

ZERO KNOWLEDGE PROOFS

by Marija Mikić

Elliptic curves as cryptographic groups

In mathematics, a finite field is a field that contains a finite number of elements. The order of a finite field is its number of elements, which is either a prime number or a prime power.

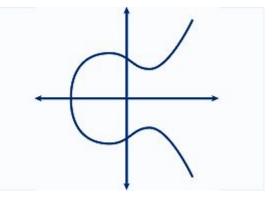
Elliptic curves are groups which are defined over finite fields. Equation of elliptic curve is

$$E: y^2 = x^3 + ax + b$$

where a and b are from algebraic closure of finite field K. The Equation is called the short Weierstrass equation for elliptic curves.

O - Point at infinity

We will always be working over large prime field.



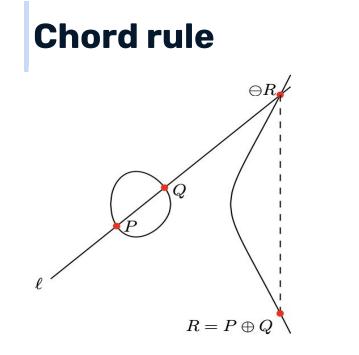
There's More 👉

Abelian group

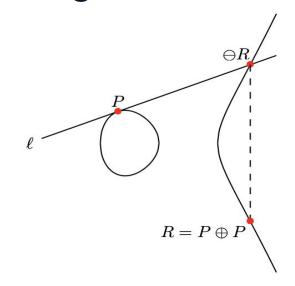
It has been proved that the set of points in ECC always form an Abelian group with the following properties:

Closure: If points P and Q belong to E(K), then P + Q also belongs to E(K); **Associativity:** (P + Q) + R = P + (Q + R); **Identity:** There exists an identity element 0 such that P + 0 = P; **Inverse:** Every element P has an inverse Q such that P + Q = 0; **Commutativity:** P + Q = Q + P.

We will assume that elliptic curve over finite field is cyclic.



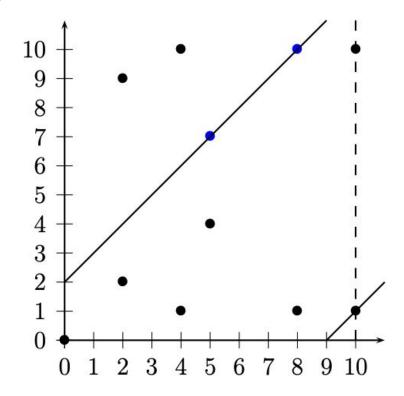
Tangent rule



The point $\odot R$ is then "flipped" over the x-axis to the point R.

Elliptic curve points over finite field F₁₁

There's More 👉



Add and Double algorithm

How can we multiply a point P with a scalar m where $m \ge 0$?

m*P = P + P + P + P + ... + P (m times)

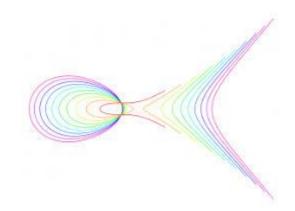
But that method is too slow for large m!

For faster calculation, we represent m as a binary number and get the result in logarithmic time.

For example, to evaluate 79*P, we convert 79 in its binary form.

Thus we can evaluate the sum:

 $79*P = 2^{6}*P + 2^{3}*P + 2^{2}*P + 2^{1}*P + 2^{0}*P.$



EC Discrete logarithm problem

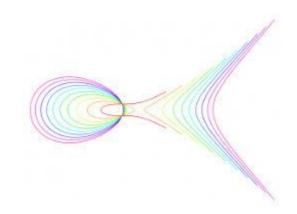
Finding m when P is given and m*P is known as the elliptic curve discrete logarithm problem. Let

 $[m]:\, E\mapsto E, \qquad P\mapsto [m]P$

This operation is analogous to exponentiation

$$g \mapsto g^m$$
 in Z_q^*

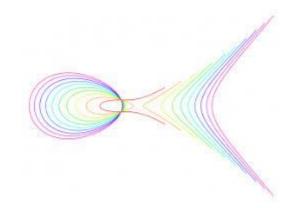
and is the central operation in ECC, as it is the one-way operation that buries discrete logarithm problems in E(Fq).



Security

Elliptic curve groups of a relatively small size achieves the same conjectured security as multiplicative groups in much larger finite fields.

For example, an elliptic curve defined over a 160-bit field currently offers security comparable to a finite field of 1248 bits.

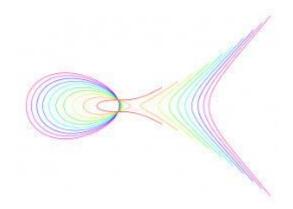


Multi-Scalar-Multiplication

The bottleneck in the proving algorithm of most of elliptic-curve-based SNARK proof systems is the Multi-Scalar-Multiplication (MSM) algorithm.

The naive algorithm uses a double-and-add strategy.

The fastest approach is a variant of Pippenger's algorithm, we call it the bucket method.



There's More 👉

<u>Link 1 ></u>

ж

Elliptic curve pairings

Definition: Let E be an elliptic curve over a finite field K. Let \mathbb{G}_1 and \mathbb{G}_2 be additively-written subgroups of order p, where p is a prime number, of elliptic curve E, and let $g_1 \in \mathbb{G}_1, g_2 \in \mathbb{G}_2$ are the generators of groups \mathbb{G}_1 and \mathbb{G}_2 respectively. A map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$, where \mathbb{G}_T is a multiplicatively-written subgroup of K of order p, is called a elliptic curve pairing if satisfies the following conditions:

- 1. $e(g_1, g_2) \neq 1$,
- 2. $\forall R, S \in \mathbb{G}_1, \forall T \in \mathbb{G}_2 : e(R+S,T) = e(R,T) * e(S,T),$
- 3. $\forall R \in \mathbb{G}_1, \forall S, T \in \mathbb{G}_2 : e(R, S + T) = e(R, S) * e(R, T).$

The following properties of the elliptic curve pairing can be easily verified:

1.
$$\forall S \in \mathbb{G}_1, \forall T \in \mathbb{G}_2 : e(S, -T) = e(-S, T) = e(S, T)^{-1},$$

2. $\forall S \in \mathbb{G}_1, \forall T \in \mathbb{G}_2 : e(a * S, b * T) = e(b * S, a * T) = e(S, T)^{a * b}.$

Types of bilinear map

- Type 1: $\mathbb{G}_1 = \mathbb{G}_2$, and we say *e* is a symmetric bilinear map;
- **Type 2:** $\mathbb{G}_1 \neq \mathbb{G}_2$ and there exists an efficient homomorphism $\phi : \mathbb{G}_2 \rightarrow \mathbb{G}_1$, but no efficient one exists in the other direction;
- Type 3: $\mathbb{G}_1 \neq \mathbb{G}_2$ and there exists no efficient homomorphism between \mathbb{G}_1 and \mathbb{G}_2 .

You can find more information on this link:

<u>Link 1 ></u>

Thank you!