good direction to follow would be to define internal
data-structures (for example the assertion trail) as abstract data-types (ADT)
with some desired properties given axiomatically. Although, unfortunately, this
has not been explicitly done in our formalization, this idea has been followed
to some extent. Namely, after introducing basic definitions, we proved lemmas
that could be regarded as axioms of the ADT and all further proofs relied only
on those lemmas, without using the low-level properties of the implementation.
This enables changing the low-level implementation into a more efficient one
without changing much of the whole correctness proof.

When proving properties about recursively defined functions we had a di-
lemma whether to repeat the same induction scheme in proofs of many similar
lemmas (one for each property of the recursive function) or to formulate one
bigger lemma that groups all assumptions and conclusions for several proper-
ties that are being shown. We took the second approach and reduced the total
number of lemmas and the total size of proofs, but the price that had to be
payed is that we lost track of which assumptions are effectively used for prov-
ing a specific conclusion. For example, most of our high-level lemmas that state
that invariants are preserved by the function calls assume that all invariants
hold before the function call and show that all invariants hold after the function
call. Precise mutual relationships between invariants can be determined only by
analyzing the proof texts which can be very tedious.

8 Related Work

First steps towards verification of SAT solvers have been made only recently.
The authors of two transition rule systems for SAT informally proved their cor-
rectness [NOT06,KG07]. Zhang and Malik have informally proved correctness
of a modern SAT solver [ZM03]. Lescuyer and Conchon have formalized, within
the system Coq, a SAT solver based on the classic DPLL procedure [LS08].
Shankar and Vaucher have formally and mechanically verified a high level de-
scription of a modern DPLL-based SAT solver within the system PVS [SV09].
Although these approaches include most state-of-the art SAT algorithms, lower-
level implementation techniques (e.g., two-watch unit propagation scheme) are



not covered by any of these descriptions. Our project provides fully mechanized
correctness proofs for modern SAT solvers within three verification paradigms
with both higher and lower level state-of-the-art SAT techniques, and, as we are
aware of, it is the only such formalization.

9 Future Work

One of the main remaining tasks in our project is to increase the efficiency of
the code exported from the shallow embedding specification. First, there are
several low-level algorithmic improvements that have to be made. For example,
in the current implementation, checking if a literal is true in a trail M requires
performing a linear-time scan through the list, while real-world solvers cache
truth values of all literals in an array and so allow a constant time check. Also,
implementation of some higher-level heuristics has to be more involved. For ex-
ample, currently we have implemented only a trivial decision heuristic that picks
a random undefined literal, but in order to have a practically usable solver, an
advanced decision heuristic (e.g., the MiniSat one) should be used. It would also
be useful to implement forgetting and restarting techniques [KG07,NOT06]. Al-
though these modifications require more work, we believe that they are rather
straightforward. However, the most problematic issue is the fact that because
of the pure functional nature of HOL no side-effects are possible and there can
be no destructive updates of data-structures. To overcome this problem, we are
planning to instruct the code generator to generate monadic Haskell and im-
perative ML code which would lead to huge efficiency benefits since it allows
mutable references and arrays [BKH+08]. We hope that with these modifica-
tions, the generated code could become practically usable and comparable to
state-of-the-art SAT solvers and this is the subject of our current work.

10 Conclusions

In this paper we gave an overview and the current status of our ongoing project
on the SAT solver verification. The central part of the project is the formaliza-
tion of modern SAT solvers. The complete formalization has been made within
Isabelle/Isar proof assistant and is publicly available. We have, so far, invested
around 1.5 man-years into this project (this work includes solver developments,
their verification, and writing accompanying documents) and we estimate that
0.5 more man-years will be necessary to complete the project. SAT solvers have
been formalized in three different ways: as abstract state transition systems,
as imperative pseudo programming language code, and as a set of recursive
HOL functions and all three formalizations have been verified using different
paradigms. Each of them has its own advantages and disadvantages, making
them in some aspects complementary and in some aspects overlapping.

Although there are other attempts at proving correctness of modern SAT
solvers, to our best knowledge, our project gives the most detailed formalized
and fully verified descriptions of a modern SAT solver so far. We are planning



to work on improving efficiency of our trusted, generated solver and we hope its
efficiency will be comparable to those of modern SAT solvers.
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