
Timetabling Based on SAT Encoding: a Case

Study

Filip Marić

Faculty of Mathematics, University of Belgrade, Serbia

Abstract

In this paper we present our experience in automated course timetabling using a
propositional satisfiability (SAT) encoding. Timetable requirements are represented
by propositional formulae and SAT solvers are used to search for their models. Each
model represents a valid timetable. We describe an appropriate SAT encoding that
makes possible to formulate a very wide set of different timetable requirements.
We also give some techniques used to reduce the problem size. For instance, room
allocation was done in a novel and very efficient way. We present case studies of
teaching timetabling for one high school and two university departments. The results
obtained are encouraging and they show that this approach is sound and promising
for other applications as well.

1 Introduction

Propositional satisfiability problem (SAT) is the problem of deciding if there is
a truth assignment under which a given propositional formula (in conjunctive
normal form) evaluates to true. It is a canonical NP-complete problem [11]
and it holds a central position in the field of computational complexity. SAT
problem is also important in many practical applications such as electronic
design automation, software and hardware verification, artificial intelligence,
and operations research. Thanks to recent advances in propositional solving
technology [16,12,13], SAT solvers are becoming the tool for attacking more
and more difficult practical problems. Unlike some other constraint program-
ming tools, SAT solvers use very simple language of propositional logic which
allows them to use specific data structures that make them extremely efficient.

Email address: filip@matf.bg.ac.yu (Filip Marić).

Preprint submitted to Discrete Applied Mathematics 28 May 2008



SAT solvers have successfully been applied to planning and scheduling prob-
lems and there have been some records of using SAT solvers in timetabling
applications. However, as we are aware of, there are not many published pa-
pers that describe these applications. This paper gives detailed description
of our technique that we have successfully used to build timetables for three
different educational institutions.

Our strategy is to encode all timetable requirements in propositional logic
and generate a CNF formula that describes all timetable constraints. We use
SAT solvers to search for the models of the generated formula. Each found
model represents a valid teaching timetable. If the formula is found to be
unsatisfiable, some requirements have to be relaxed and the process is repeated
until a solution is found.

Our experience shows that different institutions impose a range of specific
teaching timetable requirements. Many of these requirements are obligatory
and must be satisfied in order to have a valid timetable. Therefore, a timetabling
system must be general enough and allow users to specify of very rich set of
different constraints. Although the system that we have developed is not a
universal timetabling tool, we will illustrate the approach we are proposing
can be easily modified and adapted to fit a wide set of different requirements
— wider than other commonly used approaches.

Overview of the paper. In Section §2 we give the main problem description.
In Section §3 we describe a SAT encoding of the problem. In Section §4 we
give a case study of timetabling for three educational institutions in Belgrade,
including brief institution descriptions, description of our implementation, and
the results obtained. In Section §5 we describe some related work on course
timetabling. In Section §6 we describe some drawbacks of our approach and
outline some ways to overcome them. In Section §7 we draw some final con-
clusions.

2 Problem Description

The course timetabling problem is to assign given lessons to given time slots
while obeying some given requirements. The room allocation problem is to
additionally assign given lecture rooms to given lessons while obeying some
given requirements.

An important assumption in our approach is that timetabling is done on per-
week-basis, i.e., all working weeks during the semester are considered the same.
A week consists of several working days divided into a number of equal-length
time-slots (we will call them periods) and lessons are required to fit into these

2



time slots. However, lessons can have different duration, i.e., they can take for
more than a single period. Each lesson is taught by one or more teachers in one
subject to one or more groups of students. We assume that groups, teachers
and all lessons for each teacher and group are known in advance 1 .

Other requirements for the timetable may vary from institution to institution.
However, we identified some requirements common for many teaching institu-
tions that we have worked with. This allows us to use the same encoding and
same tool for timetabling in several different institutions. We have identified
two sorts of requirements. Correctness requirements are essential for timetable
correctness and all these requirements have to be satisfied. Comfort require-
ments represent additional wishes of the staff. Some of these are considered to
be hard requirements that are obligatory and have to be satisfied, while some
are considered to be optional, soft requirements and need not be satisfied if it
is not possible.

Many optimization approaches to timetabling exist, and most of them intro-
duce many soft requirements trying to find solutions that satisfy as many of
them as possible. Since we use complete SAT solvers, all requirements are en-
coded by propositional clauses and solvers treat them as hard requirements.
Therefore, our approach generates a propositional formula that encodes as
much imposed requirements as possible. This ensures that every single solu-
tion found by the solver will be the solution that is good enough to be consid-
ered as the final timetable. Only if requirements are found to be unsatisfiable,
some less important soft requirements are omitted. In some cases requirements
can be incrementally added and better and better solutions obtained until a
satisfying quality solution is found.

In the following we list the main correctness and comfort requirements that
we identified.

Correctness Requirements.

• Each lesson from a predefined list of lessons has to be scheduled, and it
should be scheduled exactly once in the timetable.

• A teacher cannot teach two different subjects at the same time. It is possible
that a teacher is required to teach the same subject to several different
groups at the same time.

• A group cannot attend two or more different lessons at the same time.
• Only one teacher can occupy one room in one given period.

1 The literature also describes the problem of forming groups of students based on
the courses that students take.

3



Comfort Requirements.

Forbidden and requested working hours.

• Teachers are allowed to state their forbidden hours, i.e., the hours in which
they cannot give lessons. These conditions are given in several different
forms (e.g., it is requested that someone cannot teach on Monday from
10am to 3pm, or somebody cannot teach on Tuesday, or someone cannot
teach before 10am and after 6pm each day).

• Some teachers (e.g., visiting professors, senior professors) are allowed to
explicitly state their teaching hours, i.e., the hours in which their lessons
have to be scheduled (e.g., Wednesday from 1pm to 3pm and Friday from
9am to 1pm).

• Groups are also allowed to have forbidden hours (e.g., senior year students
are not allowed to attend lessons in time of some research seminars).

Group and teacher overlapping.

• It can be required that some different groups do not attend lessons in the
same time (e.g., if some second year students have to attend some first
year courses, then second year and first years students should have non-
overlapping lessons).

• Some teachers require not to give lessons in the same days as some of their
colleagues (e.g., one of the two colleagues always has to be present at the
lab, so they cannot teach at the same time).

• Some teachers require to give lessons in the same time (or at least in the
same days) as some of their colleagues (e.g., they want to arrange meetings
and joint work before or after teaching in those days).

Number of teaching days.

• Some teachers ask to have their lessons scheduled only in a given number
of working days (e.g., only in two days in a week, irrelevant of what those
two days actually are and how many lessons they have to teach in those two
days). For instance, they want to be free to do research in other week days.

• At high schools the law requires that each full-time employee has lessons in
every day of the week i.e., to teach for five days in a week.

Work day duration.

• Groups of pupils/students are allowed to have only up to N (e.g., 7) working
hours a day, including idle periods. Exceptions to this rule are allowed only
if explicitly required by the institution management.

• Teachers are allowed to have only N (e.g., 6) teaching hours in a day, in-
cluding idle periods. Exceptions to this rule are allowed only if explicitly

4



required by the institution management.
• It is required that both teachers and groups have at least two lessons in a

day in which they have lessons.

Idle periods.

• Teachers usually ask not to have idle periods. Still, some teachers explicitly
require to have idle periods.

• Groups at high school usually should not have idle periods.
• Groups at university are usually allowed to have idle periods, but their

number is restricted.
• Idle periods for groups are sometimes explicitly required (e.g., if a group is

scheduled to attend many lessons in one day, it can be required to have an
idle period that day for a lunch break).

Lessons that have fixed or forbidden periods.

• In high school, it is required that some more demanding subjects (e.g.,
Mathematics) can not be scheduled for the last period in a shift, because
pupils get tired after a hard days work.

• Some subjects are required to be scheduled either for first or last period in
a day (e.g., one subject is held in three consecutive lessons and is required
to be scheduled in periods 1-3 or periods 5-7, in a 7 period working day).

• Some non-obligatory subjects are not attended by all students. Therefore,
they should be scheduled as first or last lesson in a day, so that students
who do not attend those lectures would not have idle periods (e.g., since
Programming Lab is not attended by all students in a group, it is required
to be first or last lesson in a day for that group). The period assigned for
non-obligatory subject could be any of available periods, as long as there
are no other lessons for that group before or after it.

Consecutive days.

• Some courses are taught in several lessons during a week (e.g., a course
with 4 lessons in a week is required to be scheduled as 2+2, i.e., two lessons
one day and two lessons another day). For pedagogical reasons, it can be
required that these days are not consecutive days.

• Some teachers who do not teach every day a week want their lessons sched-
uled in consecutive working days. This way, if they take some days off,
these days can be joined with weekend days and they can have a mini-break
during the semester without interrupting their lessons and their students.

Changing shifts and buildings.

• In institutions that work in different shifts, neither pupils nor teachers are
allowed to work in different shifts during the same day.

5



• In institutions that have different buildings that are far apart, neither teach-
ers nor students should have lessons in different buildings the same day.

3 SAT Encoding

In this section we will describe a SAT encoding of timetabling constraints.
First we will introduce the encoding of the basic timetabling problem and
afterwards we will describe two different encodings of room allocation problem
— a naive and more advance one.

3.1 Basic Encoding

We will assign time slots to lessons by introducing a propositional variable
for each combination of a lesson and a time slot. The truth values of these
basic variables determine the whole timetable. Although all constraints can
be expressed directly using these basic variables, we will introduce a number
of additional implied variables that ease constraint specification. We will use
propositional clauses to encode various constraints. Clauses that describe re-
lationships between all these variables will be specified along the way. These
clauses are regarded to be a part of the final propositional formula that de-
scribes the timetable conditions and whose models represent the timetable. For
better readability we will express some constraints by implications and equiv-
alences, but these can trivially be converted to clauses using simple proposi-
tional tautologies.

3.1.1 Variables and Their Relationships

Working hours. The set of working days of a given institution will be denoted
by days. Each working day is divided in a number of equal periods (e.g., 1 hour
periods in university departments or 45 minute periods in high school). The
set of periods for a day d ∈ days will be denoted by periods(d) .

Lessons. All lessons that should be scheduled are denoted by a quadruple of
the form tsgn which represents the fact that the teacher t teaches the subject
s for the group g for the n-th time in a week. Each lesson has its own duration
which is denoted by duration(tsgn) and is expressed in number of periods.
For example, if the teacher T has to teach the subject S to the group G two
times in a week, one time for 2 periods and the other time for 3 periods, his
lessons would be denoted by TSG1 and TSG2, where duration(TSG1) = 2
and duration(TSG2) = 3. The list of lessons for a given teacher t will be

6



denoted by lessons(t). The list of lessons for a given group g will be denoted
by lessons(g).

Basic variables. A variable x′
tsgndp is formed for each lesson tsgn. It repre-

sents the fact that the lesson tsgn begins in a day d and a period p. Since
the lesson can be held only during working hours of the institution, the vari-
ables x′

tsgndp are defined only for periods p such that min(periods(d)) ≤ p ≤
max(periods(d))− duration(tsgn)+1. These are the only basic variables in the
system as their values uniquely determine the values of all other variables and
uniquely determine the whole timetable.

Implied variables. In order to have an easy way of specifying different ti-
metable requirements, we define a number of implied variables.

A variable xtsgndp is formed for each lesson tsgn, each working day d and each
working period p. It represents the fact that the lesson tsgn is given in a day
d, in a period p. The following implications 2 connect the start time of a lesson
with its duration:

x′
tsgndp1

⇒ xtsgndp2
,

where d ∈ days, min(periods(d)) ≤ p1 ≤ max(periods(d)) − duration(tsgn) + 1
and p1 ≤ p2 ≤ p1 + duration(tsgn) − 1.

xtsgndp2
⇒

∨

p2 − duration(tsgn) + 1≤ p1 ≤ p2,

min(periods(d))≤ p1 ≤max(periods(d)) − duration(tsgn) + 1

x′
tsgndp1

,

where d ∈ days and min(periods(d)) ≤ p2 ≤ max(periods(d)).

A variable xtsgnd is formed for each lesson tsgn and each working day d. It
represents the fact that the lesson tgsn is held in the day d. The following
implications connect these variables with duration of a lesson:

xtsgndp ⇒ xtsgnd,

where p ∈ periods(d).

xtgsnd ⇒
∨

p∈periods(d)

xtsgndp

2 Note that these implications are trivially converted to clauses using the identity
p ⇒ q ≡ ¬p ∨ q

7



Also, the following implication connects these variables with the beginning of
a lesson:

x′
tsgndp ⇒ xtsgnd,

where p ∈ periods(d).

xtsgnd ⇒
∨

min(periods(d))≤p≤max(periods(d))−duration(tsgn)+1

x′
tsgndp

Note that one of the last two pairs of implications is redundant, and there is
no need to add both of them to the encoding.

A variable xtdp is formed for each teacher t, each working day d and each
working period p. It represents the fact that the teacher t gives a lesson in a
day d, in a period p. The following implications connect these variables with
duration of lessons:

xtsgndp ⇒ xtdp,

where tsgn ∈ lessons(t) and lessons(t) is the list of all lessons tsgn for the
teacher t,

xtdp ⇒
∨

tsgn∈lessons(t)

xtsgndp.

Similarly, a variable xgdp is formed for each group g, working day d and working
period p. It represents the fact that the group g attends a lesson in the day d

and period p. The following implications connect these variables with lesson
duration:

xtsgndp ⇒ xgdp,

where tsgn ∈ lessons(g) and lessons(g) is the list of all lessons tsgn for the
group g.

xgdp ⇒
∨

tsgn∈lessons(g)

xtsgndp.

A variable xtd is formed for each teacher t and each working day d. It represents
the fact that the teacher t teaches during the day d. Then, the following
implications hold:

xtdp ⇒ xtd,

where h ∈ periods(d).
xtd ⇒

∨

p∈periods(d)

xtdp.

A variable xtp is formed for each teacher t and each working period p. It
represents the fact that a teacher t gives lessons in a period p. Then, the

8



x′
tsgndp

xtsgndp xtsgnd

xgdp xtdp xtd

xth

Fig. 1. Variables and their connections

following implications hold:
xtdp ⇒ xtp,

where d ∈ days.
xtp ⇒

∨

d∈days

xtdp

The last implication is usually omitted, because this variables are only used
to forbid a certain hours for some teachers (e.g. some people do not like teach-
ing in the morning). In this case, the use of the first implication is better
understood when it is looked in its contrapositive form ¬xtp ⇒ ¬xtdp.

Since students are generally available each working day and each working hour,
variables xgd and xgp are omitted, but can be used if needed.

Variables and their connections are show in Figure 1.

Idle periods. We say that a teacher (or a group) has an idle period if it does
not have lessons in that period, but it has lessons before and has lessons after
it. The shortest idle period is a one period, and the longest idle period occurs
if someone has lessons only in the first and last period of a day.

A variable iktdp is formed for each teacher t, day d, period p, and number k such
that 1 ≤ k ≤ duration(d)−2 and min(periods(d))+1 ≤ p ≤ max(periods(d))−
k. It represent the fact that the teacher t has idle period of length k in the
day d, starting with the period p. These variables are defined by the following
equivalence.

iktdp ⇔



xtd(p−1) ∧
∧

0≤j<k

¬xtd(p+j) ∧ xtd(p+k)





It is converted to clausal form via

iktdp ⇒ xtd(p−1)

iktdp ⇒¬xtd(p+j), 0 ≤ j < k

9



iktdp ⇒ xtd(p+k)

and


¬xtd(p−1) ∨
∨

0≤j<k

xtd(p+j) ∨ ¬xtd(p+k)



 ∨ ¬iktdp.

A variable iktd is formed for each teacher t, working day d and number k such
that 1 ≤ k ≤ duration(d)− 2. It represents the fact that the teacher t has idle
period of length k during a day d. Then, the following implications hold:

iktdp ⇒ iktd,

for each period p such that min(periods(d)) + 1 ≤ p ≤ max(periods(d)) − k,
and

iktd ⇒
∨

min(periods(d))+1≤p≤max(periods(d))−k

iktdp.

Also, a variable ikt is formed which represents the fact that a teacher t some-
times has idle period of length k. Then the following implications hold:

iktd ⇒ ikt ,

for each d ∈ days and
ikt ⇒

∨

d∈days

iktd.

A variable itdp is formed for each teacher t, working day d and period p such
that min(periods(d))+1 ≤ p ≤ max(periods(d))−1. It represents the fact that
the teacher t has an idle period in the day d starting with the period p. It is
clear that for all k such that 1 ≤ k ≤ max(periods(d)) − p it holds that

iktdp ⇒ itdp

and
itdp ⇒

∨

1≤k≤max(periods(d))−p

iktdp.

All variables and constraints that have been defined in this section for teachers
can be defined for all groups in the exactly same way.

3.1.2 Specification of Different Requirements

Now we will show how to encode different requirements listed in §2 using
variables defined in §3.1.1. The rich set of variables allows encoding of some

10



additional sorts of constraints that are not even listed in §2, what makes our
approach very flexible. Each given timetable requirement is represented by
propositional clauses and these clauses are added together with clauses that
describe relationships between variables and that are introduced in Section
3.1.1, yielding the final propositional formula.

First we introduce several constructions that are going to be used to specify
different requirements. Let us denote by single({v1, . . . , vk}) the fact that only
one of the variables v1, . . . , vk can be true. A trivial way to define this is by
using a quadratic number of clauses:

single({v1, . . . , vk}) =
∧

1≤i<j≤k

(¬vi ∨ ¬vj).

We generalize this concept to an arbitrary cardinality constraint. Let us denote
by cardinality({v1, . . . , vk}) ≤ m the fact that at most m of the variables v1,
. . . , vk can be true. An efficient way to encode cardinality constraints by
propositional clauses is given in [18].

Correctness Conditions.

• Each lesson has to be scheduled. Each lesson is held in a single working day
and therefore, a clause

∨

d∈days

xtsgnd

must hold for each lesson tsgn. If this holds, the condition

xtsgnd ⇒
∨

min(periods(d))≤p≤max(periods(d))−duration(tsgn)+1

x′
tsgndp

that we have already introduced, will ensure that all lessons are eventually
going to be scheduled.

• Each lesson is scheduled exactly once in the timetable. Therefore, the be-
ginning of each lesson is uniquely determined and the condition

single({x′
tsgndp | d ∈ days, p ∈ periods(d)})

must hold for each lesson tsgn. To reduce the number of clauses this condi-
tion can be replaced by

single({xtsgnd | d ∈ days})

and for each d ∈ days

single({x′
tsgndp | p ∈ periods(d)}).

11



• Each group can attend only one lesson at a time. Therefore, for each group
g, each d ∈ days, and each p ∈ periods(d)

single({xtsgndp | tsgn ∈ lessons(g)})

must hold.
• Every teacher can teach only one lesson at a time. Still, in some cases it

is required that several groups (e.g., g1, . . . , gk) are joined into a cluster of
groups and that they attend the lesson tsn together, in the same period of
time. This requirement is encoded with the equivalence

xtsg1ndp ⇔ xtsgjndp, 1 < j ≤ k.

If this is the case, the lessons(t) will denote the list that will contain only
one representative (e.g. tsg1n) for each cluster of groups.

Therefore, since it is required that every teacher can teach only one lesson
at a time, for each teacher t, each d ∈ days, and each p ∈ periods(d)

single({xtsgndp | tsgn ∈ lessons(t)})

must hold. 3

Comfort Requirements.

Forbidden and requested working hours. Forbidden hours and explicit
working hours for teachers are directly encoded by negation of variables xtdp,
xtd, and xtp. Forbidden hours for groups are encoded using the variables xgdp.
These constraints are represented by single literal clauses.

Groups and teachers overlapping. The condition that two groups g1

and g2 are not allowed to attend lessons in the same time, is encoded by
xg1dp ⇒ ¬xg2dp and xg2dp ⇒ ¬xg1dp, for each day d and period p. Overlapping
of teachers’ teaching hours is encoded in a similar way.

Number of teaching days. The condition that a teacher t teaches for exactly
n days in a week is encoded by

cardinality({xtd | d ∈ days}) ≤ n ∧ cardinality({¬xtd | d ∈ days}) ≤ |days| − n.

Work day duration. Duration of a working day for student groups is encoded
using variables lkgd which are formed for each group g, day d, and number

3 A similar technique could be used to encode the requirement that several teachers
teach to the same students in the same time.

12



k ≤ |periods(d)|. The variable lkgd represents the fact that teaching time for a
group g spans for at least k periods (including idle periods) in a day d. It is
defined by:

xgdp ∧ xgd(p+k−1) ⇒ lkgd,

for all p such that min(periods(d)) ≤ p ≤ max(periods(d)) − k + 1, and

lkgd ⇒
∨

min(periods(d))≤p≤max(periods(d))−k+1

(xgdp ∧ xgd(p+k−1)).

The requirement that a work day duration for a group is limited to n periods,
is encoded by single literal constraints ¬lkgd, for each k > n.

The requirement that a work day duration for a group is at least n periods is
encoded by the constraint xgd ⇒ lngd.

Work day duration for teachers is encoded in a similar way.

Idle periods. The requirement that idle periods of length k are not allowed
for the teacher t is specified by single literal constraint ¬ikt .

The requirement that a teacher t is not allowed to have more than one idle
period per day the condition is specified by

single({itdp | min(periods(d)) + 1 ≤ p ≤ max(hours(d) − 1)}).

The requirement that a teacher t is allowed to have at most n idle periods per
week is specified by a cardinality constraint

cardinality({itdp | d ∈ days, p ∈ periods(d)}) ≤ n.

Other sorts of idle period constraints and idle period constraints for groups
are defined in a similar way.

Lessons that have fixed or forbidden periods.

The requirement that a lesson can begin only in period p1, p2, . . . , or pn is
encoded by

xtsgnd ⇒ x′
tsgndp1

∨ . . . ∨ x′
tsgndpn

.

The requirement that a lesson tsgn must be the first or last lesson for the
group g in a day d, is encoded by

x′
tsgndp ⇒





∧

min(periods(d))≤p′<p

¬xgdp′



 ∨





∧

p+duration(tsgn)≤p′≤max(periods(d))

¬xgdp′



 .

13



Consecutive days If some lessons for the same course should not occur in
consecutive days, the conditions

xtsgnd ⇒ ¬xtsg(n+1)(d+1)

must hold for each day d except the last working day in a week.

Changing shifts or buildings Timetabling of different shifts and different
buildings is done separately, one at a time. This means that a timetable for
one shift (or building) is created first, and when the timetable for the other
shift (or building) is created, the constraints related to changing shifts (or
buildings) are represented as forbidden day constraints.

3.1.3 Complexity of Encoding

The set of variables is clearly dominated by the variables x′
tgsndp and xtgsndp.

Therefore, its size is O(nl ·nd ·np), where nl is the total number of lessons that
have to be scheduled, nd is the number of working days, and np is the number
of periods in a day.

Different single conditions are encoded by quadratic sets of clauses, so they
dominate the total clause set size. The requirement that each lesson is sched-
uled only once in the timetable introduces O(nl · (n

2
d + nd · n

2
p)) clauses. The

requirement that each group can attend only one lesson at a time introduces
O(nd · np · ng · ngl

2) clauses, where ng is the number of groups, and ngl is the
number of lessons for a group. Similarly, the requirement that each teacher
can teach only one lesson at a time introduces O(nd ·np ·nt ·ntl

2) clauses, where
nt is the number of teachers, and ntl is the number of lessons for a teacher.

3.2 Naive Room Allocation

In this and the following section we will describe a way to solve the more
complex problem of timetabling with room allocation. It requires to assign
not only time slots but also rooms in which lessons are held.

Basic variables. One way to encode the room allocation conditions is to
extend the basic variables, so that they also encode the room in which the
lesson is given. Since it is assumed that rooms are not changed during the
lesson duration, the room in which the lesson is given is uniquely determined
by the room in which the lesson begins. Then, for each lesson tsgn, day d,
period p, and a room r, a basic variable x′

tsgndpr is formed, and it represents
the fact that the lesson tsgn begins in the day d, the period p and is held in
the room r. Since, it is usually assumed that rooms are not equivalent, i.e.,

14



that there are some lessons that can be scheduled only in some specific rooms,
some of the variables that have just been introduced can be omitted. For each
lesson tsgn, the set rooms(tsgn) will denote the set of rooms in which the
lesson tsgn could be scheduled. Then, a variable x′

tsgndpr should be introduced
only for those rooms r which are in rooms(tsgn).

Implied variables. An implied variable xtsgndpr is also formed, for each lesson
tsgn, day d, period p, and room r that is in rooms(tsgn). It represents the fact
that the lesson tsgn is held in day d, period p in the room r. Since it is
required that room is not changed during the lesson duration, the following
implications hold:

x′
tsgndp1r ⇒ xtsgndp2r,

where d ∈ days, min(periods(d)) ≤ p1 ≤ max(periods(d)) − duration(tsgn) + 1
and p1 ≤ p2 ≤ p1 + duration(tsgn) − 1, and

xtsgndp2r ⇒
∨

p2 − duration(tsgn) + 1≤ p1 ≤ p2,

min(periods(d))≤ p1 ≤max(periods(d)) − duration(tsgn) + 1

x′
tsgndp1r,

where d ∈ days and min(periods(d)) ≤ p2 ≤ max(periods(d)).

For each teacher t, day d, period p, and a room r, a variable xtdpr is formed. It
represents the fact that teacher t occupies the room r in the period p of day
d.

All variables except x′
tsgndpr become implied variables and the following impli-

cations hold:

x′
tsgndpr ⇒ x′

tsgndp, x′
tsgndp ⇒

∨

r∈rooms(tsgn)

x′
tsgndpr,

xtsgndpr ⇒ xtsgndp, xtsgndp ⇒
∨

r∈rooms(tsgn)

xtsgndpr,

xtdpr ⇒ xtdp, xtdp ⇒
∨

r∈rooms

xtdpr.

The variables and their relationships are shown in Figure 2.

Correctness conditions. For each day d, period p, and room r, correctness
is encoded by

single{xtdpr | t ∈ teachers}.

15



x′
tsgndpr x′

tsgndp

xtsgndpr xtsgndp xtsgnd

xtdpr xgdp xtdp xtd

xth

Fig. 2. Variables and their connections - room allocation

Since one room is sufficient for a lesson to be held, for each day d, period p,
and room r, the following condition holds:

single{xtdpr | r ∈ rooms}.

3.2.1 Complexity of Encoding

When different rooms are introduced, the set of variables becomes dominated
by the variables x′

tsgndpr and xtsgndpr, and their number is O(nl · nd · np · nr),
where nl is the total number of lessons that have to be scheduled, nd is the
number of working days, np is the number of periods in a day, and nr is the
number of rooms.

3.3 Cardinality Based Room Allocation

In this section we introduce a novel way of room allocation, based on using
cardinality constraints. Cardinality based room allocation works in two phases.
In the first phase, only the periods are assigned to lessons, and in the second
phase, the rooms are allocated. However, additional requirements for room
allocation have to be added during the first phase in order to make the second
phase possible.

Let us first consider the simplest case of room allocation problem. Assume
that the institution has nr rooms, and all rooms are considered to be equal.
Then, the first phase has to ensure that for each period at most nr teachers
are scheduled. This is encoded by conditions:

cardinality({xtdp | t ∈ teachers}) ≤ nr,

for each day d and period p.

Now consider the case where some lessons can only be held in a specific kind

16



of rooms. For example, programming lessons can only be held in a computer
lab, and there are ncl computer labs in an institution. Apart for general room
cardinality constraints, the first phase also has to ensure that for each period
at most ncl programming lessons are scheduled. This is encoded by additional
conditions

cardinality({xtgsndp | tsgn ∈ lessons that must be held in computer lab}) ≤ ncl,

for each day d and period p.

Once the first phase is finished, rooms are allocated in the second phase. The
input to the second phase are the values for all variables xtsgndp. Then, variables
xtsgndpr and xtdpr are formed and connected with xtsgndp as in the naive room
allocation, but only for those variables xtsgndp and xtdp that are found to be
true after the first phase. Also, the correctness conditions are the same as in
the naive room allocation. If it is required that rooms are not changed during
the lesson, the conditions xtsgndpr ⇔ xtsgnd(p+1)r, for each lesson tsgn that is
assigned in day d to both periods p and p + 1, and each room r.

3.3.1 Complexity of Encoding

The first phase of encoding does not introduce any new variables, and it inher-
its the complexity O(nl ·nd ·np) of the basic encoding. Cardinality constraints
introduce O(nd · np · nt · nr) auxiliary variables and O(nd · np · nt · nr) clauses.

In the second phase there are only O(nl ·nr) variables, and it is much simpler
that the first phase.

4 Case Study

In this section we give a case study of timetabling for three educational insti-
tutions in Belgrade based on the described technique.

4.1 Implementation

In this section we describe our implementation that is entirely done in C++.

The timetabling system that we have implemented consists of three compo-
nents:

SAT Encoder - The role of the SAT encoder is to convert a timetable spec-
ification file to a SAT formula in DIMACS format. We found that the most

17



convenient for us way to specify various kinds of requirements was by using
plain text specification. Although our current implementation does not offer
a GUI for input specification it is possible to implement one if some users
prefer to use it. Currently, the timetable specification files are plain ASCII
files that contain list of lessons that need to be scheduled and various other
timetable requirements. They are given in custom syntax. For example:

days: mon tue wed thu fri

periods: 1-7

lessons:

teacher1 group1, group2 subject1 2+1 room1

teacher2 group1 subject2 3 room1, room2

teacher2 group2 subject2 3 room1, room2

requirements:

-teacher1_mon

-group2_tue_7 | -group2_thu_1

In the given example, there are five working days with seven working
periods. The teacher teacher1 teaches the subject1 simultaneously to groups
group1 and group2 two times in a week — once for two periods and once for
one period in the room room1. The teacher teacher2 teaches the subject2
separately to group1 and group2 once a week for three periods in room
room1 or room room2. It is required that teacher1 does not give lessons
on Monday and that group2 does not attend lessons either on Tuesday’s
seventh period or on Thursday’s first period.

SAT Solver - Once the DIMACS file is generated it is given to a SAT solver
which searches for its models. The system uses the SAT solver argo-sat

developed by the author within the Automated Reasoning GrOup at Faculty
of Mathematics 4 , Belgrade. We have also experimented with using different
SAT Solvers (e.g., MiniSAT, yices), and the performance was very similar
on our benchmarks.

SAT Decoder - If the solver successfully finds a model of the generated
formula, the decoder converts it to a readable timetable. The timetable is
given in HTML format and separate web pages are generated for all teacher,
groups and rooms. 5

4.2 Institutions.

In this section we briefly describe the institutions for which we have con-
structed timetables.

4 The web page of argo-sat is http://argo.matf.bg.ac.yu/
5 A sample timetable output is available at http://www.matf.bg.ac.yu/~filip/
timetable/

18



The Architectural Technical High School (ATS) can be considered a large
school: it has 30 different groups of pupils (around 35 pupils each) and 85
teachers, working mostly as full-time employees. The school works for five
days in a week in two shifts. The first shift consists of 15 groups of pupils (1st
and 3rd grade) and the second shift consists of 15 groups of pupils (2nd and
4th grade). Each shift is divided to seven 45 minute periods and single lessons
(which are also 45 minutes long) are scheduled to fit in those seven periods.
Longer lessons span through several periods. Each pupil group has its own
classroom. The only shared rooms are a gym, three computer laboratories,
and three science cabinets, so room allocation was not an important issue for
this institution. The total number of lessons that had to be scheduled was
around 1200.

The Faculty of Mathematics (MATF) can be considered a medium-to-large
size university department: it has 30 different student groups and 80 teachers
(working mostly as full-time employees). The department works for five days in
a week in twelve one-hour periods (from 8am to 8pm). Single lessons that are
45 minutes long are scheduled to fit into these periods (1 hour period includes a
45 minute lesson and a 15 minute break). Longer lessons span through several
periods. It has two different buildings, in the different parts of the city. First
building has eleven lesson rooms varying in size and installed equipment (three
amphitheaters, three computer laboratories - two small and one large, and five
classrooms - three medium size and two small). The second building has three
lesson rooms (one amphitheater and two computer laboratories). The total
number of lessons that had to be scheduled was around 600.

The Faculty of Computer Science (RAF) can be considered a small-to-medium
size university department: it has 20 different student groups and 36 teach-
ers (working mostly as part-time employees). The department works for five
days in a week in twelve one-hour periods (from 9am to 9pm). Single lessons
that are around 45 minutes long are scheduled to fit into these twelve periods.
Longer lessons span through several periods. It has one building and six dif-
ferent rooms (two amphitheaters, three computer laboratories and one small
classroom). The total number of lessons that had to be scheduled was around
300.

4.3 Results

One of the main concerns when building a timetabling system is its efficiency
and performance. Our main goal was also to be able to formulate and satisfy
different requirements that were imposed on us. We are quite satisfied with
the performance of our system, and we are also aware that its efficiency can
further be improved as suggested in §6.

19



Institution Room allocation Variables Clauses Time 6

MATF- building A naive ≈ 43 000 ≈ 305 000 1 min

MATF- building B cardinality ≈ 132 000 ≈ 781 000 5 min

RAF naive ≈ 117 000 ≈ 961 000 4 min

ATS - shift A cardinality ≈ 62 000 ≈ 790 000 350 min

ATS - shift B cardinality ≈ 65 000 ≈ 825 000 223 min

Fig. 3. Results summary.

All timetables that we have constructed were constrained with a large num-
ber of different specific constraints described in Section 2. Usually not all
constraints were satisfiable if taken together. We used an ad hoc approach to
determine the minimal set of constraints that should be relaxed in order to
get a valid timetable.

In the first phase, mutually conflicting requirements were detected and re-
solved by removing the less important ones. Set of formula instances, differing
in the number of imposed constraints were being solved. Upon unsatisfiability
groups of constraints were manually withdrawn and upon satisfiability groups
of constraints were reintroduced. Finally, a satisfiable formula that contains
maximal number of given constraints was identified. Usually, the unsatisfia-
bility was due to local conflicting constraints and was very quickly detected.
Also, in all our cases, a very small number of constraints had to be withdrawn
in order to get a satisfiable solution.

In the following phase, we tried to improve the quality of the found solution.
The least priority was given to idle periods constraints and therefore, the
total number of idle periods was used as a measure of timetable quality. We
generated and solved several instances varying the total number of allowed
idle periods. In high school, only the teachers were allowed to have idle period
and in university departments only students were allowed to have idle periods
(idle periods for teachers that specifically asked to have idle periods were
not counted). In every instance, only single idle periods were allowed. The
exception was the small building of MATF where, due to its small number of
rooms, double idle periods had to be allowed in order to get any satisfiable
solution.

Some summary statistics about the final satisfiable instances are given in Fig-
ure 3. The runtime significantly varied from instance to instance. However, no
consistent trend in those variations was detected. Sometimes, the more con-

6 All computations were performed on a 2.33MHz computer with 1GB of RAM
memory using argo-sat.

20



Institution Room allocation Variables Clauses Time

MATF- building B naive ≈ 344 000 ≈ 1 433 000 23 min

MATF- building B cardinality ≈ 132 000 ≈ 781 000 5 min

Fig. 4. Room allocation.

straint problems needed less time to finish, and sometimes they needed more
time. In any case, the times given in Figure 3 can be seen as fair representa-
tives of the average system efficiency and, because of that, we choose to give
them in minutes instead of in seconds.

The most amount of time is spent in the SAT solving process. Namely, the
encoding and decoding together take less than a minute for every timetable
we have constructed.

Although the overall time varied from instance to instance, all run times for
both university institutions were under 10 minutes. We have observed that
the time needed to build a timetable for high school was more than an order
of magnitude higher than time needed to build a timetable for an university
department, but the size of formulae were similar. This was not surprising
because the number of lessons in high school was larger than in the university
while the requirements were stronger. As already said, two shifts in high school
were processed independently. We assume that the hardness of the high school
timetable construction comes from the fact that every group in high school
had 33 or 34 lessons per week that had to fit in 35 available slots, and every
group in university had about 25 lessons that had to fit to 60 available time
slots. Also, the teachers had 20 lessons in average compared to only 8 in the
university. The longest runtime that we have encountered for a high school
shift was little under 6 hours and the final generated timetable had 25 idle
hours total. Interestingly, the timetable for the other shift was constructed in
less than 4 hours and had only 10 idle hours total. This suggest that not only
the size of the problem, but also the structure of the formula influenced by
interactions between groups and teachers in the lesson plan plays a big role in
the hardness of the timetabling problem.

Our experience show that room allocation constraints add much to the prob-
lem complexity since on average every room is occupied for more that 65%
of the time. In some situations, 58 lessons were successfully scheduled in a
room that has 60 available time-slots, which almost impossible to accomplish
if timetabling is done manually. Naive room allocation was possible to use only
for small buildings with a small number of lessons that should be scheduled.
Figure 4 shows that on the same instance cardinality based room allocation
clearly outperforms the naive one.

21



5 Related Work

Course timetabling is a multi-dimensional NP-Complete problem that has
generated hundreds of papers and thousands of students have attempted to
solve it for their own school. There are several types of algorithms that have
been applied to these problems and some of their surveys can be found in
[21,9,2].

Various meta-heuristic approaches such as simulated annealing, tabu search,
genetic algorithms and hybrid approaches have been investigated over the last
two decades for timetabling. Some very good results have been reported in
PATAT conferences [6,3,5,4,8,7]. Meta-heuristic methods begin with one or
more initial solutions and employ search strategies that try to avoid local
optima. All of these search algorithms can produce high quality solutions but
often have a considerable computational cost.

Constraint based approaches model timetabling problem as a set of variables
(i.e., events) to which values (i.e., resources such as rooms and time periods)
have to be assigned to satisfy a number of constraints [1,20]. Usually a number
of rules is defined for assigning resources to events. When no rule is applicable
to the current partial solution a backtracking is performed until a solution is
found that satisfies all constraints.

A SAT encoding for timetabling was used by Chin-A-Fat and Hartog in [10,14].
However, the system that we are proposing offers specification of much wider
range of requirements. For example, in [14] it is not possible to have lessons
that last for more than two periods, idle periods are not constrained at all,
the room allocation problem is not appropriately addressed etc. The run time
only for the SAT encoding phase reported in [14] is several hundred minutes,
while it is under a minute in our system.

6 Further Work

The main drawback of the approach that we have described in this paper
is that all constraints in the formula that is being solved are considered to
be hard constraints. When the unsatisfiability of the formula is detected, in
the current implementation some constraints must be removed manually. This
process can be automated and the system should detect the soft constraint
with the minimal priority and remove it.

The other approach that is also planned for our further work is to make
possible to incrementally and automatically add soft constraints until a good

22



enough solution is found. When a new constraint is added, the solver should
start the search from the model that was previously found. We suppose that
this could significantly reduce its runtime, because some parts of the formula
that represent the timetable constraints not affected by the new constraint
and that are hard to solve are already solved and their solution is contained
in the previous model.

Although the approach with adding constraints can take more time than the
one with removing constraints, it can be safer, since in every moment in time
the best timetable so far is known.

These approaches do not guarantee that the best quality solution will be
found. We have also made some experiments with using max-sat solvers [15]
which give that guarantee, but the obtained results were not good enough for
practical use.

The only inference mechanism that modern SAT solvers use is unit propaga-
tion. Most constraints in our encoding are single constraints. While experi-
menting with our system we noticed that the unit propagation is too weak
inference mechanism for these kinds of constraints, and its pruning power is
very low. For instance, assume that in the current search state it is known that
a teacher T1 gives a lesson to the group G either during the first or during
the second period on Monday, and that a teacher T2 also gives lesson to the
group G either during the first or during the second period on Monday. Since
these two teachers consume the first two periods on Monday for the group G,
no other teacher could give lessons to group G neither during first nor second
period on Monday. Unit propagation cannot detect this until it is effectively
assumed that some other teacher gives lesson during the first or second period
on Monday, and then it detects the inconsistency an backtracks. Techniques
from constraint programming, like the alldifferent hyper-arc consistency [19],
can detect these kinds of situations and improve the inference and search space
pruning. As As indicated in [17], combining SAT and CP can be done through
the SMT (Satisfiability modulo theories) framework, and this is going to be
the next step in our research on this topic.

7 Conclusions

In this paper, we have described a SAT based approach for teaching timetabling.
Our experience shows that some institutions have very specific requirements
that are considered to be obligatory and many existing approaches are not ca-
pable of efficiently dealing with such specific constraints. Through its large set
of variables, the SAT encoding that we have developed offers a rich modelling
language and the possibility to formulate a very diverse set of requirements.

23



The results obtained in three different institutions that we have worked with
are very promising and show that this approach can be used as an automatic
approach for constructing timetables. Also, one of the main advantages of the
system that we propose is that it is very easy to implement. The encoder and
decoder together take less then 1000 lines of C++ code, and there are a lot of
free, efficient SAT solvers that can be used. Although the observed run time
was very acceptable, it can still be improved.

References

[1] S.C. Brailsford, C.N. Potts, and B.M. Smith. Constraint satisfaction problems:
Algorithms and applications. Papers 98-142, University of Southampton -
Department of Accounting and Management Science, 1998.

[2] E. K. Burke and S. Petrovic. Recent research trends in automated timetabling.
European Journal of Operational Research, pages 266–280, 2002.

[3] Edmund K. Burke and Michael W. Carter, editors. Practice and Theory
of Automated Timetabling II, Second International Conference, PATAT’97,
Toronto, Canada, August 20-22, 1997, Selected Papers, volume 1408 of Lecture
Notes in Computer Science. Springer, 1998.

[4] Edmund K. Burke and Patrick De Causmaecker, editors. Practice and Theory of
Automated Timetabling IV, 4th International Conference, PATAT 2002, Gent,
Belgium, August 21-23, 2002, Selected Revised Papers, volume 2740 of Lecture
Notes in Computer Science. Springer, 2003.

[5] Edmund K. Burke and Wilhelm Erben, editors. Practice and Theory of
Automated Timetabling III, Third International Conference, PATAT 2000,
Konstanz, Germany, August 16-18, 2000, Selected Papers, volume 2079 of
Lecture Notes in Computer Science. Springer, 2001.

[6] Edmund K. Burke and Peter Ross, editors. Practice and Theory of Automated
Timetabling, First International Conference, Edinburgh, U.K., August 29 -
September 1, 1995, Selected Papers, volume 1153 of Lecture Notes in Computer
Science. Springer, 1996.

[7] Edmund K. Burke and Hana Rudová, editors. Practice and Theory of
Automated Timetabling VI, 6th International Conference, PATAT 2006, Brno,
Czech Republic, August 30 - September 1, 2006, Revised Selected Papers, volume
3867 of Lecture Notes in Computer Science. Springer, 2007.

[8] Edmund K. Burke and Michael A. Trick, editors. Practice and Theory
of Automated Timetabling V, 5th International Conference, PATAT 2004,
Pittsburgh, PA, USA, August 18-20, 2004, Revised Selected Papers, volume 3616
of Lecture Notes in Computer Science. Springer, 2005.

24



[9] Michael W. Carter and Gilbert Laporte. Recent developments in practical
course timetabling. In PATAT ’97: Selected papers from the Second
International Conference on Practice and Theory of Automated Timetabling
II, pages 3–19, London, UK, 1998. Springer-Verlag.

[10] Kenneth Chin-A-Fat. School Timetabling using Satisfiability Solvers. Msc
thesis, Technical University Delft, The Netherlands, September 2004.

[11] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC
’71: Proceedings of the third annual ACM symposium on Theory of computing,
pages 151–158, New York, NY, USA, 1971. ACM Press.

[12] Niklas Een and Niklas Sorensson. An extensible sat-solver. pages 502–518.
2004.

[13] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat solver, 2002.

[14] Jantien Hartog. Timetabling on Dutch High Schools: Satisfiability versus gp-
Untis. Msc thesis, Technical University Delft, The Netherlands, 2007.

[15] Federico Heras, Javier Larrosa, and Albert Oliveras. Minimaxsat: A new
weighted max-sat solver. In SAT, pages 41–55, 2007.

[16] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of
the 38th Design Automation Conference (DAC’01), 2001.

[17] R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization
Problems. In A. Biere and C. P. Gomes, editors, 9th International Conference
on Theory and Applications of Satisfiability Testing, SAT’06, volume 4121 of
Lecture Notes in Computer Science, pages 156–169. Springer, 2006.

[18] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In Proc. of the 11th Intl. Conf. on Principles and Practice of
Constraint Programming (CP 2005), pages 827–831, Sitges, Spain, October
2005.

[19] W. van Hoeve. The alldifferent constraint: A survey, 2001.

[20] G. M. White. Constrained satisfaction: not so constrainted satisfaction and
the timetabling problem. In PATAT’00, volume 1, Konztanz, Germany, August
2000.

[21] R.J. Willemen. School Timetable Construction: Algorithms and Complexity.
Phd thesis, Technische Universiteit Eindhoven, The Netherlands, 2002.

25


