19.2.1 Simulating the M/M/1 Queue and Some Extensions

We now consider a number of examples in more detail, beginning with the simple M/M/1 queue.
This queue was treated analytically in Part II1 of this text, and although it is rather straightforward
to simulate (and indeed to (reat analytically), it is adequate for illustrating all the most important
aspects of designing and implementing a simulation. To recap, the M/M/1 queue is a single server
queue with first-come first-served scheduling of customers. The arrival process is Poisson with

parameter A, i.e., interarrival times have an exponential distribution with mean 1/A: the service time
is also exponentially distributed and the mean service time is 1 /.
The different variables that we shall employ are now specified:

e A single integer n is sufficient to completely characterize a state of the system and thus is
taken as the state descriptor vector.

e There are only two events: the arrival of a new customer to the system and the departure of a
customer who has just completed service.

Integer variables n, and ng count the number of arrivals and departures, respectively.

We shall run the simulation until a total of N customers have been served and then compute
the mean interarrival time, the mean service time and the mean time spent waiting in the
queue.

e The variable ¢ will be used to denote the internal clock time. The variables f; and [y denote
the scheduled times of the next arrival and the next departure.

e Weuset, and 1, to denote generated interarrival times and service times, respectively. During
the simulation run, fof; and fof, are running totals of arrival times and service times.

e Since we require the mean time spent in the system, we keep the arrival time of each customer.
Element of array T will hold the arrival time of customer i, fori < N. Subtracting T'[i] from
the time customer i departs gives customer i’s total system time (the variable response). The
average queueing time (variable waif) is found by subtracting the sum of all service times
from the sum of all response times and dividing by N.

e At simulation initialization, we shall set f = 0 and {; = oo where oo is taken to be a number
so large that there is little possibility of f ever reaching this value during the simulation. The
initialization will also generate the time of the first arrival and initialize #, to this value.

The following actions must be performed by the program modules that handle events:

I. An arrival:
e Advance the internal clock to the time of arrival.
e An additional customer has arrived so modify system state n appropriately (n = n+1).
e Increment n,. the number of arrivals so far and. it ng, < N.set T'[ng| = 1.
e Generate f,, the time until the next arrival: compute the next arrival instantf, =t + f;,

and add 1, into fof;.

e If n = I, signifying that the server had been idle prior to this arrival, generate f,,. the
service time for this customer, compute its departure time f; = t 4, and add f,, into
rot,.

2. A departure:
Advance the internal clock to time of departure.
A customer has left so modify system state n appropriately (n =n —).
Increment 74, the number of departures so far. Compute the time this departing
customer spent in the system and add into response.

e Ifn=0,sett; = co. Otherwise generate f,,, the service time of the next customer;

compute the next departure instant t; = f 4 1, and add ¢, into fof,,.

All that remains is to specify the main module. This module must

Perform all initialization functions as described above.
e [f the number of departures is less than N:

— initiate an arrival event if f; < #4: otherwise initiate a departure event (f; > fy).
e Generate terminal statistics and print report.

Some Extensions to the M/M/1 Queue

1. Non-exponential interarrival and service time distributions.
This can be handled quite easily. The previous code can be used with the exponential random
number generator replaced by a random number generator for whatever type of distribution
is required.

2. Limited waiting room (M/M/1/K).
In this case, some customers will not be able to enter the queue and a counter is needed
to keep track of the number of lost customers. Only the arrival event module needs to be
modified. After the count of lost customers is incremented and the internal clock updated,
the only remaining task is to generate the time of the next arrival, and update the sum of
interarrival times.

3. Multiple servers (M/Mjc).
Both arrival and departure event modules need to be modified. If, upon an arrival, the number
in the system is less than ¢, that arriving customer can go immediately into service—the
condition n == 1 should be replaced with n <= ¢. Within the departure event module, the
mechanism for computing the queueing time must be modified, since departures need not

be in the same order as arrivals. One possibility is to use an additional array TS whose i

elements keeps the time at which customer 7 enters service. Then TS[i] — TA[i] is the time
that customer 7 waits in the queue.

4. The M/M/1 queue with probability « of feedback.
Only the departure event module will need to be changed. It is necessary to generate a
uniformly distributed random number u € (0, 1) to determine whether a departure is fedback
or not. If # < o then the system state must be left unaltered. Everything else remains
unchanged.

5. Different customer classes with nonpreemptive scheduling.
In this case. the system state must be replaced by a vector of length K where K 1is the
maximum number of possible classes. At each arrival instant, the arrival module must first
generate a uniformly distributed random number u# € (0, 1) and use it to select the class of
the next arrival. When this has been accomplished, it must then generate the time of the next
arrival for a customer of that class and increment the system state according. If upon arrival
the system is empty, a service time specific to the class of the arriving customer is generated
and the arriving customer goes immediately into service.
At each departure instant, the departure event module must select the next customer to enter
service (highest priority first), modify the appropriate component of the state descriptor
vector and generate the service time of the next customer of the same class, if such a customer
is present. Since departures are not necessarily in the same order as arrivals, the comments
made with respect to the M/M/c queue and the array TS also apply here.

11.1.4 Graphical Representations of Queues

There exist a number of ways of graphing queueing systems and these can frequently provide insight
into the behavior of the system. For a FCES, single server queue, one possibility is shown in Figure
11.6. We let C, denote the n™ customer to enter the queueing system. If the service discipline is not
ECFS, then C, may not be the n'™ customer to depart. We let 7, denote the time at which C, arrives
in the system and #, the interarrival time between the arrival of C,,_; and C, (i.e.. 1y = Ty — Ty_1).
We shall assume that the t, are drawn from a distribution such that Prob{s, < t} = A(f). i.e..
independent of n., where A(f) is a completely arbitrary interarrival time distribution. Similarly,
we shall define x, to be the service time for C, and Prob{x, < x} = B(x). where B(x) is a
completely arbitrary (but independent) service time distribution. We are now in a position to graph
N(f), the number of customers in the system at time f. In Figure 11.6, w, represents the waiting
time (in queue) for C,, and s, represents the system time (queue plus service) for C,. (Note that
Sp = wy + Xp).

\ Number in
system
— 1 r 1
" "
e B =
4 ot I i t |
e S e = s =

3 : , , f4| 1 |

|
e

20 . | 1

:Lg,___fz.__ =
Le....

1L I W)

S o T : L=
0l 2 ERe 5 | | 6 | : 7 Time
| | | | | | |
S S T —— LIRS S I S = =S
: 1 : 2 T 4 s e

Figure 11.6. Graphical representation No. 1.

4 Cumulative

““I.“b“'r of Cumulative number
arrivals/departures of arrivals
L 0 aln
/ =X
41
3L N Cumulative number
TR O of departures
2L T d)
1
0 ' == Time
Ts , Ty
'-=f——:>-E-cf——>i-cf —————
+ IDLE © BUSY

Figure 11.7. Graphical representation No. 2.

An alternative graphical representation is given in Figure 11.7. In this graph N(f) = a(t) — d(1),
where a(f) denotes the number of arrivals in [0, 1) and d(#) denotes the number of departures in this
same time period.

There is also a double-time-axis graphical representation which is shown in Figure 11.8 (for the
single-server, FCFS case). This particular variant is relatively easy to generalize to many servers
and to disciplines other than FCFS.

C1 C2 C3 C4 C5 C6
Server Time
I
S S K- N X N5, | Yo
]
Queue ’
| L | | —
T T T Ty s Ts T; Time
L [L I I I
e . E o R T TR ‘**—‘ ------- ‘ -------------------------------- o | e et e e e e -
Cl C2 C3 C4 C5 C"5 C‘.},

Figure 11.8. Double-time-axis notation.

