A Heuristic Based Algorithm for the 2D Circular Strip Packing Problem

Hakim Akeb ${ }^{1}$, Mhand Hifi ${ }^{2}$, and Dominique Lazure ${ }^{2}$
${ }^{1}$ ISC Paris School of Management 22 Boulevard du Fort de Vaux, 75017 Paris, France
${ }^{2}$ Université de Picardie Jules Verne, UR EPROAD, Équipe ROAD
7 rue du Moulin Neuf, 80039 Amiens, France

Abstract

This paper solves the strip packing problem (SPP) that consists in packing a set of circular objects into a rectangle of fixed width and unlimited length. The objective is to minimize the length of the rectangle that will contain all the objects such that no object overlaps another one. The proposed algorithm uses a look-ahead method combined with beam search and a restarting strategy. The particularity of this algorithm is that it can achieve good results quickly (faster than other known methods and algorithms) even when the number of objects is large. The results obtained on well-known benchmark instances from the literature show that the algorithm improves a lot of best known solutions.

Keywords: Cutting and packing, 2D strip packing, beam search, heuristic.

1 Introduction

Cutting \& Packing (C\&P) problems are well known in Operations Research since they have many practical applications. They are for example encountered in the storage and transportation of objects of different shapes (Baltacioglu et al. [1]; Bortfeldt and Homberger[2]; Castillo et al. [3]; Conway and Sloane [4]; Lewis et al. [5]). In this case, the objective is to arrange these objects in order to save space. C\&P problems are also used in the industry when a set of pieces of predetermined shapes have to be cut from a rectangular plate (Menon and Schrage [6]). The objective in this second example is to minimize the waste due to the space between the pieces to cut.

This paper studies the problem of cutting (or packing) a set $N=\{1, . ., n\}$ of n circular pieces C_{i} of known radii $r_{i}, i \in N$, from (or into) a strip S of fixed width W and unlimited length L. The objective is to place the n pieces inside the smallest rectangle R of dimensions $W \times L^{*}$ such that no piece overlaps another one and no piece exceeds the limits of the rectangle. This problem is known as the Strip Packing Problem or SPP (see Wäscher et al. [7]). Fig. 1 shows an instance containing nine circles $(N=\{1, . ., 9\})$ to try to pack inside a rectangle of dimensions $W \times L$. Fig. 2 shows two feasible solutions in which all the circles

Fig. 1. Example of a set of nine circles to pack inside a rectangle $W \times L$

Fig. 2. Two feasible packings of the nine circles
were packed into the rectangle. Note that a rearrangement of the circles inside the rectangle may decrease its length. Indeed the solution displayed in Fig. 2 (b) is a rearrangement of the circles of the solution indicated in Fig. 2 (a). Note also that the most-right circle (5) in Fig. 2 (b) does not touch the right border of the rectangle, this means that the width of the rectangle can be decreased. This means also that this second solution (Fig. 2 (b)) is better than the one indicated in Fig. 2 (a) since the width of the rectangle is smaller. But a good rearrangement is not easy to be achieved because of the continuous characteristic of the variables (see below).

The mathematical formulation for SPP is as follows:

$$
\begin{gather*}
\min L \tag{1}\\
\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}} \geq r_{i}+r_{j}, \text { for } j<i,(i, j) \in N^{2} \tag{2}\\
r_{i} \leq x_{i} \leq L-r_{i}, \forall i \in N, \tag{3}\\
r_{i} \leq y_{i} \leq W-r_{i}, \forall i \in N, \tag{4}\\
L \geq \frac{\pi}{W} \times \sum_{i=1}^{n} r_{i}^{2} \tag{5}
\end{gather*}
$$

Equation 1 indicates the objective to minimize, i.e., the length of the target rectangle that will contain the n pieces. Equation 2 means that any pair of distinct circles C_{i} and C_{j} do not overlap each other, i.e., the euclidean distance between their centers must be greater than or equal to the sum of their radii $r_{i}+r_{j}$. Equations 3-4 mean that any circle C_{i} does not exceed the container boundary. Finally, Equation 5 indicates that the objective to minimize (L) has a lower bound value, denoted by \underline{L}, which is equal the sum of the surfaces of the n circles divided by the width of the rectangle W. Any value for L cannot then be smaller than this lower bound otherwise this will mean that there is no space between the circles and between the circles and the container boudary.

A solution for the strip packing problem consists to find the minimum value for the length of the rectangle that will contain all the pieces while verifying the constraints represented by Equations 2-4.

2 Literature Review

The problem of packing circular objects of different radii into a container is well known and very studied in the literature. Since there is no method calculating exact solutions, the authors use generally heuristic-based approaches in order to compute approximate solutions for the problem. Two main categories of containers can be distinguished: the first one corresponds to a circle and the second one to a rectangle. In addition, the circular pieces may have the same radius or have different radii.

Packing different-sized circles into the smallest circle was for example studied by Huang et al. [8] where the authors proposed greedy algorithms based on the Maximum Hole Degree (MHD) heuristic. Hifi and M'Hallah [9] proposed a dynamic adaptive local search where the radius of the containing circle is increased when placing the circles. For the same problem, Akeb et al. [10] used beam-search based algorithms. Packing equal circles inside a circle was studied by several authors. Graham et al. [11] proposed two methods in order to pack a set of congruent circles inside the unit circle. The first method is called Billiards simulation and the second one is based of the Energy Function Minimization. Liu et al. [12] proposed a heuristic based on a technique called Energy landscape paving in order to pack equal circles inside the smallest containing circle.

The problem of packing circles of different radii into a rectangular container is more studied in the literature because of its various applications. For example George et al. [13] proposed several rules based essentially on the use of a genetic algorithm as well as a random strategy. Stoyan and Yaskov [14] designed a mathematical model whose objective is to search for feasible local optima by combining a tree-search procedure and a reduced gradient. A genetic algorithm was also used by Hifi and M'Hallah [15]. Huang et al. [16] designed two greedy algorithms for the strip packing problem, the algorithms, denoted by B1.0 and B1.5, are based on the Maximum Hole Degree (MHD) heuristic. Birgin et al. [17] used a non-linear approach for placing circles inside a rectangle. Kubach et al. [18] proposed a parallel version for the MHD heuristic for tackling the
strip packing problem. Finally, Akeb et al. [19] proposed a beam-search based algorithm coupled with a restarting strategy for solving SPP.

Packing equal circles inside a square and/or a rectangle was for example studied by Huang and Ye [20], the authors proposed a stochastic method in order to place up to 200 circles. E. Specht [21] proposes a deterministic method in order to compute high density packings of equal circles in a rectangle. Several years before, Locatelli and Raber [22] used a branch-and-bound algorithm in order to pack a given number of equal circles into the unit square.

Some authors proposed several methods in order to place circles inside containers of different shapes. This is for example the case of López and Beasley [23] who used a non-linear formulation, involving Cartesian and polar coordinates, solved by the SNOPT solver. Birgin and Sobral [24] proposed several results for packing circles and spheres inside 2D and 3D containers. Finally, Birgin and Gentil [25] considered the packing of unitary radius circles inside triangles, rectangles, and strips.

In this paper, an improved algorithm is proposed for the strip packing problem. This algorithm combines beam search, a restarting strategy, and a lookahead method. The objective of the look-ahead is to accelerate the search to obtain quickly solutions. In addition, the parameters of the restarting and the look-ahead strategies are studied in order to adapt them to the characteristics of each instance.

The rest of the paper is organized as follows. Section 3 explains how to use beam search in order to resolve the strip packing problem (SPP). Section 4 returns on some existing beam-search based algorithms for SPP. Section 5 details the improved algorithm denoted by IA. Section 6 discusses the results obtained by IA on the most known instances in the literature. Finally, Section 7 summarizes the results obtained and indicates some orientations for future work.

3 Beam Search for Resolving SPP

Beam search (BS) [26] is a tree-based search and is an adaptation of the best first search. BS selects, at each level ℓ of the tree, the most promising nodes to expand in order to create the nodes of the next level $\ell+1$. So a criterion, allowing to evaluate each node, must be defined. The number of the nodes chosen at each level is denoted by ω and is called the beam width.

A standard implementation of the BS method is given in Algorithm 1. BS receives two parameters: the root node B_{0} that contains a starting solution (partial solution) and the value of the beam width ω. The algorithm's output is a feasible solution if it succeeds, or the empty set if not.

At line 1 of Algorithm 1, the root node is assigned to B (the set of nodes of the current level). The set of offspring nodes, i.e., the descendants of the nodes in B, is denoted by B_{ω}. After that, at line 2 , the value of the best solution z^{*} is initialized to the best known solution if this one exists, otherwise z^{*} is set to $+\infty$, meaning that the problem at hand is a minimization (for a maximization, z^{*} is set to $\left.-\infty\right)$.

At each level of the search tree, i.e, the while loop (Lines 3-14), each node $\eta \in B$ generates several descendant nodes. Theses ones are inserted into the set B_{ω} (line 4). If a node in B_{ω} is a leaf (no branching is possible from it), then its solution value is computed (line 6) and the best solution z^{*} is updated if a better one is found. After that, the node is removed from B_{ω} (line 10). The other nodes in B_{ω} are after that evaluated by calculating their solution values and only the best ω nodes are kept, the other nodes are removed (line 12). The nodes chosen are then assigned to the set B and B_{ω} is reset to the empty set (line 13). The instructions in lines $3-14$ are repeated until no branching is possible, i.e., $B=\emptyset$. At line 15, the algorithm returns the best solution found so far.

Note that the method described above is a width-first implementation of beam-search. Of course there also exists a depth-first implementation where the exploration goes as far as possible along each branch before backtracking. For more details, see [27].

```
Require: The root node \(B_{0}\) (starting solution) and the beam width value \(\omega\).
Ensure: A feasible solution if such one is reached, the empty set otherwise.
    : Let \(B=B_{0}\) be the set of nodes of the current level and \(B_{\omega}\) the set of offspring
    nodes;
    If a feasible solution is known then set \(z^{*}\) to its value, otherwise set \(z^{*}=+\infty\);
    while \((B \neq \emptyset)\) do
        Branch out of each node \(\eta \in B\) and insert the resulting (offspring) nodes into
        \(B_{\omega}\);
        if a node \(\eta_{i} \in B_{\omega}\) is a leaf then
            compute \(z_{\eta_{i}}\) the value of node \(\eta_{i}\);
            if \(z_{\eta_{i}}<z^{*}\) then
                update the best solution \(z^{*}\left(z^{*}:=z_{\eta_{i}}\right)\);
            end if
            Remove \(z_{\eta_{i}}\) from \(B_{\omega}\);
        end if
        Keep only the \(\omega\) best nodes in \(B_{\omega}\) (those having the best values of \(z\) ) and
        remove the others;
        \(B:=B_{\omega}\) and \(B_{\omega}:=\emptyset ;\)
    end while
    return the best solution if it exists, otherwise the empty set;
```

Algorithm 1. The Beam Search Method

The rest of this section is organized as follows. First, the different notations used throughout the paper are given. After that, a greedy procedure, denoted by MLDP (Minimum Local Distance Position) is described. The objective of MLDP is to try to place the n circles inside the current rectangle $R=W \times L$, i.e., when the length of the rectangle is fixed to a given value L.

3.1 Notations

In order to simplify the reading of the paper, here are the different notations used throughout the document:

Fig. 3. The MLDP strategy

1. $N=\{1, \ldots, n\}$ is the set of circles to pack into the strip S placed with its bottom left corner at point $(0,0)$ in the Euclidean plan,
2. $M=\{1, \ldots, m\}$ is the set of circle types (the set of different radii in the instance),
3. $S_{\text {left }}, S_{\text {top }}, S_{\text {right }}$, and $S_{\text {bottom }}$ are the four edges of S,
4. The circular piece C_{i} of radius r_{i} is placed with its center at coordinates $\left(x_{i}, y_{i}\right)$,
5. I_{i} corresponds to the set of circles already packed inside the strip $\left(\left|I_{i}\right|=i\right)$,
6. \bar{I}_{i} contains the circles not yet placed $\left(I_{i} \cup \bar{I}_{i}=N\right)$,
7. $P_{I_{i}}$ is the set of distinct corner positions for the next circle to place C_{i+1} given the set I_{i},
8. A corner position $p_{i+1} \in P_{I_{i}}$ for C_{i+1} is computed by using two elements e_{1} and e_{2}. An element is either a piece already placed (set I_{i}) or one of the three edges of $S\left(S_{\text {left }}, S_{\text {top }}, S_{\text {bottom }}\right)$. $T_{p_{i+1}}$ denotes the set composed of both elements e_{1} and e_{2}.

3.2 The MDLP Greedy Procedure

The Minimum Local Distance Position (MLDP) procedure can be used as a greedy algorithm in order to compute a solution. Indeed, given the set I_{i} of circles already placed inside the current rectangle and the set of corner positions P_{i+1} for the next circle C_{i+1}, MLDP selects the best corner position for this circle. This process is repeated until all the circles are placed or no additional circle can be placed. Fig 3 explains the mechanism of MLDP where two circles are already placed, thus $i=2$ and $I_{2}=\left\{C_{1}, C_{2}\right\}$. There are also three possible positions to place the next circle $C_{3}: P_{I_{2}}=\left\{p_{3}^{(k)}, k=1, . ., 3\right\}$. The first corner position $p_{3}^{(1)}$ touches circle C_{2} and the top-edge of the strip S_{top}, then $T_{p_{3}^{(1)}}=\left\{C_{2}, S_{\mathrm{top}}\right\}$. For the two others corner positions, $T_{p_{3}^{(2)}}=\left\{C_{1}, C_{2}\right\}$ and $T_{p_{3}^{(3)}} \stackrel{p_{3}}{=}\left\{C_{1}, S_{\text {bottom }}\right\}$.

Let C_{i+1} be the circular piece to place at position p_{i+1} and $\delta_{i+1}(e d g e)$, edge \in $E_{\text {edge }}=\left\{S_{\text {left }}, S_{\text {bottom }}, S_{\text {top }}\right\}$, the three distances defined as follows: $\delta_{i+1}\left(S_{\text {left }}\right)=$ $x_{i+1}-r_{i+1}, \delta_{i+1}\left(S_{\text {bottom }}\right)=y_{i+1}-r_{i+1}$, and $\delta_{i+1}\left(S_{\text {top }}\right)=W-y_{i+1}-r_{i+1}$.

The euclidean distance from the edge of the next circle to pack C_{i+1} (when positioned at p_{i+1}) and C_{j} is denoted by $\delta_{i+1}(j)$ and is computed as follows:

$$
\begin{equation*}
\delta_{i+1}(j)=\sqrt{\left(x_{i+1}-x_{j}\right)^{2}+\left(y_{i+1}-y_{j}\right)^{2}}-\left(r_{i+1}+r_{j}\right) \tag{6}
\end{equation*}
$$

The MLDP of the circular piece C_{i+1} when placed at $p_{i+1} \in P_{I_{i}}$ is calculated as follows:

$$
\begin{equation*}
\hat{\delta}_{p_{i+1}}=\min _{\alpha \in I_{i} \cup E_{\text {edge }} \backslash T_{p_{i+1}}}\left\{\delta_{i+1}(\alpha)\right\} \tag{7}
\end{equation*}
$$

Equation (7) gives the MLDP of C_{i+1} which is computed by using the distances between the piece to place at position p_{i+1} and the elements of the set $I_{i} \cup$ $\left\{S_{\text {left }}, S_{\text {bottom }}, S_{\text {top }}\right\} \backslash T_{p_{i+1}}$ containing the pieces already placed, the three edges of the strip, but by excluding the two elements of $T_{p_{i+1}}$ used for computing the coordinates of C_{i+1} because the corresponding distance is always equal to zero. Note however that the MLDP is equal to zero when C_{i+1} touches more than two elements because one of the three elements does not belong to the set $T_{p_{i+1}}$ and then the distance to this element can be taken into account. Fig. 3 indicates the $\operatorname{MLDP} \hat{\delta}_{p_{3}^{(k)}}$ of each position $p_{3}^{(k)}, k=1,2,3$.

For calculating a packing of the pieces when using the MLDP procedure, the following process is executed: MLDP starts by placing the first circular piece C_{1} at the bottom-left corner (at coordinates $\left(r_{1}, r_{1}\right)$), the $n-1$ remaining pieces are successively packed by using the MLDP rule as explained above. For example, in Fig. 3, C_{3} will be placed at position $p_{3}^{(1)}$ since the corresponding MLDP has the minimum value.

4 Beam Search-Based Algorithms for SPP

Akeb et al. [19] proposed an augmented beam search algorithm, denoted by SEPMSBS, for the strip packing problem. SEP-MSBS combines two main techniques:

- A strategy based on the use of separate beams that aims to diversify the search space compared to the standard beam search,
- A restarting strategy that consists to rerun the search by changing the first circle to place. The objective of this second technique is to escape from local optima.

The separate-beams mechanism is displayed in Fig. 4. The root node η_{1} at level $\ell=1$ contains the starting configuration (one circle placed in the bottom-left corner of the rectangle) as well as the possible positions for the $n-1$ remaining circles. The best positions (having the smallest MLDP values) are chosen for branching, this creates the second level $\ell=2$ (note that each branching consists to choose a position where to place the next circle). From this second level, separate beams are initiated. More precisely, a beam of width $\omega=1$ is initiated from the first node (the best node), a beam of width $\omega=2$ is initiated from the second best node, and so on. Thus, the node at position i in the second level is explored by applying a beam search of width $\omega=i$. This is to say that the best
nodes do not require an extensive search, the beam width has then a small value, unlike the last nodes in the level that need larger values for the beam width. The separate-beams strategy was shown in [19] to be better than the standard beam search.

Even if SEP-MSBS obtains good results (often the best results in the literature) on the instances used, its run time remains too large. This is mainly due to the restarting strategy, which is executed m times (the number of different circles (radii) in the instance).

5 An Improved Algorithm for SPP

In this paper, we try to improve the SEP-MSBS algorithm by adding a lookahead strategy. The look-ahead-based mechanism will be described in Section 5.1. The proposed improved algorithm, denoted by IA, will be given and explained in Section 5.2. Some adjustments are introduced in algorithm IA in order to reduce the computation time, these adjustments concern the number of corner positions to explore by the look-ahead strategy as well as the number of circles to take into account in the restarting strategy.

5.1 A Look-Ahead Based Algorithm

Algorithm SEP-MSBS [19] selects, at each level of the tree, the best nodes by using the MLDP rule (Sect. 3.2). This can be assimilated to a local evaluation, the packing process does not take into account the remaining circles to place. The look-ahead proceeds differently. Indeed, given the set of nodes $B=\left\{\eta_{\ell}^{1}, \ldots, \eta_{\ell}^{\omega}\right\}$ of the current level ℓ in the tree, each node η_{ℓ}^{i} is characterized by the set $I_{\ell_{i}}$ of ℓ circles already placed in the current rectangle and the set $P_{\ell_{i}}$ of corner positions for the remaining circles, the look-ahead evaluates each position $p \in P_{\ell_{i}}$ by continuing the placement of the remaining circles by using the MLDP rule. The objective is to compute final solutions which will help to choose the actual positions for branching from the current level ℓ. This strategy is implemented in the Look-Ahead Branching Procedure (LABP) displayed in Algorithm 2.

In addition to the set of nodes B, LABP (Algorithm 2) receives as input parameter an indicator feasible set to the value false as well as a real number $0<\psi \leq 1$. Parameter ψ serves to determine the proportion of corner positions to evaluate by the look-ahead, for example, if $\psi=0.8$, then only the best 80% of corner positions (those having the smallest MLDP values) are evaluated. The objective of this parameter is to accelerate the algorithm for large instances (those containing a large number of circles, and therefore a large number of corner positions at each step).

The set Π of positions to evaluate by the look-ahead, as explained above, is constructed in Steps 2 and 3. After that, LABP considers each position $p_{j} \in \Pi$ (Step 4) by packing the corresponding circle in p_{j} (Step 5). This generates a new node $\eta_{\ell+1}$ that is added to the set of offspring nodes B_{ω}. The new node is then processed by placing the remaining circles by using the MLDP rule (Step 6). Two cases may then be distinguished:

- A feasible packing is obtained (Step 7), meaning that the n circles were successfully placed inside the current rectangle. In this case, the procedure stops with feasible=true (Steps 8 and 9), meaning that the length L of the rectangle could be decreased;
- A feasible packing was not obtained (the n circles cannot be placed into the current rectangle by MLDP). In this second case, the procedure assigns to the node $\eta_{\ell+1}$ the density of the circles placed (Step 11). The density of a given packing is equal to the sum of the surfaces of the circles placed divided by the surface of the rectangle $L \times W$.

Finally, when all the corner positions are processed without obtaining a feasible packing, then the ω best nodes (those that have led to the highest densities) are returned (Steps 14, 15). This means that the current length of the rectangle is too small and should be increased.

Note that procedure LABP (Algorithm 2) is called by a beam search algorithm denoted by BSLA (Algorithm 3, Line 10). BSLA implements a width-first beam search. It uses an interval search $[\underline{L}, \bar{L}]$ in order to compute the best length of the rectangle containing all the circles. BSLA receives several input parameters: the starting node η_{ℓ} containing the starting configuration, the beam width value ω, the values of the interval search, and parameter ψ indicating the proportion of corner positions to process by LABP.

BSLA calls, at Step 10, the LABP procedure (Algorithm 2) for each value of the rectangle's length L^{*}. If LABP has computed a feasible packing with the current value of L, then the best length ($L_{\text {best }}$) is updated (Step 12) and

```
Require: A set \(B=\left\{\eta_{\ell}^{1}, \ldots, \eta_{\ell}^{\omega}\right\}\) of \(\omega\) nodes, a boolean indicator feasible \(=f\) alse,
    and \(0<\psi \leq 1\)
Ensure: A feasible solution if feasible=true, or a set \(B_{\omega}\) of \(\omega\) nodes (those leading
    to the highest densities through the MLDP packing procedure).
    Let \(P_{\ell_{i}}\) denotes the set of corner positions of node \(\eta_{\ell}^{i} \in B\);
    Let \(\Pi\) be the set of all corner positions of \(B\), i.e., \(\Pi=\bigcup P_{\ell_{i}}\);
    Reduce \(\Pi\) to the \(\lceil\psi \times|\Pi|\rceil\) best corner positions (having the best MLDP values);
    for all corner positions \(p_{j} \in \Pi\) do
        Pack \(C_{\ell+1}\) in \(p_{j}\) and insert the resulting node \(\eta_{\ell+1}\) into \(B_{\omega}\);
        Place in \(\eta_{\ell+1}\) the remaining circles by using the MLDP packing procedure;
        if all circles are placed then
            feasible \(=\) true;
            exit with a feasible solution;
        else
            Assign to \(\eta_{\ell+1}\) the density obtained by MLDP;
        end if
    end for
    Reduce \(B_{\omega}\) to the \(\omega\) nodes that led to the highest densities by MLDP;
    return \(B_{\omega}\)
```

Algorithm 2. The Look-Ahead Branching Procedure (LABP)
the upper bound of the interval search \bar{L} is set equal to the current length. Otherwise, level ℓ is incremented by 1 , the best expanded nodes returned by LABP (Step 10) replace the nodes of the current level in the tree ($B=B_{\omega}$), and B_{ω} is reset to the empty set (Step 14). If LABP did not succeed to compute a feasible packing with the current value of the rectangle's length (Step 17), then the lower bound of the interval search \underline{L} is set equal to the current value of L, i.e., $\underline{L}=L^{*}$ (Step 18) meaning that the rectangle's length is too small. Finally, it is to note that the binary interval search is stopped when the difference between \underline{L} and \bar{L} becomes less than or equal to a given gap δ.

5.2 The Improved Algorithm (IA)

The improved algorithm, denoted by IA, is given in Algorithm 4. It combines three main techniques: separate beam search, a restarting strategy, and lookahead. Fig. 4 shows how algorithm IA works.

IA receives as input parameters the beam width ω, parameter τ that serves to indicate the proportion of circles taken into account by the restarting strategy,

```
Require: A node \(\eta_{\ell}\), the beam width \(\omega\), the bounds of the interval search \((\underline{L}, \bar{L})\),
    and \(0<\psi \leq 1\)
Ensure: The best value for the rectangle's length ( \(L_{\text {best }}\) ) and the corresponding
    feasible packing.
    Let \(B\) denote the set of nodes to be considered;
    Let \(B_{\omega}\) denote the set of descendants of the nodes in \(B\);
    Let \(L_{\text {best }}\) be the best length found so far;
    Let feasible be a boolean indicator;
    while \((\bar{L}-\underline{L}>\delta)\) do
        Set \(B=\left\{\eta_{\ell}\right\}\), where \(\eta_{\ell}\) is a starting node of level \(\ell\) characterized by \(I_{\ell}, \bar{I}_{\ell}\), and
        \(P_{I_{\ell}}\);
        \(L^{*}=(\bar{L}+\underline{L}) / 2\);
        feasible = false;
        while ( \(B \neq \emptyset\) and feasible=false) do
            \(B_{\omega}=\operatorname{LABP}(B\), feasible, \(\psi)\);
            if feasible \(=\) true then
                \(L_{\text {best }}=L^{*} ; \bar{L}=L^{*} ;\)
            else
                \(\ell=\ell+1 ; B=B_{\omega} ; B_{\omega}=\emptyset ;\)
            end if
        end while
        if feasible=false then
            \(\underline{L}=L^{*}\);
        end if
    end while
```

Algorithm 3. Beam Search Look-Ahead algorithm (BSLA)

```
Require: The beam width \(\omega\), parameters \(\tau\) and \(\psi\)
Ensure: A feasible packing with the best length \(L_{\text {best }}\) for the strip
    \(L_{\text {best }}=\bar{L} ; \quad \underline{L}=\left(\pi \times \sum_{i=1}^{n} r_{i}^{2}\right) / W ;\)
    Rank the pieces of \(N\) in decreasing value of their radii;
    Let \(\mathcal{T}\) be the set of circle types (different circles in \(N\) )
    Reduce \(\mathcal{T}\) by keeping only \(\lceil\tau \times|\mathcal{T}|\rceil\) circles;
    Set \(i_{\text {order }}=1\), where \(i_{\text {order }}\) is the index of the first circular piece of the set \(\mathcal{T}\);
    while \(\left(i_{\text {order }} \leq|\mathcal{T}|\right)\) do
        Generate the node \(\eta_{1}\), characterized by \(I_{1}, \bar{I}_{1}\), and \(P_{I_{1}}\), by placing the first
        circle \(C_{i_{\text {order }}}\) inside the current rectangle and let \(B=\eta_{1}\);
        Branch out of \(B\) and generate the list of offspring nodes \(B_{\omega}\);
        Let \(B=\min \left(\omega,\left|B_{\omega}\right|\right)\) nodes having the best MLDPs and corresponding to
        distinct corner positions and reset \(B_{\omega}=\emptyset\);
        Let \(\eta_{2}\) be the node at position \(\omega\) in \(B\);
        feasible \(=\operatorname{BSLA}\left(\eta_{2}, \omega, \underline{L}, \bar{L}, \psi\right)\);
        if feasible= true then
            \(\bar{L}\) and \(L_{\text {best }}\) are updated if a better length is obtained by BSLA;
        end if
        \(\underline{L}=\left(\pi \times \sum_{i=1}^{n} r_{i}^{2}\right) / W ;\)
        \(i_{\text {order }}=i_{\text {order }}+1\);
    end while
    exit with the best target length \(L_{\text {best }}\).
```

Algorithm 4. The Improved Algorithm (IA)
and parameter ψ used to choose the proportion of corner positions to evaluate by the look-ahead branching procedure LABP (Algorithm 2). The output of algorithm IA is a feasible packing and the corresponding best length of the rectangle $L_{\text {best }}$.

At Step 1 of algorithm IA, the best length $L_{\text {best }}$ is set equal to the upper bound of the length \bar{L} which is computed by an Open Strip Generation Solution Procedure (OSGSP $_{\mathrm{a}}$) [28]. The lower bound of the interval search \underline{L} is set equal to the natural lower bound, i.e., $\underline{L}=\left(\pi \times \sum_{i=1}^{n} r_{i}^{2}\right) / W$ which corresponds to a density equal to 1 , this density is of course not possible to obtain because there is always a non-occupied space between the circles and between the circles and the edges of the rectangle. The pieces are then ranked by decreasing value of their radii (Step 2). The set of circle types \mathcal{T} to use in the restarting strategy is constructed in Steps 3 and 4. The index serving to indicate the first circle to place in the bottom-left corner of the current rectangle is initialized in Step 5.

The root node η_{1} (cf. Fig. 4) is generated in Step 7. This corresponds to the placement of circle $C_{i_{\text {order }}}$ in the bottom-left corner of the rectangle. In Step 8 , the list of offspring nodes B_{ω} is generated. The set B is after that set equal to the ω best nodes of B_{ω}, this correspond to level $\ell=2$ in Fig. 4. Since the separate-beams mechanism is used, then only the node at position ω in this level is explored. The node chosen $\left(\eta_{2}\right)$ is then transmitted to the Beam

Fig. 4. Separate beams and Look-ahead

Search Look-Ahead algorithm BSLA (Algorithm 3) in order to try to compute a feasible solution (Step 11). If BSLA have reached a feasible packing, then the upper bound \bar{L} of the interval search and the best solution $L_{\text {best }}$ are updated (Step 13). Indeed, the upper bound \bar{L} is set to the best value obtained $L_{\text {best }}$. After that the lower bound \underline{L} is reset to the natural lower bound (Step 15). In Step 16, the next circle in set \mathcal{T} is chosen in order to restart the algorithm.

It is to note that the main interest of the look-ahead strategy is that it allows algorithm IA, for which the mechanism is described in Fig.4, to compute feasible solutions from the second level $(\ell=2)$ in the search tree in opposite to the other beam search-based algorithms where feasible solutions are obtained in the last level $(\ell=n)$.

6 Computational Results

The algorithms are coded in C++ language and run on a computer with a $3-\mathrm{GHz}$ processor and 256 MB of RAM. Eighteen instances are considered containing from 20 to 200 circles (note that the problem is considered to be large when the number of pieces is at least $n=100$). The first six instances, denoted by SY1, SY2, SY3, SY4, SY5, and SY6, contain from 20 to 100 circles. They were proposed by Stoyan and Yaskov [14] and are the most known ones in the literature for the strip packing problem, they were for example used in [14], [16], [28], [18], and [19]. Twelve additional instances were proposed by Akeb and Hifi [28], these instances are obtained by concatenating the six original instances of Stoyan and Yaskov and contain from 45 to 200 pieces.

It is to note that all these instances are strongly heterogeneous, i.e., the pieces are practically all of different radii ($m \lesssim n$) where n is the number of circles in the instance and m the number of circle types (different radii).

6.1 Varying the Beam Width When the Look-Ahead Is Used

In a standard beam-search based algorithm, like for algorithm BSBIS [28], it is difficult to know in advance what value to use for the beam width (ω). Indeed, increasing the value of ω does not necessarily improve the solution, even if that increase the search space. This can be explained by the fact that a standard beam search is based on a local evaluation (e.g. MLDP rule) for branching from the current level of the search tree in order to create the next level. As a result, the value of the solution (the length of the rectangle L) oscillates when increasing the beam width. An example is shown in Fig. 5 where BSBIS was executed on instance $S Y 13(n=55, m=54$ pieces) for all the values of $1 \leq \omega \leq 30$. Note that this phenomenon concerns also algorithm SEP-MSBS [19] since this one is based on the MLDP selection strategy.

Fig. 5. Comparison between the standard beam search (BSBIS) and BSLA (including look-ahead) on instance SY13 ($n=55, m=54$ pieces)

But when the look-ahead is introduced (see Algorithm 3, BSLA), the solution L oscillates much less (as indicated in Fig. 5) and the value of L often decreases when the value of the beam width ω increases. In addition, the solution obtained by the look-ahead (BSLA) is practically always better than that given by BSBIS and the example shown in Fig. 5 is very representative since this phenomenon was shown for all the instances. It is then not necessary to run a look-aheadbased algorithm with all the possible values of ω. In fact, the computational investigation showed that starting with the value $\omega=10$ and increasing this value by step of 5 , i.e., $(\omega=10+5 \times k, k \in \mathbb{N})$ corresponds to a good setting. Then, the proposed algorithm (IA) is run with these values of ω.

6.2 Values of Parameters ψ and τ

Another investigation was conducted. It concerns the values of parameter ψ corresponding to the proportion of positions to evaluate by the look-ahead
branching procedure (see Algorithm 2) at each level of the tree, and parameter τ that indicates the proportion of circles to use for restarting algorithm IA (see Algorithm 4).

Each parameter ψ and τ was varied in the discrete interval $\{0.5,0.75,1\}$, which gives 9 possibilities. The nine possibilities were tested on 3 sets of instances:

- the two smallest instances SY2 $(n=m=20)$ and SY3 $(n=m=25)$,
- two medium-sized instances SY23 $(n=m=45)$ and SY14 $(n=m=65)$,
- two large instances SY6 $(n=100, m=98)$ and SY1234 $(n=110, m=105)$.

Table 1 indicates the best values for parameters ψ and τ according to the size of the instance. For example, when considering a small-sized instance ($n<40$), then all the corner positions have to be processed by the look-ahead $(\psi=1)$ and each circle type have to be used by the restarting strategy $(\tau=1)$. The results of algorithm IA presented in Table 2 and Table 3 are obtained by using the values indicated in Table 1.

Table 1. Best values for parameters ψ and τ according to the size of the instance

Instance size	ψ	τ
small $(n<40)$	1	1
medium $(40 \leq n<100)$	0.75	0.75
large $(n \geq 100)$	0.5	1

6.3 Solution Quality of Algorithm IA

Table 2 shows the results obtained by algorithm IA as well as those obtained by different other algorithms. Column 1 (Inst.) contains the name of the instance. Column $2(n)$ gives the size of the instance and Column $3(m)$ is the number of circle types in the instance. Column 4 (MHD) represents the best length of the rectangle obtained by the Maximum Hole Degree (MHD) heuristic (Huang et al. [16]). The next column (B16) contains the result obtained by a parallel version of MHD (Kubach et al. [18]), symbol "-" means that the result of B16 is not known for the corresponding instances. Column 6 indicates the result obtained by the Beam Search Binary Interval Search algorithm (Akeb and Hifi [28]), the value between parentheses correspond to the value of the beam width with which the solution was obtained. The solution obtained by algorithm SEP-MSBS (Akeb et al. [19]) is given in Column 7 as well as the corresponding beam width. Column 8 (Best Lit.) shows the best known solution in the literature for the studied instances. Finally, the last column contains the result obtained by the Improved Algorithm (IA), the corresponding beam width (ω) is also indicated between brackets. Values in bold characters indicate which algorithm obtains the best solution.

Table 2. Solution quality of algorithm IA

Inst.	n	m	MHD	B16	BSBIS	SEP-MSBS	Best Lit.	IA
SY1	30	30	17.291	17.247	$17.2315(45)$	$17.2070(50)$	17.2070	$\mathbf{1 7 . 0 9 5 4}(20)$
SY2	20	20	14.535	14.536	$14.6277(86)$	$14.5287(24)$	14.5287	$\mathbf{1 4 . 4 5 4 8}(15)$
SY3	25	25	14.470	14.467	$14.5310(78)$	$14.4616(44)$	14.4616	$\mathbf{1 4 . 4 0 1 7}(80)$
SY4	35	35	23.555	23.717	$23.6719(42)$	$23.4921(66)$	23.4921	$\mathbf{2 3 . 3 5 3 8}(10)$
SY5	100	99	36.327	$\mathbf{3 5 . 8 5 9}$	$36.0796(95)$	$36.1818(22)$	35.8590	$36.0045(15)$
SY6	100	98	36.857	$\mathbf{3 6 . 4 5 2}$	$36.8456(85)$	$36.7197(26)$	36.4520	$36.5573(10)$
SY12	50	48	30.067	-	$29.7011(52)$	$\mathbf{2 9 . 6 8 3 7}(61)$	29.6837	$29.7024(30)$
SY13	55	54	30.891	-	$30.6371(100)$	$\mathbf{3 0 . 3 7 0 5}(68)$	30.3705	$30.4231(20)$
SY14	65	65	38.265	-	$38.0922(79)$	$37.8518(63)$	37.8518	$\mathbf{3 7 . 6 1 8 7}(10)$
SY23	45	45	28.270	-	$27.8708(98)$	$\mathbf{2 7 . 6 3 5 1}(89)$	27.6351	$27.7148(35)$
SY24	55	54	34.605	-	$34.5476(26)$	$34.1455(49)$	34.1455	$\mathbf{3 4 . 0 9 7 0}(30)$
SY34	60	59	34.901	-	$34.9354(39)$	$34.6859(43)$	34.6859	$\mathbf{3 4 . 5 9 8 3}(25)$
SY56	200	193	69.979	-	$64.7246(65)$	$65.2024(06)$	64.7246	$\mathbf{6 4 . 6 9 0 4}(10)$
SY123	75	72	43.626	-	$43.2558(64)$	$\mathbf{4 3 . 0 3 0 6}(25)$	43.0306	$43.1709(15)$
SY124	85	82	49.335	-	$48.8927(90)$	$48.8411(35)$	48.8411	$\mathbf{4 8 . 6 4 3 2 (1 0)}$
SY134	90	88	49.721	-	$49.3954(100)$	$49.3362(27)$	49.3362	$\mathbf{4 9 . 2 2 3 8}(10)$
SY234	80	78	45.888	-	$45.9526(83)$	$45.6115(39)$	45.6115	$\mathbf{4 5 . 4 2 6 0}(10)$
SY1234	110	105	61.906	-	$60.2613(48)$	$60.0564(25)$	60.0564	$\mathbf{6 0 . 0 0 3 6}(10)$

It is to note that the beam-search based algorithms (BSBIS, SEP-MSBS, and IA) were run by using a beam width limit $\bar{\omega}=100$ and a computation time limit of thirty hours (as in [19]). For a fair comparison, MHD was also run (on the same computer) by using a time limit of thirty hours.

From the results of Table 2, we can see clearly that the new algorithm (IA) has improved twelve results out of eighteen, i.e, 67% of the best known results in the literature. Algorithm SEP-MSBS remains better on four instances (SY12, SY13, SY23, and SY123) and algorithm B16 is better on instances SY5 and SY6.

The computation time is not indicated in Table 2 for algorithm IA because the limit of thirty hours was reached for all the instances except for the smallest one (SY2, $n=m=20$) for which the algorithm has attained the beam width limit $(\bar{\omega}=100)$ and terminated after 13 hours. For the SEP-MSBS algorithm [19], the time limit was reached for thirteen instances out of eighteen (except for instances SY1, SY2, SY3, SY4 and SY23), i.e., when $n \leq 45$. The reason for which algorithm IA reached the time limit is that the look-ahead strategy consumes a lot of time.

What will be the behavior of the proposed algorithm (IA) when fixing a relatively short time limit? Another investigation, in which the time limit was fixed at thirty minutes, was conducted. Table 3 displays the comparison between the beam search-based algorithms (BSBIS, SEP-MSBS, and IA) when using this new time limit. The first column (Inst.) contains the name of the instance. Column 2 contains the best value obtained by the BSBIS algorithm (based on a standard beam search) as well as the corresponding beam width. Column $3\left(t^{*}\right)$ indicates the cumulative computation time (in seconds) in order to obtain the best value

Table 3. Solution quality of algorithm IA when fixing the time limit at 30 minutes

Inst.	BSBIS		SEP-MSBS		IA		\%imp. BSBIS	$\begin{array}{r} \text { \%imp. } \\ \text { SEP-MSBS } \end{array}$
	L	t^{*}	L	t^{*}	L	t^{*}		
SY1	17.2315	166	17.2145	1463	17.2029	1790	0.17\%	0.07\%
SY2	14.6277	222	14.5287	155	14.4548	216	1.18\%	0.51\%
SY3	14.5310	308	14.4616	1253	14.4106	750	0.83\%	0.35\%
SY4	23.6719	211	23.5335	1662	23.3538	1007	1.34\%	0.76\%
SY5	36.4042	445	36.3362	1324	36.1707	1432	0.64\%	0.46\%
SY6	36.9387	1637	37.2555	669	36.9232	1135	0.04\%	0.89\%
SY12	29.7011	875	30.0447	650	29.9744	1800	-0.92\%	0.23\%
SY13	30.7415	165	30.7843	1800	30.6149	1710	0.41\%	0.55\%
SY14	38.3573	885	38.2962	851	37.9690	1501	1.01\%	0.85\%
SY23	27.9146	1116	28.0388	885	27.8493	1768	0.23\%	0.68\%
SY24	34.5476	266	34.6732	766	34.3544	675	0.56\%	0.92\%
SY34	34.9354	720	34.9614	1304	34.7531	914	0.52\%	0.60\%
SY56	65.5565	1022	65.7608	1800	65.3079	1800	0.38\%	0.69\%
SY123	43.4907	1745	43.5815	1412	43.4793	1511	0.03\%	0.23\%
SY124	49.3281	456	49.6348	1720	49.1915	1661	0.28\%	0.89\%
SY134	49.8705	1536	49.9136	1397	49.8184	1621	0.10\%	0.19\%
SY234	45.9913	775	46.1901	880	45.9209	1321	0.15\%	0.58\%
SY1234	60.9055	565	60.8783	1800	60.5660	1369	0.56\%	0.51\%

L in Column 2. The results obtained by the two other algorithms (SEP-MSBS and IA) are indicated in Columns $4-7$. Column 8 gives the percentage of improvement obtained by the new algorithm IA on BSBIS, the improvement is computed as $\frac{L_{\text {BSBIS }}-L_{\mathrm{IA}}}{L_{\text {BSBIS }}} \times 100 \%$. In the same way, the last column contains the percentage of improvement obtained by algorithm IA on algorithm SEP-MSBS.

From Table 3, we can see clearly that when using a relatively short time limit (which is more practical), the proposed algorithm (IA) is practically always the best one (in 17 cases out of 18), except for the instance SY12 where BSBIS remains better. The good results obtained by algorithm IA can be explained by the fact that the look-ahead strategy computes quickly feasible solutions, i.e., from level $\ell=2$ in the search tree (see Fig. 4) when BSBIS and SEP-MSBS obtain feasible solutions at level $\ell=n$ only. So, even if algorithm IA is stopped after a short computation time, it will have calculated a lot of feasible solutions, increasing the probability to obtain good ones.

Fig. 6 shows the evolution of the best solution obtained by algorithms BSBIS, SEP-MSBS, and IA on instance SY124 (85 circles) when the computation time is limited to thirty minutes (1800 seconds). Algorithm SEP-MSBS is taken as a reference and the x-Axis indicates the cumulative computation time for this algorithm for each value of ω (the beam width). For example, SEP-MSBS needs 108 seconds for a complete run with $\omega=1$ and 1699 seconds for the five first values of ω. Then after each run of SEP-MSBS with a given value of ω, the

Fig. 6. Evolution of the solution on instance SY124 in the interval of 30 minutes
best length achieved is compared to that obtained by the two other algorithms (BSBIS and IA) for the same cumulative computation time. The results indicate that algorithm BSBIS is better than SEP-MSBS when $\omega>2$ but within thirty minutes (SEP-MSBS is better on this instance when using a large computation time as indicated in Table 2). Algorithm IA is better than the two others (BSBIS and SEP-MSBS) until $t=670$ seconds. After that BSBIS achieved a better solution than IA. But IA outperforms BSBIS when $t>1300$ seconds.

Fig. 7 displays the solution obtained by the proposed algorithm (IA) on the smallest instance (SY2) that contains 20 circles. The new best length is $L=$ 14.4548 , the previous best known value in the literature was $L=14.5287$. Fig. 8 shows the new solution obtained by algorithm IA on a medium-sized instance (SY14) that contains 65 circles with $L=37.6187$. Finally, Fig. 9 displays the solution obtained by algorithm IA on the largest instance (SY56) that contains 200 circles. The new best length is $L=64.6904$.

Fig. 7. Solution obtained by the proposed algorithm IA on the smallest instance SY2 ($n=m=20, L=14.4548$)

Fig. 8. Solution obtained by algorithm IA on a medium-sized instance SY14 ($n=m=$ $65, L=37.6187$)

Fig. 9. Solution obtained by algorithm IA on the largest instance SY56 ($n=200, m=$ $193, L=64.6904$)

7 Conclusion

In this paper an improved algorithm, denoted by IA, was proposed in order to solve the strip packing problem. IA is a beam-search based algorithm that includes a look-ahead strategy in order to improve the selection mechanism at each level of the tree. In addition, a restarting strategy was also used.

The computational investigation, conducted on a set of well-known instances in the literature, showed the effectiveness of the proposed algorithm since it has succeeded to improve 67% of the best known solutions in the literature. In addition, another experimentation indicated that the look-ahead obtains good solutions more quickly, i.e., faster than the existing beam-search based algorithms. More precisely, algorithm SEP-MSBS, that does not implement the look-ahead strategy, works well when the computation time is large but its performance decreases when using a relatively short computation time (thirty minutes for example) where algorithm BSBIS is better than SEP-MSBS on more than half of the instances used. The proposed algorithm (IA), thanks to the look-ahead and the optimization of the parameters of this strategy as well as those of the restarting one, achieve good results even for short computation time.

As a future work, it would be interesting to use a parallel algorithm in order to reduce the computation time.

References

1. Baltacioglu, E., Moore, J.T., Hill, R.R.: The distributor's three-dimensional palletpacking problem: a human intelligence-based heuristic approach. Int. J. Oper. Res. 1, 249-266 (2006)
2. Bortfeldt, A., Homberger, J.: Packing first, routing seconda heuristic for the vehicle routing and loading problem. Comput. Oper. Res. 40, 873-885 (2013)
3. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: Numerical results and industrial applications. Eur. J. Oper. Res. 191, 786-802 (2008)
4. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. A Series of comprehensive studies in Mathematics, vol. 290, 703 pages. Springer (1999)
5. Lewis, R., Song, S., Dowsland, K., Thompson, J.: An investigation into two bin packing problems with ordering and orientation implications. Eur. J. Oper. Res. 213, 52-65 (2011)
6. Menon, S., Schrage, L.: Order allocation for stock cutting in the paper industry. Oper. Res. 50, 324-332 (2002)
7. Wäscher, G., Haussner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109-1130 (2007)
8. Huang, W.Q., Li, Y., Li, C.M., Xu, R.C.: New heuristics for packing unequal circles into a circular container. Comput. Oper. Res. 33, 2125-2142 (2006)
9. Hifi, M., M'Hallah, R.: A dynamic adaptive local search algorithm for the circular packing problem. European J. Oper. Res. 183, 1280-1294 (2007)
10. Akeb, H., Hifi, M., M'Hallah, R.: A beam search based algorithm for the circular packing problem. Comput. Oper. Res. 36, 1513-1528 (2009)
11. Graham, R.L., Lubachevsky, B.D., Nurmela, K.J., Östergård, P.R.J.: Dense packings of congruent circles in a circle. Discrete Math. 181, 139-154 (1998)
12. Liu, J., Xue, S., Liu, Z., Xu, D.: An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle. Comput. Ind. Eng. 57, 1144-1149 (2009)
13. George, J.A., George, J.M., Lamar, B.W.: Packing different-sized circles into a rectangular container. Eur. J. Oper. Res. 84, 693-712 (1995)
14. Stoyan, Y.G., Yaskov, G.N.: Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints. Int. Trans. Oper. Res. 5, 45-57 (1998)
15. Hifi, M., M'Hallah, R.: Approximate algorithms for constrained circular cutting problems. Comput. Oper. Res. 31, 675-694 (2004)
16. Huang, W.Q., Li, Y., Akeb, H., Li, C.M.: Greedy algorithms for packing unequal circles into a rectangular container. J. Oper. Res. Soc. 56, 539-548 (2005)
17. Birgin, E.G., Martinez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders into a rectangular container: A nonlinear approach. Eur. J. Oper. Res. 160, 19-33 (2005)
18. Kubach, T., Bortfeldt, A., Gehring, H.: Parallel greedy algorithms for packing unequal circles into a strip or a rectangle. Cent. Eur. J. Oper. Res. 17, 461-477 (2009)
19. Akeb, H., Hifi, M., Negre, S.: An augmented beam search-based algorithm for the circular open dimension problem. Comput. Ind. Eng. 61, 373-381 (2011)
20. Huang, W.Q., Ye, T.: Greedy vacancy search algorithm for packing equal circles in a square. Oper. Res. Lett. 38, 378-382 (2010)
21. Specht, E.: High density packings of equal circles in rectangles with variable aspect ratio. Comput. Oper. Res. 40, 58-69 (2013)
22. Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global optimization approach. Discrete Appl. Math. 122, 139-166 (2002)
23. López, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of containers. Eur. J. Oper. Res. 214, 512-525 (2011)
24. Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing problems. Comput. Oper. Res. 35, 2357-2375 (2008)
25. Birgin, E.G., Gentil, J.M.: New and improved results for packing identical unitary radius circles within triangles, rectangles and strips. Comput. Oper. Res. 37, 1318-1327 (2010)
26. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. Int. J. Prod. Res. 26, 35-62 (1988)
27. Akeb, H., Hifi, M.: Adaptive algorithms for circular cutting/packing problems. Int. J. Oper. Res. 6, 435-458 (2009)
28. Akeb, H., Hifi, M.: Algorithms for the circular two-dimensional open dimension problem. Int. Trans. Oper. Res. 15, 685-704 (2008)

Experimental Evaluation of Pheromone Structures for Ant Colony Optimization: Application to the Robot Skin Wiring Problem

Davide Anghinolfi, Giorgio Cannata, Fulvio Mastrogiovanni, Cristiano Nattero, and Massimo Paolucci
Department of Informatics Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145, Genoa, Italy
\{davide.anghinolfi,giorgio.cannata,fulvio.mastrogiovanni, cristiano.nattero,massimo.paolucci\}@unige.it

Abstract

The problem of optimally routing the wiring in large-scale modular skins for robots is gaining much attention in the literature. Theoretically, the problem is NP-hard. On the basis of previous work [3], [37], we solve the skin wiring problem using an Ant Colony Optimization approach. In this Chapter, we address the problem of designing a good pheromone structure: we propose five alternatives, which are validated using both real and artificially generated problem instances.

Keywords: ant colony optimization, robotics, pheromone structures, skin wiring.

1 Introduction

In order to provide humanoid robots with tactile sensing capabilities, the development of robot skins has been an active field of research in the past few years [15]. A robot skin is a sensing device composed of a huge number of networked tactile sensors. Robot skins are expected to enable new means of physical human-robot interaction [5].

Different transduction principles are usually exploited, namely pressure, proximity or temperature [15]. However, to design a robot skin is a hard engineering task, since it requires to deal with such conflicting requirements as resolution [42], reaction dynamics and bandwidth [6], weight, energy consumption, optimal placement and calibration [11], as well as reliability and real-time SW performance [10], [47].

The reference robot skin [12], [41] exploits capacitance-based transducers. In the current HW design, up to 12 tactile elements (i.e., taxels) are hosted by a triangular module, which is made by flexible Printed Circuit Board (PCB) and hosts also the read-out electronics, as shown in Figure 1a. Each triangular module can be interconnected to up to 3 other triangular modules to cover large robot body parts, thereby forming a skin patch (Figure 1b). A patch can be composed of up to $C=16$ interconnected triangular modules. Each patch

