
Flexible Implementation of SAT solvers ⋆

Filip Marić

Faculty of Mathematics, University of Belgrade,
filip@matf.bg.ac.rs

Abstract. We propose a flexible and modular object-oriented architec-
ture for DPLL-based SAT solvers. Its main feature is a clear separation
of the core DPLL algorithm from various external modules (e.g., heuris-
tic parts of the solver, user interface, unsatisfiability proof logging). This
allows co-existence of different techniques (especially heuristic policies)
within the same solver making the solver more powerful, adaptive and
also suitable for different experimental research in the field of SAT. The
architecture is based on abstract state transition systems for SAT and on
well known object-oriented design patterns. The proposed architecture
serves as a basis of our SAT solver ArgoSAT. Contribution of this work
is in software design of SAT solvers and it is aimed primarily to SAT
solver developers.

1 Introduction

The propositional satisfiability problem (SAT) is the problem of deciding if there
is a truth assignment under which a given propositional formula (in conjunctive
normal form) evaluates to true. It is a canonical NP-complete problem [Coo71]
and has important practical applications in electronic design automation, soft-
ware and hardware verification, artificial intelligence, and operations research,
etc. The majority of the state-of-the-art complete SAT solvers are based on the
Davis-Putnam-Logemann-Loveland, or DPLL [DP60,DLL62].

Spectacular improvements in the performance of DPLL-based SAT solvers
have been achieved in the last decade. Three different layers made these improve-
ments possible: (i) high-level conceptual enhancements of the original DPLL pro-
cedure aimed at reducing the amount of explored search space (e.g., backjumping,
conflict-driven lemma learning, and restarts), (ii) low-level implementation tech-
niques (e.g., smart data structures, most notably the two-watch literals scheme
for unit propagation, memory management techniques), and (iii) heuristic com-
ponents of solvers (e.g., policies for literal selection, restarting, clause database
management). However, although it became possible to decide satisfiability of
industrial SAT problems with tens of thousands of variables and millions of
clauses, software design of modern SAT solvers is often neglected and it can be
improved in many ways. This paper is an attempt to emphasize the importance
of this aspect of SAT solver implementation and to propose some solutions.

⋆ This work was partially supported by Serbian Ministry of Science grant 144030.

Additional satellite components

Bookeeping User Interface Proof Logging . . .

SAT Solver
Core
DPLL

Heuristics

Restart
Strategy

Literal Selection
Strategy

Forget
Strategy . . .

Fig. 1. The core DPLL and its satelite modules

Many of the individual ideas employed have already been present in available
open-source solvers1, but we try to summarize and describe them in an uniform
way. We propose an architecture based on abstract state transition systems for
SAT [NOT06,KG07]. It is formulated in an object-oriented setting and relies
on well-known design patterns [GHJ+95]. The contribution of this work is in
software design of SAT solvers, and not in SAT solving algorithms.

The main feature of our architecture is encapsulation of different SAT solving
concepts into separate modules. Indeed, when the solver development is driven
only by the quest for maximal speed (crucial for practical usability), if special
attention is not paid to the software design, the code usually becomes “hard-
wired” and monolithic. It usually implements a plethora of smart implementation
tricks, but as a consequence becomes non-flexible and hard to modify. It is often
the case that different layers (higher-level algorithms, lower-level implementa-
tion techniques and heuristics) are intermixed. A single function in the code
can implement multiple SAT solving concepts, and conversely, implementation
of a single concept (e.g., a heuristic) is often spread out in many functions in
the code. In contrast, our approach tends to isolate different concepts present
within a SAT solver into separate modules. We also make a clear and explicit
distinction between three layers listed above. All this makes the code clear, eas-
ier to read, understand, maintain and to reason about. The most important step
in this direction is the separation the core DPLL procedure from various satel-
lite modules (e.g., heuristic components, user interface, bookkeeping, generating
unsatisfiability proofs), as illustrated in Fig. 1.

As a consequence of the flexible architecture, it becomes possible to support
co-existence of a number of different techniques (especially heuristics) within
a single SAT solver and modification of existing and addition of new compo-
nents can be easily performed. This can be beneficial for several reasons. First,
fair comparisons between different techniques could be made, making the solver

1 In author’s opinion, Sat4J (http://www.sat4j.org) is the solver in which the most
attention has been payed to the software design.

suitable for performing experimental research in the field of SAT. Next, a solver
could choose between multiple policies and select the one that is most suitable
for the input formula2. Namely, various heuristics often show different behavior
on different benchmark families and it is rarely the case that one of them is
universally superior3.

This article is aimed primarly to SAT solver developers. The proposed archi-
tecture is implemented within our SAT solver ArgoSAT4, and all code samples
that will be shown are taken in verbatim from its C++ code. We will illustrate
our architecture by giving descriptions of the implementation of some parts of
the solver. However, due to the lack of space, many parts of the proposed archi-
tecture will be omitted. In the rest of the paper, familiarity with state-of-the-art
SAT solving technology and the basics of object-oriented design is assumed.

2 Abstract State Transition Systems for SAT

During the last few years, two abstract state transition systems which model
the DPLL-based SAT solvers and related SMT solvers have been published
[NOT06,KG07]. These descriptions define the top-level architecture common for
most state-of-the-art SAT solvers as mathematical objects that are easy to com-
prehend and that can be fruitfully reasoned about. Both systems are accom-
panied with pen-and-paper correctness and termination proofs. Although they
succinctly and accurately capture all major aspects of the solvers’ global opera-
tion, they are high level and far from the actual implementations. Many aspects
not described by the rules have to be specified in order to get an effective im-
plementation. The solver’s behaviour is modelled by transitions between states
which represent the values of its global variables. These include a set of clauses
F and an assertion trail M . Transitions between states are performed only by
using precisely defined transition rules. The solving process terminates when no
more transition rules apply and a final state is reached.

The system presented in [KG07] gives a more detailed description about some
phases of the solving process (particularly the conflict analysis phase) then the
system from [NOT06], so we list its transition rules in Fig. 2. The rules have a
guarded assignment form: above the line is the condition that enables the rule,
below the line is the update to the state variables. Along with the formula F

and the trail M , the state of the solver is characterized by the conflict analysis
set C which is either a set of literals or the distinguished symbol no cflct. The
input to the system is an arbitrary set of clauses F0, modeled by an initial state
in which F = F0, M = [], and C = no cflct.

2 Recent research [HHH+06,XHH+08,NMJ09] shows that it is possible to guess which
of several given heuristics would give the best results for a given formula, based on
its syntactical characteristics.

3 For example, in [Hua07] MiniSat [ES04] and Berkmin [GN02] literal selection strate-
gies are compared and it is concluded that for either of them there are benchmark
families on which it performs better.

4 The web page of ArgoSAT is http://argo.matf.bg.ac.yu

Decide:

l ∈ F l, l /∈ M

M := M ld

UnitPropag:

l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M l, l /∈ M
M := M l

Conflict:

C = no cflct l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ∈ M
C := {l1, . . . , lk}

Explain:

l ∈ C l ∨ l1 ∨ . . . ∨ lk ∈ F l1, . . . , lk ≺ l
C := C ∪ {l1, . . . , lk} \ {l}

Learn:

C = {l1, . . . , lk} l1 ∨ . . . ∨ lk /∈ F

F := F ∪ {l1 ∨ . . . ∨ lk}

Forget:
C = no cflct c ∈ F F \ c � c

F := F \ c

Backjump:

C = {l, l1, . . . , lk} l ∨ l1 ∨ . . . ∨ lk ∈ F level l > m ≥ level li
C := no cflct M := M [m] l

Restart:
C = no cflct

M := M [0]

Fig. 2. Rules of dpll as given in [KG07]

3 Core DPLL

Most of today’s DPLL-based SAT solvers implicitly implement state transition
systems for SAT. The architecture that we are proposing suggests that this
relationship should be made explicit.

The core DPLL component, having precisely the functionality of an abstract
state transition system for SAT, should be isolated within a SAT solver (in what
follows, this component will be represented by the class Solver). Its interface
should explicitly match all state transition rules (backjumping, learning, etc.) —
both their applications and checking for their applicability, while its implemen-
tation should employ smart low-level techniques (such as the two-watch literal
propagation) in order to make rule applications as efficient as possible. As an
example, we list the method that applies the Decide rule (the used concepts of
literal selection strategy and listeners will be explained in Sect. 4.1 and Sect. 3.1,
and the rest of the code implements the rule effect):

void Solver::applyDecide() {

Literal decisionLiteral = _literalSelectionStrategy->getLiteral();

setReason(decisionLiteral, 0);

assertLiteral(decisionLiteral, true);

for (li = _listeners.begin(); li != _listeners.end(); li++)

(*li)->onDecide(decisionLiteral);

}

This way, the most complex parts of a SAT solver are encapsulated within
the implementation of the core component. If this component was trusted (or
formally verified) to implement the transition rules correctly, then correctness
of the whole solver would be guaranteed by the correctness of the underlying
abstract state transition system (under the condition that heuristic components
satisfy some additional, usually trivial, conditions).

A number of heuristics specify when and how the transition rules are ap-
plied, in a sense that they determine the order and the missing aspects of rule
applications. All of them should be isolated from the core DPLL component, so

that they can be externally defined (as it is the case with the literal selection in
the given example).

It is possible to adapt existing solvers and make them meet these require-
ments. However, this question has to be addressed separately for each specific
SAT solver implementation and goes beyond the scope of this paper. A detailed
description of a solver which is a rational reconstruction of MiniSat [ES04], fol-
lowing the rules of [KG07], is available in [Mar09].

3.1 Communication Between the Core DPLL and the Satellite

Modules

Interface of the core DPLL component, must support communication between
the core and all its satellite components.

First, the solver’s internal state (the trail M and the set of clauses F , split
into initial and learnt clauses) should be accessible (as read only):

class Solver {

public: ...

const Trail& getTrail() const;

const std::vector<const Clause*>& getInitialClauses () const;

const std::vector<const Clause*>& getLearntClauses () const;

};

Next, satellite components must be informed about all relevant actions that
the solver performs. A convenient way to enable this is to use the Observer

design pattern [GHJ+95]. In this case, every object interested in tracking solver’s
actions must be of a class that implements the SolverListener interface. The
SolverListener interface directly corresponds to the transition rules of [KG07]:

class SolverListener {

public:

virtual void onDecide (Literal l) {}

virtual void onPropagate (Literal l, Clause* clause) {}

virtual void onBacktrack (Literal l) {}

virtual void onConflict (Clause* conflictClause) {}

virtual void onExplain (Clause* C, Literal l, Clause* clause) {}

virtual void onLearn (Clause* clause) {}

virtual void onForget () {}

virtual void onRestart () {}

};

Listeners must register to the solver by calling its addListener method and
this is usually done during their construction. Listeners can require to stop track-
ing the solver by calling its removeListner method and this is usually done
during their destruction.5

5 In further text, class constructors and destructor will usually be ommited because
they implement trivial operations (e.g., registering listeners, resizing arrays).

class Solver {

public: ...

void addListener (SolverListener* listener) const;

void removeListener (SolverListener* listener) const;

private: ...

std::vector<SolverListener*> _listeners;

};

In all places in the core DPLL code corresponding to high-level rule appli-
cations, all registered listeners should be notified so they can take appropriate
actions, as this is the case in the applyDecide function given on the page 4.

4 Heuristic Components of the Solver

In order to get an effective SAT solver implementation, heuristics that determine
how and when are the abstract state transition rules (implemented by the core
DPLL) applied, must be specified. Today’s solvers feature a large number of
heuristic components. As an illustration, we will discuss literal selection strategy

and restart strategy. Similar implementation techniques can be also applied on
other heuristic components (e.g., on the forget strategy which determines when to
apply forgetting, forget selection strategy which determines which clauses to for-
get, conflict analysis strategy which determines the conflict analysis procedure).
The communication between these heuristics and the core DPLL is bidirectional.
Once these heuristic components are separated from the core DPLL procedure,
the support for multiple variants of a heuristic within a same solver can be
naturally achieved by using the Strategy design pattern [GHJ+95].

4.1 Literal selection

The only responsibility of a Literal selection strategy is to select a next literal
for branching (i.e., for the application of the rule Decide):

class LiteralSelectionStrategy {

public:

virtual Literal getLiteral() = 0;

};

The solver is associated with a literal selection strategy object:

class Solver {

public: ...

void setLiteralSelectionStrategy(LiteralSelectionStrategy* strategy);

private: ...

LiteralSelectionStrategy* _literalSelectionStrategy;

};

As shown in the applyDecide function given on the page 4, the strategy
object is consulted whenever a new decision should be made.

Separate selection of variables and polarities. Most literal selection strategies
first select the variable for branching and only afterwards select its polarity:

class LiteralSelectionStrategy_VariablePolarity :

public LiteralSelectionStrategy {

public:

Literal getLiteral() {

Variable var = _variableSelectionStrategy->getVariable();

Literal lit = _polaritySelectionStrategy->getLiteral(var);

return lit;

}

private:

VariableSelectionStrategy* _variableSelectionStrategy;

PolaritySelectionStrategy* _polaritySelectionStrategy;

};

class VariableSelectionStrategy {

public:

virtual Variable getVariable() = 0;

};

class PolaritySelectionStrategy {

public:

virtual Literal getLiteral(Variable variable) = 0;

};

MiniSAT Variable Selection Strategy. As an example, we shall show how a very
complex variable selection strategy like the one used in MiniSAT [ES04] is easily
modelled within our framework. Notice that its implementation is completely
separated from the core DPLL algorithm, and this design solution is our main
contribution to this fragment of the solver. Also, this example shows how it is
possible to make an explicit separation between a higher-level functionality of a
heuristic and its lower-level implementation technique, and this hopefully makes
the code much easier to comprehend.

The main idea behind the MiniSAT variable selection strategy is to give
priority to variables that were involved in recent conflicts. This is achieved by
assigning a numeric activity score to each variable. When choosing a variable to
branch on, the one with the maximal activity score among all variables undefined
in the trail is chosen. The scores dynamically change whenever variables are
involved in conflicts. On each application of the rule Conflict and the rule Explain,
the activity score for each variable of the clause involved is bumped. As the
strategy tends to prioritize recent conflicts, on each application of Conflict, the
activity of all variables is decayed. Notice that because this strategy must respond
to solver’s actions, it must implement the SolverListener interface.

In order to optimize finding variables with high activity scores, variables are
kept in a heap data structure ordered by their activity scores. For efficiency
reasons, the heap is updated “lazily”, i.e., variables are pushed on to it each

time they are backtracked from the trail, but are not removed from it each time
they get asserted. This “excess” variables on the heap are filtered out when the
final decision variable is selected.

The activity scores are maintained by a separate class. It stores scores for all
variables and its interface must enable bumping a score of a specified variable
and decaying scores for all variables. It can be implemented in several different
ways, and one efficient way will be discussed in the sequel.

class MinisatVariableSelectionStrategy :

public VariableSelectionStrategy, public SolverListener {

public:...

Variable getVariable() {

Variable maxVar;

do {

maxVar = _activityHeap.pop_heap();

} while (!(_solver.getTrail().isUndefVariable(maxVar)));

return maxVar;

}

void onConflict(Clause* clause) {

_activities.decayAll();

bumpVariablesInClause(clause);

}

void onExplain(Clause* C, Literal literal, Clause* clause) {

bumpVariablesInClause(clause);

}

void onBacktrack(Literal literal) {

Variable variable = getVariable(literal);

if (!_activityHeap.contains(variable))

_activityHeap.push_heap(variable);

}

private:

void init() {

for (Variable var = 0; var < _solver.numVars(); var++)

_activityHeap.push_heap(var);

}

void bumpVariablesInClause(Clause* clause) {

for (lit = clause->begin(); lit != clause->end(); lit++)

bumpVariableActivity(getVariable(*lit));

}

void bumpVariableActivity(Variable variable) {

_activities.bump(variable);

if (_activityHeap.contains(variable))

_activityHeap.increase(variable);

}

const Solver& _solver;

Activities _activities;

Heap<Variable, Activities::Comparator> _activityHeap;

};

The implementation of the Activities class can employ some smart low-
level tricks introduced by MiniSAT. First, activity scores are represented as
floating point numbers. For efficiency reasons, when the decay of all variable
scores is requested, variable scores remain intact, but instead, only the bump

factor is increased. In this way, the relative proportions of activity scores remain
the same, but the implementation is, of course, much faster. However, there is
one caveat: since the bump factor grows exponentially, overflow can occur and
to prevent it, activity scores must be rescaled from time to time.

class Activities {

public:

Activities(double bumpAmount, double decayFactor, size_t numVars)

: _bumpAmount(bumpAmount), _decayFactor(decayFactor) {

_activities.resize(numVars);

_activities.assign(numVars, 0.0);

}

void bump(Variable variable) {

_activities[variable] += _bumpAmount;

if (_activities[variable] > MAX_ACTIVITY)

rescaleActivities();

}

void decayAll() {

_bumpAmount *= _decayFactor;

}

double getActivity(Variable variable) const {

return _activities[variable];

}

...

private:

void rescaleActivities() {

for (Variable var = 0; var < _activities.size(); var++)

_activities[var] *= 1.0/MAX_ACTIVITY;

_bumpAmount *= 1.0/MAX_ACTIVITY;

}

std::vector<double> _activities;

double _bumpAmount;

double _decayFactor;

};

Polarity caching. As an example of a non-trivial polarity selection strategy we
will show implementation of the strategy known as phase caching [PD07]. A
preferred polarity is assigned to each variable. Whenever a literal is asserted to
the current assertion trail (either as a decision or as a propagated literal), its
polarity defines the future preferred polarity of its variable. When a literal is
removed from the trail (during backjumping or restarting) its preferred polarity
is not changed.

class PolaritySelectionStrategyCaching :

public PolaritySelectionStrategy, public SolverListener {

public:...

Literal getLiteral(Variable variable) {

return Literal(variable, _preferredPolarity[variable]);

}

void onAssert(Literal literal) {

_preferredPolarity[getVariable(literal)] = isPositive(literal);

}

private:

std::vector<bool> _preferredPolarity;

};

Randomization as decoration. Some studies show that adding a small percentage
of random decisions into literal selection heuristics can improve solving efficency
[GSK98]. Since this can be done whatever variable selection strategy is used, it
is convenient to implement is by using the Decorator design pattern [GHJ+95]:

class VariableSelectionStrategyRandomDecorator :

public VariableSelectionStrategy {

public:...

Variable getVariable() {

if (randFloat() <= _percentRandom)

return getRandomUndefinedVariable(); // make random decision

else

return _strategy->getVariable(); // fallback to default

}

private:

VariableSelectionStrategy* _strategy;

float _percentRandom;

};

4.2 Restarting

The only responsibility of the restart strategy is to determine whether the solver
should restart:

class RestartStrategy {

public:

virtual bool shouldRestart() = 0;

};

Most restart strategies are based on conflict counting:

class RestartStrategyConflictCounting :

public RestartStrategy, public SolverListener {

public:

void init() {

_numRestarts = 0; _numConflicts = 0;

calculateConfilctsForFirstRestart();

}

void onConflict(Clause* conflictClause) {

_numConflicts++;

}

void onRestart() {

_numRestarts++; _numConflicts = 0;

calculateConfilctsForNextRestart();

}

bool shouldRestart() {

return _numConflicts >= _numConflictsForNextRestart;

}

protected:

virtual void calculateConfilctsForFirstRestart() = 0;

virtual void calculateConfilctsForNextRestart() = 0;

size_t _numRestarts;

size_t _numConflicts;

size_t _numConflictsForNextRestart;

};

Only functions that specify number of conflicts for first, and for every next
restart must be implemented in order to obtain a concrete restart strategy. Min-
iSat [ES04] uses the following strategy:

void calculateConfilctsForFirstRestart() {

_numConflictsForNextRestart = _numConflictsForFirstRestart;

}

void calculateConfilctsForNextRestart() {

_numConflictsForNextRestart *= _restartInc;

}

Picosat [Bie08] uses the following strategy:

void calculateConfilctsForFirstRestart() {

_numConflictsForNextRestart = _numConflictsForFirstRestart;

}

void calculateConfilctsForNextRestart() {

if (_inner >= _outer) {

_outer *= _restartInc; _inner = _numConflictsForFirstRestart;

} else {

_inner *= _restartInc;

}

_numConflictsForNextRestart = _inner;

}

5 Additional Satellite Components

Once the core DPLL algorithm is encapsulated in a separate module with a clear
and rich programming interface, it is possible to extend the basic SAT solver with
many satellite modules implementing a wide range of different functionalities.
In this section we just list some of them.

5.1 Bookkeeping

The statistics gathered during the solving process (e.g., the number of decisions,
the number of conflicts, the current speed measured by the number of assertions
per second) can offer deeper insights and improve the field of SAT research.
The described architecture enables very easy implementation of bookkeeping of
various statistics about the solving process, and their collecting can be performed
by a satellite component.

5.2 User Interface

In order to give users some feedback about the state and the progress of the
solving process, it is desirable to implement some kind of logging or output of
different verbosity. With our architecture, these user interface components can
be implemented independently from the SAT solver itself. As an example we
show how to implement a simple character based output that helps tracking
high-level transition rules that the solver applies:

class DotLoggingSolverListener : public SolverListener {

public:...

void onAssert(Literal l) {

if (_solver.getTrail().currentLevel() == 0)

output("z");

}

void onDecide(Literal l) {

if (_decisions++ == 1000)

output("."), _decisions = 0;

}

void onRestart() { output("r\n"); }

void onForget () { output("f"); }

};

If a more detailed information should be displayed, a graphical user interface
(GUI) is preferred. Fig. 3 shows a graphical user interface of our solver ArgoSAT,
also implemented on top of the basic solver without any need for making its
modifications.

5.3 Proof Logging

Generating explicit proofs of unsatisfiability improves confidence in solvers re-
sults. Although there are several different standard proof formats, all of them
can easily be implemented as satellite components within our framework. As an
example, we sketch a generator for the resolution-trace format (used in the SAT
competitions). Although there are some additional details that must be specified
in order to get a correct proof logger, the main step is the logging of the Explain

rule applications.

Fig. 3. ArgoSAT graphical user interface. The upper panel displays a graph showing
the number of clauses remaining after each forget rule application, and the lower panel
displays state transition rule applications (encoded by different colors).

class ResolutionTraceProofLogger {

public:...

void onExplain(Clause* C, Literal l, Clause* clause) {

dumpToFile(_solver.getC()->getID(), getVariable(l),

C->getID(), clause->getID());

}

};

6 Conclusions

In this paper, we advocated for the importance of the software design in the
implementation of modern SAT solvers. We have described one object-oriented
framework for the implementation of DPLL based SAT solvers, based on transi-
tion rules of [KG07]. Some of the proposed solutions are already present in avail-
able open-source SAT solvers, but we have extended them and presented them
in an uniform way. The main contribution of our architecture is encapsulation of
many different SAT solving concepts into separate modules and clear differen-
tiation between high-level algorithms, heuristics, and low-level implementation
techniques.

There is a trade-off between a nice code design and its efficiency. Namely,
modularization introduces some runtime overhead when compared to a hard-
coded variant of SAT solver, because of the increased communication between
the core and the satellite components. However, experiments with our solver
ArgoSAT show that this overhead is well below 3% on all benchmarks used for
testing.

Solvers implementations significantly differ among themselves and, of course,
it is not possible to specify one architecture suitable for all of them. However,
we hope that the ideas described in this paper could help SAT solver developers

make flexible solvers, hopefully sharing some code and featuring multiple algo-
rithms and heuristics, what will in our opinion become a necessity in years that
come.

References

[Bie08] A. Biere. PicoSAT Essentials. JSAT 4, pp. 75–97, 2008.
[Coo71] S. A. Cook. The Complexity of Theorem-Proving Procedures. In 3rd

STOC, pp. 151–158, New York, 1971.
[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program for

Theorem-Proving. Commun. ACM 5(7), pp. 394–397, 1962.
[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantification

Theory. J. ACM 7(3), pp. 201–215, 1960.
[ES04] N. Een and N. Sorensson. An Extensible SAT Solver. In SAT ’03, LNCS

2919, pp. 502–518, S. Margherita Ligure, 2003.
[GHJ+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.

Addison-Wesley, 1995.
[GN02] E. Goldberg and Y. Novikov. Berkmin: A Rast and Robust SAT Solver,

In DATE’02, pp. 142–149, Paris, 2002.
[GSK98] C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search

through Randomization. In 15th AAAI, pp. 431–437, Madison, 1998.
[HHH+06] F. Hutter, Y. Hamadi, H. Hoos, and K. Leyton-Brown. Performance pre-

diction and automated tuning of randomized and parametric algorithms.
In CP’06, pp. 213–228, 2006.

[Hua07] J. Huang. A Case for Simple SAT Solvers. In CP ’07, LNCS 4741, pp. 839–
846, Providence, 2007.

[KG07] S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories:
Nelson-Oppen with DPLL. In FroCos ’07, LNCS 4720, pp. 1–27, Liverpool,
2007.

[Mar09] F. Marić. Formalization and implementation of modern sat solvers. JAR,
accepted for publication, 2009.

[NMJ09] M. Nikolić, F. Marić, P. Janičić. Instance-Based Selection of Policies for
SAT Solvers. Manuscript submitted.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). J. of the ACM 53(6), pp. 937–977, 2006.

[PD07] K. Pipatsrisawat and A. Darwiche. A Lightweight Component Caching
Scheme for Satisfiability Solvers. In SAT ’07, LNCS 4501, pp. 294–299,
Lisbon, 2007.

[XHH+08] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-Based
Algorithm Selection for SAT. JAIR 32, pp. 565–606, 2008.

