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a b s t r a c t

Wepresent a general scheme for the construction of new efficient generalized Schultz iter-
ative methods for computing the inverse matrix and various matrix generalized inverses.
These methods have the form Xk+1 = Xkp(AXk), where A ism × n complex matrix and p(x)
is a polynomial. The construction procedure is general and can be applied to any number of
matrix multiplications per iteration, denoted by θ . We use it to construct newmethods for
θ = 6 matrix multiplications per iteration having (up to now) the highest computational
efficiency among all other known methods. They are compared to several existing ones on
a series of numerical tests. Finally, the numerical instability and the influence of roundoff
errors is studied for an arbitrary generalized Schultz iterative method. These results are
applicable to all considered new and existing particular iterative methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Assume that A ∈ Cm×n is a given matrix, while T and S are subspaces of Cn and Cm, respectively, satisfying AT ⊕ S = Cm.
In such a case, there exists a unique matrix X = A(2)

T ,S ∈ Cn×m such that XAX = X , R(X) = T and N (X) = S. Here, R(X)
and N (X) denote the range and null-space of the matrix X . This unique matrix X = A(2)

T ,S is known as the outer inverse with
prescribed range and null-space. If G ∈ Cn×m is a matrix such that T = R(G) and S = N (G), then the matrix X = A(2)

T ,S is called
the outer G-inverse or, simply, the G-inverse.

Taking some specific values of G, thematrix X is reduced to several well-known generalized inverses. For example, taking
G = A∗ we obtain the Moore–Penrose inverse X = A† satisfying the following set of Penrose equations:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

Whenm = n and A is regular, X is further reduced to the standard inverse matrix X = A−1.
Assume thatm = n and l = ind(A) is the smallest integer such that rank(Al+1) = rank(Al). Then, taking G = Al we get the

Drazin inverse X = AD, which is a unique solution to the following set of equations:

(1l) AlXA = Al, (2) XAX = X, (5) AX = XA.

In the available literature, there are various methods for computing generalized inverses. Direct methods include SVD
(Singular Value Decomposition) based methods, QR factorization [1], etc. On the other hand, a large number of different
iterative methods have been studied for computing all kinds of generalized inverses.
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Generalizations of the well-known Schultz method

Xk+1 = Xk(2I − AXk) (1.1)

for computing Moore–Penrose, Drazin and other outer inverses are given in [2–4], respectively. Hereafter I denotes the
identity matrix of appropriate size. After that, a vast number of different iterative methods appeared in the literature,
including [5–8]. All these methods are of the same type

Xk+1 = Xkp(AXk) (1.2)

where p(x) is a certain polynomial. They are known as generalized Schultz iterative methods. Putting p(x) = 1 + (1 − x) +

· · · + (1 − x)r−1, one also gets the well-known hyper-power method of the order r given by

Xk+1 = Xk(I + Rk + R2
k + · · · + Rr−1

k ), Rk = I − AXk. (1.3)

A systematic approach to the convergence analysis of all generalized Schultz iterative methods is adopted by Petković in [9].
The following corollary follows directly from Theorem 2.1 in [9] and provides necessary conditions for the convergence and
the convergence order r > 1 of an arbitrary generalized Schultz iterative method of the form (1.2):

Corollary 1.1 ([9]). The matrix method Xk+1 = Xkp(AXk), deg p(x) = d converges to X = A(2)
R(G),N (G) and has the convergence

order r > 1 if N (X0) = N (G), R(X0) = R(G), ρ(AX − AX0) < 1 and

p̄(x) = p(1 − x) = 1 + x + x2 + · · · + xr−1
+ xrv(x) (1.4)

for some polynomial v(x) of degree d − r.

In what follows, we always assume that p̄(x) = p(1 − x). In order to estimate the performance and effectiveness of a
particular method IM, the following value is used

Ec(IM) = r1/θ (1.5)

where r is the convergence order and θ is the number of matrix multiplications per iteration. This value is known as the
computational efficiency of the method IM. It was introduced by Traub [10] and is directly proportional to the total running
time of the method (i.e. its computer implementation) required to obtain the result of the desired precision. Note that the
Schultz method (1.1) has the computational efficiency Ec((1.1)) = 21/2, while the hyper-power method has Ec((1.3)) = r1/r ,
which is maximized for r = 3. The corresponding third order hyper-power method

Xk+1 = Xk(I + Rk + R2
k), Rk = I − AXk (1.6)

will be henceforth referred to as HP3.
Given the generalized Schultz iterative method Xk+1 = Xkp̄(Rk), the goal is to compute p̄(Rk) with the fewest matrix

multiplications possible. It is equivalent to the computation of the polynomial p̄(x) with the smallest number of polynomial
multiplication operations. This problem need not be solved for an arbitrary polynomial p̄(x). Indeed, one is to find the
polynomial providing the maximum convergence order r , when θ is fixed. In other words, given an integer θ ≥ 4, one
needs to find a polynomial p̄(x), which can be computed by θ polynomial multiplication operations and has the maximum
possible number of first coefficients equal to 1.

In the paper [11], the previously stated problem for θ = 4, 5 was solved, and two of the up to now most efficient high-
order iterative methods were provided. The first is given by

Rk = I − A · Xk, Sk = Rk · Rk,

Mk = I + Rk + Sk · (I + Rk + Sk),
Xk+1 = Xk · Mk

(1.7)

having the order of convergence r = 5with a total of θ = 4matrix multiplications per iteration. The secondmethod is given
by

Rk = I − A · Xk, Sk = Rk · Rk,

Mk =
7
8Rk + Sk ·

( 1
2Rk + Sk

)
,

Nk =
11
16 I −

9
8
Rk +

3
4Sk + Mk,

Tk = I +
51
128Rk +

39
32Sk + Mk · Nk,

Xk+1 = Xk · Tk,

(1.8)

and has r = 9 with θ = 5. These methods have the maximum possible convergence order with θ = 4 and θ = 5 matrix
multiplications per iteration. Both methods are equivalent to the hyper-power methods of the corresponding convergence
order. Henceforward, we denote these methods by IHP5 and IHP9.
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Furthermore, a recently published paper [12] deals with the following generalization of the methods IHP5 and IHP9,
having r = 17 but with θ = 7 matrix multiplications per iteration:

Rk = I − A · Xk, Sk = Rk · Rk, Mk = Sk ·
( 1
4Rk + Sk

)
,

Qk = (I + δ1Rk + δ2Sk + Mk) · (I + ζ1Rk + ζ2Sk + Mk) + η0I + η1Rk + η2Sk,
Tk = (I + θ1Rk + θ2Sk + Mk) · (I + ν1Rk + ν2Sk + Mk) + κ0I + κ1Rk + κ2Sk,

Xk+1 = Xk · (Qk · Tk + γ0I + γ1Rk + γ2Sk + γ4Mk).

(1.9)

The values of all constants are given in [12]. The method in (1.9) will be denoted by IHP17.
The construction of all previously introduced iterative methods was independent for each particular method. In this

paper, we present the general construction procedure, directly applicable to an arbitrary number of matrix multiplications
per iteration θ . That scheme is described and analyzed in Section 2. It is then used in Section 3 to construct the optimal
convergence order methods for θ = 6. In Section 4 the results of different numerical tests are presented and the new
methods are compared with the existing ones. Section 5 contains a theoretical analysis of the arbitrary generalized Schultz
iterative method from [9] and its possible numerical instability issues. Finally, Section 6 concludes the paper.

2. General scheme for computing p̄(Rk)

The main idea behind the methods IHP5 and IHP9 is to compute I + Rk + R2
k + R3

k + R4
k and I + Rk + R2

k + · · · + R8
k

with the fewest matrix multiplications possible. These are (matrix) values of the 4th and the 8th degree polynomial, so the
smallest possible number of matrix multiplications was log24 = 2 and log28 = 3. Similarly, to evaluate the matrix value of
the 2m−1-degree polynomial p(x), one needs at leastm − 1 matrix multiplication operations.

Our aim is to construct a general recurrent scheme for performing such a computation. It generates the sequence
(ui(x))0≤i≤m where u0(x) = 1, u1(x) = x, ui(x) is a 2i−1-degree monic polynomial (i ≥ 1) and um(x) = p(x). Each ui(x)
(i = 2, 3, . . . ,m) is computed using u0(x), u1(x), . . . , ui−1(x) and exactly one (polynomial) multiplication operation.

The starting values are u0(x) = 1, u1(x) = x and u2(x) = x2 since every second degree polynomial requires that one
polynomial multiplication be computed and that it be computed as a linear combination of 1, x and x2.

Assume that i ≥ 3 and that we have already computed u0(x), u1(x), . . . , ui−1(x) with a total of i − 1 multiplications.
Without loss of generality, we may assume that in the ith multiplication step, ui−1(x) is multiplied by a linear combination
of u0(x), u1(x), . . . , ui−1(x). The product is further modified by a certain linear combination of u0(x), u1(x), . . . , ui−2(x).

Therefore, the polynomial ui(x) is given by

ui(x) = ui−1(x) ·
[
ui−1(x) + ai,i−2ui−2(x) + · · · + ai,0u0(x)

]
+ bi,i−2ui−2(x) + bi,i−3ui−3(x) + · · · + bi,0u0(x)

(2.1)

where ai,0, ai,1, . . . , ai,i−2 and bi,0, bi,1, . . . , bi,i−2 are unknown coefficients which have to be determined.
It is not difficult to see that the scheme (2.1) (i = 3, 4, . . . ,m), together with the initial values u0(x) = 1, u1(x) = x

and u2(x) = x2, represents the most general m − 1 polynomial multiplication scheme for computing a monic 2m−1-
degree polynomial um(x). This scheme yields the construction of the generalized Schultz iterative matrix method with θ
multiplications per iteration in the following way:

Xk+1 = Xk · c · uθ−1(Rk), Rk = I − AXk. (2.2)

In other words, we choose p̄(x) = c · uθ−1(x). Recall that two matrix multiplications are spent on computing Rk = I − A · Xk
and Xk+1 = Xk · p̄(Rk). An additional constant c is required since the polynomial p̄(x) need not necessarily be monic. The
unknown coefficients ai,j, bi,j (3 ≤ i ≤ θ − 1 and 0 ≤ j ≤ i − 2) and c need to be determined such that the method has the
highest convergence order r . In other words, we have to determine these coefficients such that

cuθ−1(x) = 1 + x + · · · + xr−1
+ xr ûθ−1(x)

where r is as highest as possible and ûθ−1(0) ̸= 1.
The complete algorithmic procedure for computing the unknown coefficients ai,j, bi,j (3 ≤ i ≤ θ − 1 and 0 ≤ j ≤ i − 2)

and c is summarized in Algorithm 2.1 .

Algorithm 2.1 Construction of the generalized Schultz iterative method with θ matrix multiplications per iteration.
1: Consider c , x, ai,j and bi,j as symbolic variables.
2: Set u0(x) := 1, u1(x) := x and u2(x) := x2.
3: for i := 3 to θ − 1 do
4: p(x) := Expand

(
ui−1(x) ·

[
ui−1(x) + ai,i−2ui−2(x) + . . . + ai,0u0(x)

])
5: ui(x) := p(x) + bi,i−2ui−2(x) + bi,i−3ui−3(x) + . . . + bi,0u0(x)
6: end for
7: Find the maximum r such that the system of polynomial equations, formed by equating the coefficients with

1, x, . . . , xr−1 in c · uθ−1(x) to 1, has a solution.
8: Return the unknown coefficients ai,j, bi,j (3 ≤ i ≤ θ − 1 and 0 ≤ j ≤ i − 2) and c.
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The best environment for the implementation of Algorithm 2.1 is any computer algebra system (CAS), such as Mathe-
matica, Maple, Maxima, etc. The function Expand expands the polynomial expression given as a parameter and collects
the terms involving the same powers of x. The variants of this function are available in all well-known CAS programs. Also,
one can use any method for solving the system of polynomial equations (Groebner basis, minimization methods, etc.) and,
practically, any solution is acceptable.

Note that both (1.7) and (1.8) can be written as a scheme of the type (2.2) for θ = 4, 5. They have maximum possible
values of the convergence order r = 5, 9.

3. Methods with θ = 6 multiplications per iteration

Our next goal is to consider the scheme (2.2) for θ = 6 matrix multiplications per iteration and to find the maximum
possible convergence order. This scheme has the form

Xk+1 = Xk · c · u5(Rk), Rk = I − AXk (3.3)

where

u5(x) = u4(x)(u4(x) + a5,3u3(x) + a5,2x2 + a5,1x + a5,0)

+ b5,3u3(x) + b5,2x2 + b5,1x + b5,0
u4(x) = u3(x)(u3(x) + a4,2x2 + a4,1x + a4,0)

+ b4,2x2 + b4,1x + b4,0
u3(x) = x2(x2 + a3,1x + a3,0) + b3,1x + b3,0.

(3.4)

Expanding all products in (3.4) yields

u5(x) = u5,0 + u5,1x + u5,2x2 + · · · + u5,15x15 + x16

where u5,l (0 ≤ l ≤ 15) are multi-variable polynomials of ai,j and bi,j (i = 3, 4, 5, b = 0, 1, . . . , i− 2). We need to determine
the unknown coefficients ai,j, bi,j and c such that

u5,l = c−1, l = 0, 1, . . . , r − 1 (3.5)

and r is maximal. Using the Groebner basis computation, it is shown that the system (3.5) does not have a solution for r = 17
and r = 16. However, for r = 15, the system has many solutions and one of them is given by:

a3,0 = 0.645082922061461
a3,1 = 1.058661594262500
a4,0 = 0.050654987162504
a4,1 = 0.345901887114617
a4,2 = −1.202519413928960
a5,0 = 1.274524208649420
a5,1 = 1.799910818770400
a5,2 = 5.095088450188020
a5,3 = −1.149108904227180

c = 0.144930075923808.

b3,0 = 0.43532078627935
b3,1 = 0.22632676803681
b4,0 = 0.42563167485906
b4,1 = −0.75682522665618
b4,2 = −1.62230203118978
b5,0 = 2.72356048720756
b5,1 = 5.02982915810813
b5,2 = 2.63710149976585
b5,3 = 7.52764810605388

(3.6)

We also consider the special case of the system (3.5) when c = 1. In this case, the maximum value of r such that the
system has a solution is r = 14, and the solution is given by

a3,0 = 0.589305851677216
a3,1 = −0.038317189491436
a4,0 = 0.716088325159338
a4,1 = 0.994592232369608
a4,2 = −1.219543968940840
a5,0 = −0.612715355555756
a5,1 = 1.174304135325600
a5,2 = −0.983452829557211
a5,3 = −0.124571668920262

b3,0 = 0.13694492627385
b3,1 = −0.24959247268375
b4,0 = 0.31648994681425
b4,1 = −0.20293695866733
b4,2 = 0.73867616667272
b5,0 = 0.99257143402746
b5,1 = 0.72071414437193
b5,2 = 1.10991297244531
b5,3 = 0.67588545838602.

(3.7)
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Table 1
Exact and approximate computational efficiencies Ec = r1/θ , as well as the asymptotic storage complexities of the considered generalized Schultz iterative
methods.

Method HP3 IHP5 IHP9 IHP14 IHP15 IHP17

Ec 31/3 51/4 91/5 141/6 151/6 171/7

approx. Ec 1.4422 1.4953 1.5518 1.5525 1.5704 1.4989
Asymp. stor. compl. 3m2

+ nm 4m2
+ nm 5m2

+ nm 6m2
+ nm 6m2

+ nm 6m2
+ nm

The solutions (3.6) and (3.7), together with the expressions (3.3) and (3.4), define two generalized Schultz iterative methods
of orders r = 15 and r = 14 using θ = 6 matrix multiplications per iteration. In what follows, we refer to these methods as
IHP15 and IHP14.

4. Numerical results and performance testing

Recall that the computational efficiency Ec of the matrix iterative method is defined by Ec = r1/θ , where r is the
convergence order of the method and θ is the number of matrix multiplications per iteration. The computational efficiency
is proportional to the total number of matrix multiplications required to compute a generalized inverse to desired accuracy.
Moreover, it is also asymptotically proportional to the running time of the method implementation, having in mind that
the matrix multiplication operation is more computationally expensive than addition, subtraction, and multiplication by a
scalar.

Let us mention that the method with θ matrix multiplications per iteration, produced by Algorithm 2.1 , needs to store
exactly θ − 1 temporary matrices of the sizem×m per iteration. These matrices are: Rk = I − A · Xk, Sk = Rk · Rk, u3(Rk), . . . ,
uθ−1(Rk). Additionally, one needs to store the matrix Xk of the size n × m. The total storage complexity of the corresponding
scheme is O((θ − 1)m2

+ nm).
Table 1 shows the computational efficiencies and storage complexities of the new methods IHP14 and IHP15, the state-

of-the-art method HP3 and the recently published methods IHP5, IHP9 and IHP17.
It can be seen that IHP14 and IHP15have the highest computational efficiencies,while Ec(IHP9) is very close to Ec(IHP14).

The computational efficiency Ec is only a theoretical performance measure which does not take into account the effects of
roundoff errors occurring in floating-point arithmetics. These roundoff errors can significantly degrade the performance of
high-order methods and, additionally, make them diverge (Section 5).

4.1. Random matrices test

To obtain a real performance comparison, we need to test these methods on suitable test matrices. We use the same set
of random test matrices as in [11]. All methods are implemented in the Mathematica package and tested in the cases of the
ordinary inverse, the Moore–Penrose inverse (G = A∗), and the Drazin inverse (G = Al, l = indA) computation.

The first testwas done on20 randomly generated double precisionmatrices for each dimensionn = 600, 800, 1000, 1200
and each type of the inverse. All singular test matrices had the rank ρ = 4n/5, and in the case of the Drazin inverse, the
matrices were taken such that l = indA = 1. More details on the algorithm for generating test matrices can be found in [11].
We used the following stopping criterion

res(Xk) = ∥Rk∥F = ∥I − AXk∥F < ϵ = 10−10

in the case of the ordinary inverse and

res(Xk) = max{∥AXkA − A∥F , ∥XkAXk − Xk∥F } < ϵ = 10−10

in the case of the Moore–Penrose and Drazin inverses. The methods were compared with respect to the total number of
matrix multiplications required to compute the final result. This measure is independent of the implementation details. The
results are given in Table 2. The bold values correspond to the best average total number of matrix multiplications.

It is evident from the table that the new methods IHP14 and IHP15 have the smallest total number of matrix
multiplications in almost all cases. The results might vary with different choices of ϵ, but the final conclusion still remains.

Themethodswere also tested on several matrices from theMatrixMarket library [13], where theMoore–Penrose inverse
was computed. These matrices were obtained from various real-world problems. The results are shown in Table 3.

As it can be seen from the table, the same conclusions remain valid in this case as well. It can be further noted that IHP9
performs almost aswell as IHP15 and IHP14, sometimes even better (matrix well1033.mtx). This can also be noticed in the
previous testing results (Table 2). The reason for such a behavior is the enhanced effect of numerical errors resulting from
the use of double precision arithmetics, which causes a loss in the performance of the high order methods IHP14, IHP15 and
IHP17. It also suggests that some other methods with even larger computational efficiencies (and also a higher convergence
order) will not introduce any considerable practical improvement and may only have a theoretical significance.
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Table 2
Average total number of matrix multiplications required to obtain the corresponding (generalized) inverse to desired accuracy.

Inverse m = n r HP3 IHP5 IHP9 IHP14 IHP15 IHP17

Ordinary inverse

600 600 63. 57.8 53.75 53.1 52.2 59.15
800 800 68.1 63. 58. 57.6 56.4 64.4

1000 1000 68.4 62.6 58.75 58.2 57. 63.
1200 1200 71.1 64.8 59.75 59.1 58.8 66.15

Moore–Penrose inverse

600 480 38.1 36. 33.5 30.6 30. 35.
800 640 39. 36. 35. 36. 30. 35.

1000 800 39. 36. 35. 36. 34.5 35.
1200 960 39. 36. 35. 36. 36. 35.

Drazin inverse

600 480 36. 32. 30. 30. 30. 35.
800 640 36. 32. 30. 30. 30. 35.

1000 800 36. 35.8 30. 30. 30. 35.
1200 960 37.8 36. 33. 30. 30. 35.

Table 3
Total number of matrix multiplications required by each method to compute Moore–Penrose inverses of different matrices from Matrix Market [13].

Matrix m n HP3 IHP5 IHP9 IHP14 IHP15 IHP17
bp___200.mtx 822 822 99. 92. 85. 84. 78. 91.
bp___400.mtx 822 822 96. 88. 80. 78. 78. 91.
cdde1.mtx 961 961 66. 60. 55. 54. 54. 63.
cdde2.mtx 961 961 45. 44. 40. 42. 36. 42.
cdde3.mtx 961 961 69. 64. 60. 60. 60. 63.
fidap001.mtx 216 216 75. 68. 65. 60. 60. 70.
illc1033.mtx 1033 320 75. 68. 65. 60. 60. 70.
olm500.mtx 500 500 90. 84. 75. 78. 72. 84.
orsirr_1.mtx 1030 1030 78. 72. 65. 66. 66. 70.
orsirr_2.mtx 886 886 75. 68. 65. 66. 60. 70.
well1033.mtx 1033 320 48. 44. 40. 42. 42. 49.

4.2. Fixed number of iterations test

We also did a test using a fixed number of iterations to compute the Moore–Penrose inverse, as it was done in [11].
The methods were run for several iterations such that all of them perform approximately the same total number of matrix
multiplications. Specifically, the methods HP3, IHP5, IHP9 and IHP17 were run for 7, 5, 4 and 3 iterations, such that HP3
and IHP17 perform a total of 21 multiplications while IHP5 and IHP9 perform a total of 20 multiplications. The methods
IHP14 and IHP15 were run for 3 iterations after they were initiated with one iteration of the Schultz method (the matrix
X̄0 = X0(2I−AX0) is taken as the initialmatrix). In such away, thesemethods also performa total of 20matrixmultiplications.
The residual norms of the obtained results were then compared for each method, as given in Table 4. In order to make a fair
comparison, we used the same test matrices A1, A2, . . . , A8 as in [11] (Subsection 5.2).

It is evident again that IHP15 produces the smallest residual norms,whereas IHP9 performs better than IHP14 and IHP17.
Having in mind that IHP9 and IHP14 have almost the same computational efficiencies, we can conclude that IHP14 is more
affected by numerical errors than IHP9. Although IHP17 has a lower computational efficiency than IHP14 and IHP9, it is also
affected by errors such that it produces residual norms that are several orders of magnitude worse than IHP9, IHP14 and
IHP15.

The same test is repeated in multi-precision arithmetics (100 significant digits) and for the Drazin inverse computation.
Again, we used the same set of matrices Ã1, Ã2, . . . , Ã8 as in [11] (Subsection 5.2). Note that this test requires computation
of the coefficients of the methods IHP14 (3.7), IHP15 (3.6) and IHP17 (3.4) in multi-precision arithmetics. The coefficients
of IHP14 and IHP15, computed up to 200 significant digits, are given in Appendices A and B.

Similarly to [11], in order to increase the obtained final residual norms, we first applied the Schultz method Xk+1 =

Xk(2I − AXk) for a total of one iteration for Ã1, Ã2 (n = 20, 30), two iterations for Ã3, Ã4, Ã5 (n = 40, 50, 60) and four
iterations for Ã6, Ã7, Ã8 (n = 70, 100, 130). The results are shown in Table 5.

One can see that the obtained performances aremostly in accordance with the Ec values from Table 1. The only exception
is the fact that IHP9 is again slightly better than IHP14. It leads us to the conclusion that in the case of similar computational
efficiencies Ec , the more efficient method is the one with a lower convergence order.
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Table 4
Residual norms for the Moore–Penrose inverse computation and a fixed number of iterations using double precision arithmetics.

Method ∥AXA − A∥ ∥XAX − X∥ Method ∥AXA − A∥ ∥XAX − X∥

HP3 1.79 × 10−5 2.04 × 10−5 HP3 1.36 × 10−3 2.28 × 10−4

A1 IHP5 1.69 × 10−7 1.93 × 10−7 A5 IHP5 5.21 × 10−5 8.8 × 10−6

n = 20 IHP9 1.31 × 10−14 2.38 × 10−14 n = 60 IHP9 3.69 × 10−10 6.26 × 10−11

ρ = 15 IHP14 1.15 × 10−13 1.33 × 10−13 ρ = 35 IHP14 2.4 × 10−9 4.06 × 10−10

IHP15 2.6 × 10−14 3.38 × 10−14 IHP15 8.58 × 10−12 1.46 × 10−12

IHP17 2.35 × 10−11 2.68 × 10−11 IHP17 1.08 × 10−7 1.83 × 10−8

HP3 2.32 × 10−2 2.35 × 10−2 HP3 6.23 × 10−3 1.02 × 10−3

A2 IHP5 4.64 × 10−3 4.8 × 10−3 A6 IHP5 4.77 × 10−4 7.81 × 10−5

n = 30 IHP9 1.29 × 10−5 1.34 × 10−5 n = 70 IHP9 3.93 × 10−8 6.43 × 10−9

ρ = 20 IHP14 2.86 × 10−5 2.97 × 10−5 ρ = 40 IHP14 1.64 × 10−7 2.68 × 10−8

IHP15 1.74 × 10−6 1.81 × 10−6 IHP15 1.83 × 10−9 3. × 10−10

IHP17 2.17 × 10−4 2.25 × 10−4 IHP17 3.57 × 10−6 5.85 × 10−7

HP3 5.3 × 10−4 1.92 × 10−4 HP3 1.74 × 10−1 2.39 × 10−2

A3 IHP5 1.68 × 10−5 6.09 × 10−6 A7 IHP5 4.7 × 10−2 6.91 × 10−3

n = 40 IHP9 5.41 × 10−11 1.96 × 10−11 n = 100 IHP9 4.81 × 10−4 7.4 × 10−5

ρ = 25 IHP14 4.07 × 10−10 1.48 × 10−10 ρ = 60 IHP14 8.46 × 10−4 1.3 × 10−4

IHP15 1.01 × 10−12 3.66 × 10−13 IHP15 1.01 × 10−4 1.56 × 10−5

IHP17 2.33 × 10−8 8.45 × 10−9 IHP17 4.25 × 10−3 6.48 × 10−4

HP3 3.96 × 10−3 1.12 × 10−3 HP3 1.14 × 10−1 7.11 × 10−3

A4 IHP5 2.82 × 10−4 7.97 × 10−5 A8 IHP5 1.99 × 10−2 1.28 × 10−3

n = 50 IHP9 1.76 × 10−8 4.97 × 10−9 n = 130 IHP9 3.76 × 10−5 2.46 × 10−6

ρ = 30 IHP14 7.7 × 10−8 2.18 × 10−8 ρ = 70 IHP14 8.89 × 10−5 5.8 × 10−6

IHP15 7.56 × 10−10 2.14 × 10−10 IHP15 4.57 × 10−6 2.99 × 10−7

IHP17 1.83 × 10−6 5.17 × 10−7 IHP17 7.53 × 10−4 4.89 × 10−5

Table 5
Residual norms for the Drazin inverse computation and a fixed number of iterations using double precision arithmetics.

Method ∥AXA − A∥ ∥XAX − X∥ Method ∥AXA − A∥ ∥XAX − X∥

HP3 5.28 × 10−10 4.42 × 10−8 HP3 5.93 × 10−8 4.69 × 10−6

Ã1 IHP5 1.43 × 10−13 1.20 × 10−11 Ã5 IHP5 1.20 × 10−10 9.51 × 10−9

n = 20 IHP9 1.23 × 10−26 1.03 × 10−24 n = 60 IHP9 1.65 × 10−20 1.30 × 10−18

ρ = 15 IHP14 3.24 × 10−24 2.71 × 10−22 ρ = 35 IHP14 8.87 × 10−19 7.01 × 10−17

IHP15 2.66 × 10−30 2.23 × 10−28 IHP15 2.19 × 10−23 1.73 × 10−21

IHP17 2.28 × 10−20 1.91 × 10−18 IHP17 8.86 × 10−16 7.01 × 10−14

HP3 1.11 × 10−39 1.06 × 10−38 HP3 2.39 × 10−19 1.84 × 10−17

Ã2 IHP5 3.54 × 10−56 3.39 × 10−55 Ã6 IHP5 6.27 × 10−27 4.81 × 10−25

n = 30 IHP9 <10−100 <10−100 n = 70 IHP9 1.05 × 10−54 8.10 × 10−53

ρ = 20 IHP14 <10−100 <10−100 ρ = 40 IHP14 1.09 × 10−48 8.37 × 10−47

IHP15 <10−100 <10−100 IHP15 9.04 × 10−62 6.94 × 10−60

IHP17 <10−100 <10−100 IHP17 2.21 × 10−41 1.70 × 10−39

HP3 3.17 × 10−14 1.88 × 10−12 HP3 2.54 × 10−16 2.22 × 10−14

Ã3 IHP5 1.23 × 10−19 7.32 × 10−18 Ã7 IHP5 1.36 × 10−22 1.18 × 10−20

n = 40 IHP9 1.89 × 10−39 1.12 × 10−37 n = 100 IHP9 1.43 × 10−45 1.25 × 10−43

ρ = 25 IHP14 1.91 × 10−35 1.13 × 10−33 ρ = 60 IHP14 8.83 × 10−41 7.70 × 10−39

IHP15 1.03 × 10−44 6.11 × 10−43 IHP15 1.47 × 10−51 1.28 × 10−49

IHP17 6.02 × 10−30 3.58 × 10−28 IHP17 1.50 × 10−34 1.31 × 10−32

HP3 8.87 × 10−11 5.47 × 10−9 HP3 1.96 × 10−14 1.69 × 10−12

Ã4 IHP5 8.60 × 10−15 5.32 × 10−13 Ã8 IHP5 6.75 × 10−20 5.82 × 10−18

n = 50 IHP9 1.85 × 10−29 1.15 × 10−27 n = 130 IHP9 6.53 × 10−40 5.63 × 10−38

ρ = 30 IHP14 1.11 × 10−26 6.90 × 10−25 ρ = 70 IHP14 7.38 × 10−36 6.36 × 10−34

IHP15 1.66 × 10−33 1.03 × 10−31 IHP15 3.20 × 10−45 2.76 × 10−43

IHP17 1.99 × 10−22 1.23 × 10−20 IHP17 2.60 × 10−30 2.24 × 10−28
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Table 6
Total number of matrix multiplications required to obtain the inverse matrix
A−1
F ,n to the accuracy 10−10 .

n HP3 IHP5 IHP9 IHP14 IHP15 IHP17
100 54 48 45 48 42 49
300 66 60 55 54 54 63
500 72 64 60 60 60 70
700 75 68 65 66 60 70
900 78 72 65 66 66 70

1100 81 72 70 66 66 77
1300 81 76 70 72 66 77

Table 7
Total running time (in seconds) of the BiCGStab method (Mathematica im-
plementation) for solving all linear systems AF ,nxl,n = gl,n (l = 1, 2, . . . , 30),
preconditioned by the matrix obtained using different iterative methods.

n HP3 IHP5 IHP9 IHP14 IHP15 IHP17
700 1.97 1.53 0.80 0.53 0.47 1.00
800 1.36 1.06 0.48 0.52 0.38 0.78
900 1.08 0.53 0.34 0.41 0.28 0.56

1000 1.25 0.55 0.36 0.33 0.28 0.97
1100 1.17 0.83 0.41 0.41 0.38 0.50
1200 1.75 1.06 0.55 0.56 0.45 0.66
1300 1.47 0.70 0.50 0.47 0.42 0.86

4.3. Application to solving Fredholm integral equation

Finally, we use generalized Schultz iterative methods for solving the following Fredholm integral equation∫ 1

0
K (s, t)x(t) = gl(s), s ∈ [0, 1] (4.8)

where

K (s, t) =

{
s(1 − t) for s ≤ t,
t(1 − s) for s > t, gl(s) =

s
3
(s3 − ls + 1), l ≥ 0.

The same problem for l = 2 is considered in [14]. Using the generalized mid-point quadrature formula in the points
ti = (i − 1/2)/n (i = 1, 2, . . . , n) for the integral in (4.8), and evaluating the equation at the points sj = (j − 1/2)/n,
j = 1, 2, . . . , n, we obtain the following linear system

AF ,nxn = gl,n (4.9)

where ∆t = 1/n, AF ,n = [K (ti, sj)∆t]1≤i,j≤n ∈ Rn×n, xn = [x(i∆t)]T1≤i≤n and gl,n = [gl(j∆t)]T1≤j≤n.
The matrix AF ,n is regular and its ordinary inverse is computed using all previously considered iterative methods. Table 6

shows the total number ofmatrixmultiplications required by eachmethod to compute the inversematrixA−1
F ,n to the accuracy

ϵ = 10−10. The shown results imply that the IHP15method requires the smallest total number of matrix multiplications to
achieve the required accuracy ϵ. The second best result is obtained either by IHP14 or IHP9.

Moreover, we did another test where all iterative methods were run for a certain number of iterations, and the resulting
matrices were used as preconditioners for the BiCGStab method for solving the linear system (4.9). We first ran the HP3
method until it reached the accuracy ϵ = 25. Then all other methods were run such that they perform the maximum
possible number ofmatrixmultiplications, which is not larger than one for theHP3method. All resultingmatriceswere used
as preconditioners for the BiCGStabmethod (default Krylov spacemethod for the LinearSolve function in Mathematica).
The total running times of the preconditioned BiCGStabmethod are shown in Table 7. One can see that IHP15 produces the
minimal running time, while either IHP14 or IHP9 has the second minimal running time.

5. Influence of floating-point errors on generalized Schultz iterative methods

The results of the testing in the previous section (especially in Section 4.2) show that all considered methods are
influenced by numerical errors produced by floating-point arithmetics. In this section, we consider one possible effect of
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Table 8
Values |p(0)| for different generalized Schultz iterative methods.

Method HP3 IHP5 IHP9 IHP14 IHP15 IHP17
|p(0)| 3 5 9 14.7737 15.7587 17

roundoff errors on an arbitrary generalized Schultz iterative method Xk+1 = Xkp(AXk), when computing an outer G-inverse.
This effect is already considered in [15] and [6], for two special methods.

Assume that a roundoff error occurs in the sth iteration, such that X̃s = Xs + ∆s is computed instead of Xs. The matrix ∆s

is the error matrix. Further iterations are computed as usual, X̃k+1 = X̃kp(AX̃k), for k ≥ s. The following theorem shows that
under certain conditions on the matrix ∆s (i.e. the matrix X̃s) and the polynomial p(x), the sequence X̃k diverges.

Theorem 5.1. Assume that N (X̃sAX̃s) ⊃ N (X̃s) and |p(0)| > 1. Then the resulting method

X̃k+1 = X̃kp(AX̃k), k ≥ s (5.10)

diverges and ∥X̃k∥ ≥ c · |p(0)|k−s, where c > 0 is a constant which depends only on X̃s. The matrix norm ∥ · ∥ is induced by the
corresponding vector norm.

Proof. Consider an arbitrary y ∈ N (X̃sAX̃s)\N (X̃s) and let p(x) = a0 +a1x+· · ·+adxd. We prove bymathematical induction
that y ∈ N (X̃kAX̃k) \N (X̃k) and X̃ky = ak−s

0 X̃sy for all k ≥ s. The statement trivially holds for k = s. Assume also that it is valid
for some k ≥ s. Then

X̃k+1y = X̃kp(AX̃k)y = X̃k(a0I + a1AX̃k + · · · + ad(AX̃k)d)y

= a0X̃ky + a1X̃kAX̃ky + a2X̃kAX̃kAX̃ky + · · · + (X̃kA)d−1X̃kAX̃ky

= a0X̃ky.

The last equation is satisfied since X̃kAX̃ky = 0 by assumption and X̃k(AX̃k)l = (X̃kA)l−1X̃kAX̃k. Now, using the induction
hypothesis, we get directly

X̃k+1y = a0X̃ky = a0 · ak−s
0 X̃sy = ak+1−s

0 X̃sy.

This also proves X̃k+1y ̸= 0 i.e. y ̸∈ N (X̃k+1) since a0 ̸= 0. Furthermore,

X̃kAX̃k+1y = X̃kA(a0X̃ky) = a0X̃kAX̃ky = 0

and

X̃k+1AX̃k+1y = X̃kp(AX̃k)AX̃k+1y

=

d∑
l=0

alX̃k(AX̃k)lAX̃k+1y

= a0X̃kAX̃k+1y +

d∑
l=1

al(X̃kA)l−1X̃kAX̃k+1y = 0.

Hence, y ∈ N (X̃k+1AX̃k+1) \ N (X̃k+1), which completes the proof by mathematical induction.
Now, since |a0| = |p(0)| > 1 by assumption, we get

∥X̃k∥ ≥
∥X̃ky∥
∥y∥

= |a0|k−s ∥X̃sy∥
∥y∥

.

Taking c = ∥X̃sy∥/∥y∥ and k → +∞ (using again |a0| > 1), the proof follows. □

Having inmind that the errormatrix∆s is generated by roundoff errors, its structure ismostly random, so one can believe
that X̃s = Xs+∆s is (almost surely) a full row or column rankmatrix. Under the assumption that A is not a full row or column
rank matrix, we have rankX̃s > rankA, which then implies N (X̃sAX̃s) ⊃ N (X̃s).

It can be seen by direct check that the condition |p(0)| = |p̄(1)| > 1 is satisfied for all methods considered in the previous
section. These values are given in Table 8.
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Table 9
Testing results on several ill-conditioned test matrices from Matrix Market.

Matrix n HP3 IHP5 IHP9 IHP14 IHP15 IHP17 SVD

olm1000.mtx 1000 3.86 × 10−10 3.89 × 10−10 3.89 × 10−10 3.81 × 10−10 4.13 × 10−10 3.68 × 10−10 1.66 × 10−9

olm2000.mtx 2000 1.25 × 10−9 1.24 × 10−9 1.25 × 10−9 1.25 × 10−9 1.24 × 10−9 1.23 × 10−9 1.04 × 10−8

olm500.mtx 500 7.89 × 10−11 8.18 × 10−11 7.72 × 10−11 8.36 × 10−11 6.93 × 10−11 7.91 × 10−11 2.65 × 10−10

plat1919.mtx 1919 6.39 1.35 0.38 0.33 0.33 0.42 1.00
plat362.mtx 362 1.67 3.85 × 10−5 3.93 × 10−5 3.86 × 10−5 3.32 × 10−5 3.93 × 10−5 8.73 × 10−5

sherman2.mtx 1080 8.79 1.03 × 10−8 9.58 × 10−9 1.03 × 10−8 1.03 × 10−8 1.07 × 10−8 1.57 × 10−4

steam2.mtx 600 5.21 × 10−14 4.22 × 10−14 4.95 × 10−14 2.65 × 10−10 9.06 × 10−14 5.24 × 10−14 1.67 × 10−8

According to Theorem 5.1, all these methods will converge for some iterations, and after that they will start diverging.
When both A and G are full-rank matrices, the condition N (X̃sAX̃s) ⊃ N (X̃s) cannot be satisfied. However, accumulating

roundoff errors causes the final result to be inaccurate. In that sense, we test all methods on some ill-conditioned matrices
from Matrix Market [13]. Each method is run for several iterations. We show the best obtained residual norm ∥I − AXk∥F .
The results are shown in Table 9. Additionally, the last column shows the residual norms obtained using the Singular Value
Decomposition (SVD) based method (Mathematica build-in function Pseudoinverse).

It can be seen from Table 9 that for every test matrix all obtained residual norms are approximately of the same order of
magnitude. They are also comparable to (or sometimes less than) the residual norm obtained by the SVD basedmethod. This
means that all tested methods are shown to be equally (un)stable on all test matrices. In other words, the high convergence
order of the methods IHP14, IHP15 and IHP17 did not additionally reduce the performances of these methods on the ill-
conditioned matrices.

6. Conclusion and further research

Having in mind all previous discussion, we can conclude that the newly constructed method IHP15 is currently the most
efficient generalized Schultz iterative method for computing outer G-inverses. Its (theoretically) highest computational
efficiency Ec is confirmed by numerical testing, where it achieves the best results on both double precision and multiple
precision arithmetics.

The general scheme (2.1)–(2.2) can be used in the same way to construct efficient methods with an arbitrary number of
matrix multiplications per iteration θ . Such methods would have the convergence order of up to 2θ−2 and, perhaps, even
higher computational efficiency, but, unfortunately, they will most probably be only theoretically important. Consider, for
example θ = 7. In order to provide a method with an Ec higher than Ec(IHP15) = 151/6

≈ 1.5704, it must have the
convergence order r ≥ 24, which will most probably result in its practical inapplicability. However, from the theoretical
point of view, the following problem is definitely interesting for future research.

Problem 6.1. Find a way to construct a method of the form (2.1)–(2.2) having the highest possible convergence order r , for
a given number of matrix multiplications per iteration θ .

On the other hand, it would be interesting to explore the stability of the arbitrary generalized Schultz iterative method
Xk+1 = Xkp(AXk) when the conditions of the instability theorem (Theorem 5.1) are not met, especially when |p(1)| < 1 or
p(1) = 0. We also leave this problem for future research.
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Appendix A. Coefficients of IHP15 method in multiprecision arithmetics

c = 0.1449300759238075706781723700256720769081180352156284542643386578022226002125
652038430033104624049371457227147211472532821502295511189444824619624561388870
7118314135015568194005250135729126616326247684

a3,0 = 0.6450829220614610138647060270484373728459055693070258186128550605323468048601
236447913710248740563362319598242832307015484102488165189559030814843100880198
3684082876067507263464562722754333887379529180

a3,1 = 1.0586615942624956438158333079957432428406523558483868564053442415828764501439
227512727053482077755225001262607006577760679770761891829679442026824666390649
145197658377038851457541584104479439252247255

a4,0 = 0.0506549871625042783426434814906721546379954799427165214107475789465359055604
046722361472286886431994928573445199881580261243672941698479635894268741570314
09439088390973196160392069025990805855161986159

a4,1 = 0.3459018871146173374677172838297682708583904393355524447591598880020263293388
506392347419741889935370483937461879589552635836627070437733518268899334791937
9156469983412203366474528069321342996321100121

a4,2 = −1.202519413928959376619738196257614554426631187817365360691366795096288749425
294699429697244382565881471072885288142821632769958105227668616372980636193988
2776468166739977404809159402624493281366867092

a5,0 = 1.2745242086494158687138847817388378991860918592694371317007021502809014435946
348498206434327308817939513331031524513842136877883329483876003671546450929250
391175425787706440188271544743292296611176712

a5,1 = 1.7999108187703980588929782092312522536326987373780069557112491556921855571245
462368155751253698820473184353158549073440474710139728471785154575035547476610
292326321629498145641629077545970210706185486

a5,2 = 5.0950884501880239616807378436158903632780281966201660358119891536035312895857
216090300487985974959216832618916817657813222225323281059687325210509306431123
606431200251792619220977080792068238847465550

a5,3 = −1.149108904227179165857973115857072542715064198567829732315046053111884036789
598221490408782383259598228719046547197330664332535186743621833412552746871528
9285751826927098569439032213470916928358918647

b3,0 = 0.4353207862793513988155581385391670206891946872594844513000067261884229363928
821194476376593291394243042430023574197301297514431265127508409022730614220579
9301635272881386796751291059569768472214718139

b3,1 = 0.2263267680368166248654209679922426688801056124682974757238767807618729826103
892175260777491440572268233837620143198118900387087013458842046906712610471851
3222270294828070228919227080285148032314053298

b4,0 = 0.4256316748590594999645640862172512360560150634641786069420760472067162815248
126257612303325260109267711279905892229643601509879379485337031008649911865540
6276485554512207540524206382343582838401132521

b4,1 = −0.756825226656180501937268889279900403104982893970149840040103606981350043042
158690224774149344999659367486535770430677713763097026207176482980771588957167
20450230720255882259991390854547949071145852913

b4,2 = −1.622302031189778555592363632667025420475566547272068174337559766403712542016
292727776276549130192515983966210946997272026711317491374532120124045453639140
9526043401384218782201651097152030838244431950

b5,0 = 2.7235604872075580897235250748697719805263892710981995932891537210763709183385
358376623840046668272585819062948400395976563837340298816220580801869320571504
568551491658443186063974056464270541310219855

b5,1 = 5.0298291581081260726490273908507148146609159818089750114396955753343062912052
208136701946202850900834296389016574665569274357782807246234307389295418382112
012969362548834113039923163920305136569951088

b5,2 = 2.6371014997658525256201147266645001271977959325104544537679256048756690238174
889276976158684676770314976708108221500655756118191916219989562980760839260479
326760403217328320667157488528732009768563609

b5,3 = 7.5276481060538817566651074074288556553697434410386814332535141155072788129227
391691637719902025756177111834553338836092062042390897872433386126202641247684
585706538428822358528366627686706967885949785.
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Appendix B. Coefficients of IHP14 method in multiprecision arithmetics

a3,0 = 0.9945922323696083569251373223503367994699869422028249110709056225078596820083
975875746471889626310393658344590693395733481938242833881664367883723368239841
7116685952081796996554749555773121868335390812

a3,1 = 0.5893058516772159240218990435931298645208973921465074159719636046893158552369
178935901413320423352342367547626041021408728506382125009074444634970850970744
3580886482027078604250710922821742781534412580

a4,0 = 0.7160883251593376608456738396627034971140578435978571171144393775566651414658
255036133394979007227110086974595007496242485421854700258899798948131185973672
9060064234359431508349292409037838510111117307

a4,1 = −1.219543968940840145859093978450108310849512788717048705863498277042462172750
200875678439167551518243306053687291140508081841030266751078082899278273568746
7854191541684597395079743510753439452823515255

a4,2 = −0.038317189491436174741552015086083592921228510252837188781611272692906844190
674741327638038680988962088761632747446512874357336049403042369300081444823512
565012589966129250549850444235271432987486214669

a5,0 = −0.612715355555755968012847741588229749901778337013678890754718730517743342585
732249179816782957325007554932539938956500845061513824738700057397090444952942
04520415581857587281632938518195837549682996538

a5,1 = 1.1743041353256048017392004678275699706949257845995123960810090985298635462677
626377452025224330345455960066884060983281425530826927638805780787236914832293
947133436793565035654744374688289846574994940

a5,2 = −0.983452829557210825938841070405975087036903291238472408433289405932793027806
304404088947450504708660130979012108202900960438115461895292734630799205969794
42876334770520217115867492860097336699795414558

a5,3 = −0.124571668920262155487295945351336765174115074691626160617143046219664263083
129229350857521938705884606742218688215890578022604313638722652334359621898692
71287741832009918395615513881632338292257060774

b3,0 = 0.1369449262738565396614329734875975695923488345704167521568301225543050755806
367472745116631616798364373509937037572326846473898547707947938083039751402794
6971882130989537440933688458873292505279479625

b3,1 = −0.249592472683751625847738497575364953705686818204077520412928749981130562074
137867459941543324837757207825244576190545631811488146833187224722940007457790
21090591057239786966122555768291755252837808864

b4,0 = 0.3164899468142567478354597364766761845663726459451057672629456635160152302872
414054677922871397034710964628162273050979429213796318387428537957565501969503
2577342080733513214899850446002159258230646510

b4,1 = −0.202936958667333649957223347350150390119464540427586567010652518993019244227
068478007672671092387120082694515604810300159756785545893405644384004093220738
20162131712327938265080462906687804744958081711

b4,2 = 0.7386761666727216767071520460334991290051643134006205636471725291778012358640
014251219394598682855058326166816609253615637053157168145106807936432633587330
1019447842752438167013201946480300743707758352

b5,0 = 0.9925714340274608996870417911398450951864672564603171964920390692272892420871
120487228879109021287843046189829224646396205568262065566407275919630532906922
6918010962309248437347121384429414720468486965

b5,1 = 0.7207141443719341370254592643175282663651320786451125137764462892214247875433
199331475805618775303223343607236315373763128630364709121093051481921015333426
1506722031147963622008296390202219297799025793

b5,2 = 1.1099129724453062893465289118488780059981151616654798633897840627720251319826
840720219423909515783373242618478380438525312604014422112223924781133578418737
878311081812903398310342402676702064048587785

b5,3 = 0.6758854583860256402128647042300150356420647024122435950926544253344342140433
757023752356470239179694266402614006099691203471196483459921329289509307618311
3811210603758087601606936434076432077919838900.
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