Primer 3: Izvršiti klasterovanje država na osnovu podataka o ishrani stanovništva primenom algoritma K-sredina u alatu IBM SPSS Modeler. Skup *ishrana.csv* sadrži podatak koliko su određene namirnice zastupljene u ishrani stanovništva nekih država. Vrednosti numeričkih atributa predstavljaju procente. Atributi skupa su:

- Country država
- RedMeat crveno meso
- Eggs jaja
- Milk mleko
- Fish riba
- Cereals žitarice
- Starch skrob
- Nuts koštunjavo voće
- *Fr&Veg* voće i povrće

U radnom toku **drzave_ishrana.str** se prvo učitava skup pomoću čvora *Var. File.* U odeljku *Types* klikom na dugme *Read Values* učitavaju se informacije o vrednostima koje se javljaju u atributima skupa. Atributima koji učestvuju u klasterovanju uloga (*Role*) se postavlja na *Input.* U ovom primeru za klasterovanje se koriste svi numerički atributi. Pošto svaka država ima jedinstveno ime, atribut *Country* nema značaj u klasterovanju, te se njegova uloga postavlja na *None*, tj. atribut neće biti korišćen pri klasterovanju (Slika 1).

٩.	⊙ø	Read Values	Clear \	/alues	Clear All V	alues
F	ield 🗁	Measurement	Values	Missing	Check	Role
A Co	untry	Nominal	Albania,Au		None	None
🕸 Re	dMeat	Continuous	[4.4,18.0]		None	🛰 Input
® Wh	iteMeat	& Continuous	[1.4,14.0]		None	🔪 Input
🕲 Eg	gs	Continuous	[0.5,4.7]		None	🛰 Input
🕸 Mil	k	S Continuous	[4.9,33.7]		None	🛰 Input
🕸 Fis	h	S Continuous	[0.2,14.2]		None	🛰 Input
🕸 Ce	reals	S Continuous	[18.6,56.7]		None	🛰 Input
Sta	irch	S Continuous	[0.6,6.5]		None	🛰 Input
🕸 Nu	ts	Continuous	[0.7,7.8]		None	🔪 Input
🔅 Frð	Weg	Continuous	[1.4,7.9]		None	🔪 Input

Slika 1: Učitavanju vrednosti u atributima skupa i dodela uloga atributima

Da bi se primenio algoritm K-sredina na skup, čvor sa skupom podataka povezuje se sa čvorom K-means (podsećanje kako: klik na čvor sa skupom, taster F2, klik na čvor K-means) (Slika 2).

Slika 2: Izbor čvora *K*-means

Preko opcija dostupnih u čvoru K-means, u odeljku Model postavlja se, za početak, broj željenih klastera na 3. (Slika 3)

K-Means					×
ß			?		
Fields Model Exp	pert Annotations				
Model name:	Auto Ocustom				
Use partitioned data					
Number of clusters:	3 🗘				
Generate distance fie	ld				
Cluster label:	String ONUMBER				
Label prefix:	cluster				
Optimize:	O Speed 💿 Memory				
OK 🕨 Rur	Cancel	Apply		<u>R</u> e:	set

Slika 3: Postavljanje broja klastera u čvoru K-means

U odeljku *Expert*, maksimalan broj iteracija koje mogu biti izvršene u algoritmu K-sredina se povećava na 100 (Slika 4).

K-Means		×
ß		0
Fields Model	Expert Annotations	
Mode:	Simple	 Expert
Stop on:	O Default	 Custom
Encoding value fo	Maximum iterations: Change tolerance: r sets: 0.7	0.0 x
ОК	Run Cancel	<u>Apply</u> <u>R</u> eset

Slika 4: Postavljanje vrednosti za beoj iteracija u čvoru K-means

Izborom opcije Run pravi se model klasterovanja koji je u radnom toku prikazan čvorom u obliku dijamanta (Slika 5).

Slika 5: Radni tok sa napravljenim modelom klasterovanja

Duplim klikom na model klasterovanja može se videti rezultat klasterovanja i izvršiti detaljnija analiza izdvojenih klastera.

Na pogledu Model Summary vidi se da je silueta koeficijent 0,5, čime se smatra da je izvršeno dobro klasterovanje. Na pogledu Predictor Importance vidi se da je atribut Nuts najznačajniji za klasterovanje, zatim slede Cereals, Starch, Milk, Eggs, Fish, dok najmanji značaj imaju WhiteMeat, Fr&Veg i RedMeat(Slika 6).

Slika 6: Pogledi: Model Summary i Predictor Importance

Na pogledu *Cluster Sizes* (Slika 7) vidi se da su izdvojeni jedan veliki klaster (sa 64% država, **cluster-2**), jedan srednji (sa 28% država, **cluster-1**) i jedan mali (sa 8% država, **cluster-3**).

Slika 7: Pogledi: Clusters i Cluster Sizes

Preko pogleda *Clusters* i *Cluster Comparison* (Slika 8, za detaljniji uvid vrednosti atributa po klasterima pogledati radni tok) se može uočiti šta je specifično za svaki klaster:

- U ishrani stanovništva u državama najvećeg klastera, **cluster 2**, više je zastupljeno belo i crveno meso, mleko i jaja, dok su koštunjavo voće i žitarice manje zastupljeni u odnosu na države u ostalim klasterima.
- U ishrani stanovništva u državama srednjeg klastera, **cluster 1**, značajno su zastupljenije žitarice (srednja vrednost atributa *Cereals* za klaster 1 je 46,16, dok je za 2. i 3. klaster redom 26,68 i 28,1), dok su skrob i riba manje zastupljeni u odnosu na države u ostalim klasterima.
- U ishrani stanovništva u državama malog klastera, **cluster 3**, više je zastupljen skrob, kao i riba, voće i povrće, dok su mleko i belo meso manje zastupljeni u odnosu na države u ostalim klasterima.

Slika 8: Pogledi Clusters i Cluster Comparison

U modelu, klikom na dugme *Preview* može se videti za svaku instancu, tj. državu, kom klasteru je dodeljena (Slika 9).

違 <u>F</u> ile	📄 <u>E</u> dit 🛛 🖔	<u>G</u> enerate	a	9	1-1	Q,									?
Table	Annotations														
	Country	RedMeat	WhiteMeat	Eggs	Milk	Fish	Cereals	Starch	Nuts	Fr&Veg	\$KM-K-Means				
5	Czech Republic	9.700	11.400	2.800	12	2.000	34.300	5.000	1.100	4.000	cluster-2				
6	Denmark	10.600	10.800	3.700	25	9.900	21.900	4.800	0.700	2.400	cluster-2				
7	Slovenia	8.400	11.600	3.700	11	5.400	24.600	6.500	0.800	3.600	cluster-2				
8	Finland	9.500	4.900	2.700	33	5.800	26.300	5.100	1.000	1.400	cluster-2				
9	France	18.000	9.900	3.300	19	5.700	28.100	4.800	2.400	6.500	cluster-2				
10	Greece	10.200	3.000	2.800	17	5.900	41.700	2.200	7.800	6.500	cluster-1				
11	Hungary	5.300	12.400	2.900	9.7	0.300	40.100	4.000	5.400	4.200	cluster-1				
12	Ireland	13.900	10.000	4.700	25	2.200	24.000	6.200	1.600	2.900	cluster-2				
13	Italy	9.000	5.100	2.900	13	3.400	36.800	2.100	4.300	6.700	cluster-1				
14	Netherlands	9.500	13.600	3.600	23	2.500	22.400	4.200	1.800	3.700	cluster-2				
15	Norway	9.400	4.700	2.700	23	9.700	23.000	4.600	1.600	2.700	cluster-2				
16	Poland	6.900	10.200	2.700	19	3.000	36.100	5.900	2.000	6.600	cluster-2				
17	Portugal	6.200	3.700	1.100	4.9	14	27.000	5.900	4.700	7.900	cluster-3				
18	Romania	6.200	6.300	1.500	11	1.000	49.600	3.100	5.300	2.800	cluster-1				
19	Spain	7.100	3.400	3.100	8.6	7.000	29.200	5.700	5.900	7.200	cluster-3				
20	Sweden	9.900	7.800	3.500	24	7.500	19.500	3.700	1.400	2.000	cluster-2	1			
21	Switzerland	13.100	10.100	3.100	23	2.300	25.600	2.800	2.400	4.900	cluster-2				
22	United Kingdom	17.400	5.700	4.700	20	4.300	24.300	4.700	3.400	3.300	cluster-2				
23	Russia	9.300	4.600	2.100	16	3.000	43.600	6.400	3.400	2.900	cluster-2	1			
24	Germany	11.400	12.500	4.100	18	3.400	18.600	5.200	1.500	3.800	cluster-2				
25	Yugoslavia	4.400	5.000	1.200	9.5	0.600	55.900	3.000	5.700	3.200	cluster-1	1			

Slika 9: Prikaz atributa koji je dodao model na originalan skup atributa

Pomoću horopleta (tematska mapa koja prikazuju neke informacije po jedinicama površine, bojenjem ili šrafiranjem) može se i vizuelno prikazati rezultat klasterovanja. Model klasterovanja je potrebno povezati sa čvorom za pravljenje grafika *Graphboard*. Odabirom atributa ime države (Country) i atributa koji sadrži podatak kom klasteru pripada instanca (*\$KM-K-means*) na levoj strani čvora *Graphboard*, na desnoj strani čvora se prikazuju grafici pogodni za vizuelizaciju, među kojima je i horoplet (*Choropleth of Values*) (Slika 10). U odeljku *Detailed* proveriti da li su dobro postavljeni parametri. Za vrednost parametra Data Key postaviti atribut koji sadrži podatak o jedinici površine, u ovom primeru to je atribut *Country*. Za vrednost parametra Color postaviti atribut KM-K-means, čime se svakom klasteru dodeljuje jedinstvena boja, a svaka država na mapi se boji bojom koja je dodeljena klasteru kome pripada (Slika 11). Klikom na dugme Select a Map File otvara se dijalog u kome je potrebno izabrati željenu mapu. Za ovaj zadatak, to je mapa sveta, te se za parametar Map postavlja vrednost WorldRegions. Da bi se uparili podaci iz postavljenog ključa (u ovom primeru atribut *Country*) sa jedinicama na mapi, kliknuti na dugme Compare. U listi Matched Keys prikazuju se imena država iz skupa koje su uparene sa ključem neke jedinice sa mape (u ovom primeru će biti sve države iz skupa). U listi Unmatched Keys prikazuju se imena država iz skupa koje nisu uparene sa ključem neke jedinice sa mape (u ovom primeru nema takvih država). U listi Unmatched Map Keys prikazuju se ključevi jedinica sa mape koji nisu upareni sa nekom instancom iz skupa (pošto skup sadrži podatke za 26 država, u ovoj listi će biti veliki broj takvih država) (Slika 12).

		W V		> 🐨	
	(?)				×
ishrana.cs	Basic Detailed Appearance Output	Annotations		0	_
K-Means [7]	Natural \ Name \ Iype \ Yee Country RedMeat WhiteWeat Eggs Mik Fish Cereals Starch	2-D Dot Plot	Bars of Counts on a Map	Choropleth of Values	
	Vits Fraveg SKM-K-Means	Line	Line Overlay Map	Path	
	Visualization di. Country SKM-K-Means	Pie of Counts	Point Overlay Map	Polygon	
Favorites Sources Record Ops Field Ops	Symmary:			Overlay map	
Graphboard Plot Multiplet Time Plot Distribution Histos	Manage Location Local Machine OK Run Cancel			<u>A</u> pply <u>R</u> eset	

Slika 10: Izbor horopleta za prikaz rezultata klasterovanja

Basic Detailed Appe	sarance Output Annotation	@ □ □
Visualization type:		Coptional Aesthetics
Choropleth of Values	👻 Data Key: 💑 Country	Data Label:
V	Color: 뤚 SKM-K-Mea	IS -0
		Select a Map File
r Panel and Animation		
Panel across:	-	Panel down:
Animation:	-	
	Local Machine	
Manage	-	

Slika 11: Dodela jedinstvene boje svakom klasteru zbog prikaza rezultata klasterovanja

Map File Map: WorldRegions •	Preview		
Map Key: Region	the default		
Data key: Country	ualization		
Compare Map and Data Values All of the values in th Compare Matched Keys:	e Data Key field have matching features. Unmatched Data Kevs:	Unmatched Map Keys:	
Albania Austria Belgium Bulgaria		Afghanistan Algeria Andorra Angola	=
Czech Republic Denmark Finland		Antigua and Barbuda Argentina Armenia	
leference Map File			

Slika 12: Odabir mape za prikaz podataka

Na slici 13 je horoplet koji prikazuje rezultat klasterovanja. Najtamnijom plavom bojom su prikazane države za koje ne postoje podaci u skupu. Na osnovu mape može se videti koje države pripadaju kom klasteru:

- cluster 1: Italija, Rumunija, Grčka, Mađarska, Srbija (u skupu je promenjena na Jugoslavija zbog mape), Albanija i Bugarska
- cluster 3: Španija i Portugal
- cluster 2: ostale zemlje iz skupa

Slika 13: Prikaz rezultata klasterovanja pomoću mape sveta

Za potrebe tekstualnog izveštaja klasterovanja, primenom čvorova *Sort* i *Table* mogu se urediti instance skupa prema klasteru kome pripadaju (videti radni tok).

Promenom broja željenih klastera na vrednost u intervalu od 4 do 9 silueta koeficijent klasterovanja se ne menja, tj. ostaje 0,5. Ako se postavi broj željenih klastera na 10, silueta koeficijent se povećava na 0,6. Međutim, za skup od 26 instanci, 10 je veliki broj klastera, posebno što tri dobijena klastera sadrže po jednu državu.