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The space of operator valued functions seen as Hilbert
H∗-module

Zlatko Lazović

Abstract. Let M be a space of weakly∗-measurable functions F : Ω→ B(H)
on measure space (Ω,Σ, µ), for which the function F∗F is Gel’fand integrable

and
∫

ΩG F∗Fdµ is a nuclear operator on Hilbert space H. We show that M is
Hilbert H∗-module which contains an orthonormal basis.

1. Introduction

A Hilbert H∗-module W over an H∗-algebra Λ is a right Λ-module which possesses
a τ(Λ)-valued product, where τ(Λ) = {ab | a, b ∈ Λ} is the trace-class. At the same
time, W is a Hilbert space with the inner product given by the action of the trace
on the τ(Λ)-valued product.

The notion of H∗-module is introduced by Saworotnow in [7] under the name
of generalized Hilbert space. It has been studied by Smith [9], Giellis [4] Molnar
[6], Cabrera et al. [3], Bakić and Guljaš [2] and others.

Unlike Hilbert C∗-modules, it is well known that each Hilbert H∗-module con-
tains basic elements, orthonormal systems and orthonormal bases (see [3] and [6]).
Moreover, all orthonormal bases for W have the same cardinal number.

In the present paper we construct an example of right Hilbert H∗-module
over the algebra of Hilbert-Schmidt operators and find basic elements, orthonormal
system and orthonormal basis.

2. Basic notations and preliminary results

We recall that an H∗-algebra is a complex associative Banach algebra Λ with
an inner product 〈·, ·〉 such that 〈a, a〉 = ‖a‖2 for all a ∈ Λ and for each a ∈ Λ
there exists some a∗ ∈ Λ such that 〈ab, c〉 = 〈b, a∗c〉 and 〈ba, c〉 = 〈b, ca∗〉 for all
b, c ∈ Λ. The adjoint a∗ of a need not be unique (see [1]). Throughout this paper,
Λ will always denote a proper H∗-algebra, i.e. H∗-algebra where each element has
a unique adjoint.
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2 LAZOVIĆ

An idempotent in an H∗-algebra is an element e such that e2 = e 6= 0. A
projection e is a selfadjoint idempotent in Λ. A projection e is minimal if e 6= 0
and eΛe = Ce.

The trace-class in a H∗-algebra Λ is defined as the set τ(Λ) = {ab | a, b ∈ Λ}.
The trace-class is selfadjoint ideal of Λ and it is dense in Λ, with respect to norm
τ(·). The norm τ is related to the given norm ‖ · ‖ on Λ by τ(a∗a) = ‖a‖2 for all
a ∈ Λ. There exists a continuous linear form sp on τ(Λ) (trace) satisfying sp(ab) =
sp(ba) = 〈a∗, b〉 . In particular, sp(a∗a) = sp(aa∗) = 〈a, a〉 = ‖a‖2 = τ(a∗a).

Let C∞(H) be the space of all compact and B(H) the space of all bounded
linear operators acting on a separable, infinite-dimensional and complex Hilbert
space H. In addition, let sj(A) be the sequence of singular values of the operator A.

The algebra C2 = {A ∈ C∞(H) | ‖A‖22 =
∑+∞
j=1 s

2
j (A) < +∞} is H∗-algebra with

minimal projections of rank one Θe,f , given by Θe,f (g) = e 〈f, g〉 , for e, f, g ∈ H;
and with inner product 〈A,B〉 = sp(A∗B) which satisfies 〈AB,C〉 = sp(B∗A∗C) =
〈B,A∗C〉 and 〈BA,C〉 = sp(A∗B∗C) = sp(B∗CA∗) = 〈B,CA∗〉 for all A,B,C ∈
C2.

A Hilbert Λ-module is a right module W over a H∗-algebra Λ provided with a
mapping [·, ·] : W×W → τ(Λ) which satisfies following conditions: [x, αy] = α[x, y];
[x, y + z] = [x, y] + [x, z]; [x, ya] = [x, y] a; [x, y]∗ = [y, x]; W is Hilbert space with
the inner product 〈x, y〉 = sp ([x, y]) for all α ∈ C, x, y, z ∈ W, a ∈ Λ and for all
x ∈ W, x 6= 0 there is a ∈ Λ, a 6= 0 such that [x, x] = a∗a. Since M is a Hilbert
space, it is complete in the derived scalar-valued inner product sp ([x, y]).

An element u in a Hilbert H∗-module W is said to be basic if there exists a
minimal projection e ∈ Λ such that [u, u] = e. An orthonormal system in W is
a family of basic elements (uλ), λ ∈ Υ, satisfying [uλ, uµ] = 0, for all λ, µ ∈ Υ,
λ 6= µ. An orthonormal basis in W is an orthonormal system generating a dense
submodule of W . It is well known that each Hilbert H∗-module contains basic
elements, orthonormal systems and orthonormal bases (see [3] and [6]).

The following theorems are very important for Hilbert H∗-module.

Theorem 2.1. [3, Remark 1.] Let W be a Hilbert H∗-module over an algebra
Λ. Then 1) ‖x‖2 = sp([x, x]) = τ ([x, x]); 2) ‖[x, y]‖ 6 τ([x, y]) 6 ‖x‖ · ‖y‖; 3)
‖xa‖ 6 ‖a‖ · ‖x‖ for all x, y ∈W, a ∈ Λ.

Theorem 2.2. [3, Theorem 1.6] If (uλ), λ ∈ Υ is orthonormal basis for a
Hilbert H∗-module W over an algebra Λ, then 1) x =

∑
λ uλ[uλ, x] (Fourier expan-

sion); 2) [x, x] =
∑
λ[x, uλ][uλ, x] (Parseval’s identity); 3) ‖x‖2 =

∑
λ ‖[uλ, x]‖2

for all x ∈W .

For more details, we refer to Saworotnow [7], Smith [9], Giellis [4], Molnar [6],
Cabrera et al. [3], Bakić and Guljaš [2] and others.

Next, we introduce weak∗-integrals of operator valued functions and state some
preliminary results. Let (Ω,Σ, µ) be a measure space. A mapping A : Ω → B(H)
is called weakly∗-measurable if the scalar function t 7→ 〈Atf, f〉 is measurable for
any f ∈ H. A mapping A is weak∗-integrable if the function t 7→ 〈Atf, f〉 is
integrable for any f ∈ H. Let Cp = Cp(H) (1 6 p < +∞) be the space of all
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compact linear operators acting on H with norm ‖A‖p = p

√∑+∞
i=1 s

p
i (A) < +∞,

where si are s-numbers of the operator A, and let C∞ be the space of all compact
operators with norm ‖A‖∞ = ‖A‖ = s1(A). If A : Ω → B(H) is weak∗-integrable,
then the sesquilinear form σ : H ×H → C, defined by σ(f, f) =

∫
Ω
〈Atf, f〉 dµ(t),

is bounded, so there exists unique bounded operator A (or
∫

Ω
Adµ) which satisfies

〈Af, f〉 =

∫
Ω

〈Atf, f〉 dµ(t) for all f ∈ H.

We formalize this in the following definition.

Definition 2.1. Let A : Ω → B(H) be a weak∗-integrable function. The
bounded operator

∫
Ω
Adµ is unique operator for which〈(∫

Ω

A dµ

)
f, f

〉
=

∫
Ω

〈Atf, f〉 dµ(t)

holds for all f ∈ H.

For p > 1, denoted by l2G(Ω,dµ,Cp) the set{
F : Ω→ B(H) | F∗F is weak∗-integrable,

∫
Ω

F∗F dµ ∈ Cp
}
.

On this set introduce the following equivalence relation F ∼ G iff (Ft − Gt)f =
0 for all f ∈ H, except on a set of zero measure. The quotient space denote by Mp

for p > 1, and by M for p = 1.
We now state a theorem which will be necessary for the proof of main results.

Theorem 2.3. [5, Theorem 2.1] The space (M, ‖·‖) is Banach space with norm
‖ · ‖ : M → [0,+∞),

‖F‖M =

∥∥∥∥∫
Ω

F∗Fdµ
∥∥∥∥ 1

2

1

, for all F ∈M.

3. Main result

The aim of this section is to study an example of H∗-module.

Theorem 3.1. The space M is a right Hilbert H∗-module over H∗-algebra C2,
with the inner product [·, ·] : M ×M → C1 defined by

[F ,G] =

∫
Ω

F∗G dµ for all F ,G ∈M.

Proof. We shall prove that it satisfies the conditions of Hilbert H∗-module.
For F ∈ M , we have

〈∫
Ω
F∗F dµ f, f

〉
=
∫

Ω
‖Ftf‖2 dµ(t) > 0, so [F ,F ] =∫

Ω
F∗F dµ > 0.

If [F ,F ] = 0, then 0 =
〈∫

Ω
F∗F dµ f, f

〉
=
∫

Ω
‖Ftf‖2 dµ(t) for all f ∈ H, so

‖Ftf‖ = 0 for all f ∈ H, except on a set of zero measure. Therefore, F = 0.

We define the norm in the space M by ‖F‖ = ‖[F ,F ]‖
1
2
1 .
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We have 〈[F , αG]f, f〉=
〈∫

Ω
F∗αG dµf, f

〉
=
〈
α
∫

Ω
F∗G dµf, f

〉
= 〈α[F ,G]f, f〉,

for all F ,G ∈M ,α ∈ C, hence [F , αG] = α[F ,G].
For F ,G,H ∈ M , we have 〈[F ,G +H]f, f〉 =

∫
Ω
〈F∗t (G +H)tf, f〉 dµ(t) =∫

Ω
〈F∗t Gtf, f〉 dµ(t) +

∫
Ω
〈F∗t Htf, f〉 dµ(t) = 〈〈F ,G〉 f, f〉 + 〈[F ,H]f, f〉 . Hence

[F ,G +H] = [F ,G] + [F ,H].
Next, we have 〈[F ,GC]f, f〉 =

∫
Ω
〈F∗t GtCf, f〉 dµ(t) = 〈[F ,G]Cf, f〉 for F ,G ∈

M , C ∈ C2. Thus [F ,GC] = [F ,G]C.
Let F ,G ∈M . The function t 7→ 〈F∗t Gtf, f〉 is measurable for each f ∈ H. In-

deed, it follows by the Parseval identity that 〈F∗t Gtf, f〉 =
∑∞
n=1 〈Gtf, en〉 〈en,Ftf〉

for an orthonormal basis {en} of H, and thus the pointwise limit of measurable
functions is also a measurable one. Moreover, for each f ∈ H the function above is
integrable since

| 〈F∗t Gtf, f〉 | 6 〈F∗t Ftf, f〉
1
2 〈G∗t Gtf, f〉

1
2 6

1

2
(〈F∗t Ftf, f〉+ 〈G∗t Gtf, f〉) .

For each orthonormal basis {en} of H holds

∞∑
n=1

∣∣∣∣〈(∫
Ω

F∗Gdµ
)
en, en

〉∣∣∣∣ =

∞∑
n=1

∣∣∣∣∫
Ω

〈F∗t Gten, en〉 dµ
∣∣∣∣

6
∞∑
n=1

∫
Ω

|〈F∗t Gten, en〉| dµ 6
∞∑
n=1

∫
Ω

〈F∗t Ften, en〉
1
2 〈G∗t Gten, en〉

1
2 dµ

6
∞∑
n=1

(∫
Ω

〈F∗t Ften, en〉 dµ
) 1

2
(∫

Ω

〈G∗t Gten, en〉 dµ
) 1

2

=

( ∞∑
n=1

〈(∫
Ω

F∗Fdµ
)
en, en

〉) 1
2
( ∞∑
n=1

〈(∫
Ω

G∗Gdµ
)
en, en

〉) 1
2

=

∥∥∥∥∫
Ω

F∗Fdµ
∥∥∥∥ 1

2

1

·
∥∥∥∥∫

Ω

G∗Gdµ
∥∥∥∥ 1

2

1

,

hence
∫

Ω
F∗Gdµ,

∫
Ω
G∗Fdµ ∈ C1 and∥∥∥∥∫
Ω

F∗Gdµ
∥∥∥∥

1

6

∥∥∥∥∫
Ω

F∗Fdµ
∥∥∥∥ 1

2

1

·
∥∥∥∥∫

Ω

G∗Gdµ
∥∥∥∥ 1

2

1

.

Next,
〈(∫

Ω
F∗G dµ

)∗
f, g
〉

=
∫

Ω
〈F∗t Gt g, f〉dµ(t) =

〈∫
Ω
G∗F dµ f, g

〉
. We have

proved [F ,G]∗ = [G,F ].
The space M is a Hilbert space with the scalar product 〈F ,G〉 = sp([F ,G]) =

sp
(∫

Ω
F∗G dµ

)
. Indeed, since∑

k

〈[F ,G]ek, ek〉 =
∑
k

〈[G,F ]ek, ek〉,
∑
k

〈[αF ,G]ek, ek〉 = α
∑
k

〈[F ,G]ek, ek〉

∑
k

〈[F +H,G]ek, ek〉 =
∑
k

〈[F ,G]ek, ek〉+
∑
k

〈[H,G]ek, ek〉
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for some orthonormal basis {ek} of H, we have 〈F ,G〉 = 〈G,F〉, 〈αF ,G〉 = α 〈F ,G〉
and 〈F +H,G〉 = 〈F ,G〉 + 〈H,G〉 , for all α ∈ C, F ,G ∈ M . We proved that
if 〈F ,F〉 = 0, then F = 0. The completeness of space M follows from Theorem
2.3. �

4. Applications

In this section we will show how the structure theorems for Hilbert H∗-modules
can be applied to our case.

Theorem 4.1. Let F ,G ∈M and let X ∈ C2. Then

1)
∥∥∫

Ω
F∗G dµ

∥∥
1
6
∥∥∫

Ω
F∗F dµ

∥∥ 1
2

1
·
∥∥∫

Ω
G∗G dµ

∥∥ 1
2

1
;

2)
∥∥∫

Ω
X∗F∗FX dµ

∥∥
1
6
∥∥∫

Ω
F∗F dµ

∥∥
1
· ‖X‖22;

3)
∫

Ω
F∗G dµ

∫
Ω
G∗F dµ 6

∥∥∫
Ω
G∗G dµ

∥∥
B(H)

∫
Ω
F∗F dµ.

Proof. The properties 1) and 2) follow directly from Theorem 2.1. To prove
3), let F ,G ∈ M and let ϕ be a positive linear functional on B(H). Applying
the Cauchy-Bunyakovskii inequality for degenerate inner product ϕ([·, ·]) on M we
obtain

ϕ([F ,G][G,F ]) = ϕ([F ,G[G,F ]]) 6 ϕ([F ,F ])
1
2ϕ([G[G,F ],G[G,F ]])

1
2

= ϕ([F ,F ])
1
2ϕ([F ,G][G,G][G,F ])

6 ϕ([F ,F ])
1
2 ‖[G,G]‖

1
2

B(H)ϕ([F ,G][G,F ])
1
2 .

Therefore, we have the inequality ϕ([F ,G][G,F ]) 6 ‖[G,G]‖B(H)ϕ([F ,F ]) for any
positive linear functional ϕ, hence the statement 3) is proved. �

In the following proposition we apply some properties of the Hilbert H-module
to the particular module M .

Proposition 4.1. a) The space M has orthonormal basis Uλ which for
all F ∈M satisfies

i) F =
∑
λ Uλ ([Uλ,F ]);

ii) [F ,F ] =
∑
λ[F ,Uλ][Uλ,F ];

iii) ‖[F ,F ]‖1 =
∑
λ ‖[Uλ,F ]‖21.

b) Let Fn,F ,Gn,G,H ∈M . If
1) lim

n→∞
sp ([Fn −F ,H]) = 0 holds for each H ∈M ,

2) lim
n→∞

sp ([Gn − G,Gn − G]) = 0,

then
lim
n→∞

sp ([Fn,Gn]− [F ,G]) = 0.

c) Let Fn,F ,Gn,G,H ∈M . If
1’) lim

n→∞
‖[Fn −F ,H]‖1 = 0 holds for each H ∈M ,

2’) lim
n→∞

‖[Gn − G,Gn − G]‖1 = 0,

then
lim
n→∞

‖[Fn,Gn]− [F ,G]‖1 = 0.
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d) Let [F ,F ] be a projection in C2 (not necessarily minimal) for some F ∈
M . Then F [F ,F ] = F .

e) Let Θf,g ∈ C2 be a minimal projection for some f, g ∈ H. Then there
exists an orthonormal basis (Uλ) ∈M such that [Uλ,Uλ] = Θf,g.

f) If there exists N > 0 such that ‖[Uλ,Uλ]‖1 6 N for some mutually orthog-
onal elements (Uλ) in M , then ‖[Uλ,F ]‖1 converges to 0, for all F ∈M .

Proof. The property a) follows directly from Theorem 2.2.
Since M is Hilbert space with inner product 〈F ,G〉 = sp([F ,G]) it satisfies

property b).
The inequality ‖([Fn,Gn]− [F ,G])‖1 6 ‖Fn‖M · ‖Gn − G‖M + ‖[Fn −F ,G]‖1

holds, as in the case of Hilbert spaces. From the uniform boundedness principle,

we have sup
n
‖F̃n‖ <∞, hence property c) follows.

Properties d), e) and f) follow from [2, Lemma 1.4 or Propositions 1.5,1.9]
applied to Hilbert H∗-module M. �

Remark 4.1. Properties b) and c) hold for any Hilbert H∗-module with the
trace replaced by the scalar product and the norm with the appropriate one.

Remark 4.2. The special case of [5, Theorem 3.4 a)], for p = 1, is a corollary
of Theorems 3.1 and 4.1.

Define the set MF = {FX | X ∈ C2}, for some F ∈ M . The hilbertian
dimension C2-dim MF , generated by an element F , is equal to the cardinal number
of the set I of indices such that

∫
Ω
F∗F dµ =

∑
λ∈I αλΘeλ,eλ , where (Θeλ,eλ) are

orthogonal minimal projections in C2 and αλ > 0. The hilbertian dimension of
a submodule MF can be greater than 1. Hence F =

∑
λ∈I
√
αλFλ for Fλ =

(
√
αλ)−1FΘeλ,eλ , and (Fλ) is orthonormal basis in MF (see [2]).

An operator A : M →M is called C2-linear if it is linear and satisfies A(FX) =
A(F)X, for all F ∈ M , X ∈ C2. The set of all bounded C2-linear operators on M
is denoted by BC2(M).

Theorem 4.2. Let X ∈ B(H) and X ∈M , where supt∈Ω ‖Xt‖ = N <∞. The
operators LX , LX : M →M defined by

LX(F) = XF , LX (F) = XF ,
belong to BC2

(M) and the inequalities ‖LX‖ 6 ‖X‖, ‖LX ‖ 6 N hold.

Proof. The operators are well-defined, because XF ,XF ∈M when F ∈ M .
Indeed, t→ F∗t X∗XFt is weak∗-integrable since〈∫

Ω

F∗X∗XF dµ f, f

〉
=

∫
Ω

‖XFtf‖2 dµ(t) 6 ‖X‖2
∫

Ω

‖Ftf‖2 dµ(t) < +∞.

From the inequality F∗t X∗XF 6 ‖X‖2F∗t Ft for all t ∈ Ω, we have
∫

Ω
F∗F dµ ∈ C1

and

‖LX(F)‖M = ‖XF‖M =

∥∥∥∥∫
Ω

F∗X∗XF dµ

∥∥∥∥ 1
2

1

6

∥∥∥∥∫
Ω

F∗F dµ

∥∥∥∥ 1
2

1

· ‖X‖.
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Hence ‖LX‖ 6 ‖X‖.
Next, F∗X ∗XF is weak∗-integrable since〈∫

Ω

F∗X ∗XF dµ f, f

〉
=

∫
Ω

‖XtFtf‖2 dµ(t) 6
∫

Ω

‖Xt‖ · ‖Ftf‖2 dµ(t)

6 N
∫

Ω

‖Ftf‖2 dµ(t) = N

∫
Ω

〈F∗t Ftf, f〉 dµ(t)

= N

〈∫
Ω

F∗t Ft dµ(t)f, f

〉
6 N

∥∥∥∥∫
Ω

F∗t Ft dµ(t)

∥∥∥∥
B(H)

· ‖f‖2.

Hence
∫

Ω
F∗X ∗XF dµ ∈ B(H).

We will prove that
∫

Ω
F∗X ∗XF dµ ∈ C1. We have

‖LX (F)‖2M = ‖XF‖2M =

∥∥∥∥∫
Ω

F∗X ∗XF dµ

∥∥∥∥
1

=

+∞∑
j=1

sj

(∫
Ω

F∗X ∗XF dµ

)

6
+∞∑
j=1

sj

(
N2

∫
Ω

F∗F dµ

)
= N2

+∞∑
j=1

sj

(∫
Ω

F∗F dµ

)
= N2‖F‖2.

Therefore, ‖LX ‖ 6 N . �
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5. D. Jocić, Cauchy-Schwarz norm inequalities for weak∗-integrals of operator valued functions,

Journal of Functional Analysis, 218, Issue 2, (2005) 318–346.
6. L. Molnár, Modular bases in a Hilbert A-module, Czechoslovak Mathematical Journal 42

(1992), 649–656.

7. P. P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968), 191–197.
8. P. P. Saworotnow, Trace class and centralizers of an H∗-algebra, Proc. Am. Math. Soc., 26,

No. 1 (Sep., 1970), 101–104.
9. J. F. Smith, The structure of Hilbert modules, J. Lond. Math. Soc. 8 (1975), 741–749.

Department of Mathematics, University of Belgrade, 11 000 Belgrade, Serbia
Email address: zlatkol@matf.bg.ac.rs


