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Abstract. This paper solves the strip packing problem (SPP) that con-
sists in packing a set of circular objects into a rectangle of fixed width
and unlimited length. The objective is to minimize the length of the
rectangle that will contain all the objects such that no object overlaps
another one. The proposed algorithm uses a look-ahead method com-
bined with beam search and a restarting strategy. The particularity of
this algorithm is that it can achieve good results quickly (faster than
other known methods and algorithms) even when the number of objects
is large. The results obtained on well-known benchmark instances from
the literature show that the algorithm improves a lot of best known
solutions.
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1 Introduction

Cutting & Packing (C&P) problems are well known in Operations Research
since they have many practical applications. They are for example encountered
in the storage and transportation of objects of different shapes (Baltacioglu et
al. [1]; Bortfeldt and Homberger[2]; Castillo et al. [3]; Conway and Sloane [4];
Lewis et al. [5]). In this case, the objective is to arrange these objects in order
to save space. C&P problems are also used in the industry when a set of pieces
of predetermined shapes have to be cut from a rectangular plate (Menon and
Schrage [6]). The objective in this second example is to minimize the waste due
to the space between the pieces to cut.

This paper studies the problem of cutting (or packing) a set N = {1, .., n} of
n circular pieces Ci of known radii ri, i ∈ N, from (or into) a strip S of fixed
width W and unlimited length L. The objective is to place the n pieces inside the
smallest rectangle R of dimensions W × L∗ such that no piece overlaps another
one and no piece exceeds the limits of the rectangle. This problem is known
as the Strip Packing Problem or SPP (see Wäscher et al. [7]). Fig. 1 shows an
instance containing nine circles (N = {1, .., 9}) to try to pack inside a rectangle
of dimensions W ×L. Fig. 2 shows two feasible solutions in which all the circles
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Fig. 1. Example of a set of nine circles to pack inside a rectangle W × L
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Fig. 2. Two feasible packings of the nine circles

were packed into the rectangle. Note that a rearrangement of the circles inside
the rectangle may decrease its length. Indeed the solution displayed in Fig. 2 (b)
is a rearrangement of the circles of the solution indicated in Fig. 2 (a). Note
also that the most-right circle (5) in Fig. 2 (b) does not touch the right border
of the rectangle, this means that the width of the rectangle can be decreased.
This means also that this second solution (Fig. 2 (b)) is better than the one
indicated in Fig. 2 (a) since the width of the rectangle is smaller. But a good
rearrangement is not easy to be achieved because of the continuous characteristic
of the variables (see below).

The mathematical formulation for SPP is as follows:

min L (1)√
(xi − xj)2 + (yi − yj)2 ≥ ri + rj , for j < i, (i, j) ∈ N2 (2)

ri ≤ xi ≤ L− ri, ∀i ∈ N, (3)

ri ≤ yi ≤ W − ri, ∀i ∈ N, (4)

L ≥ π

W
×

n∑
i=1

r2i (5)
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Equation 1 indicates the objective to minimize, i.e., the length of the target
rectangle that will contain the n pieces. Equation 2 means that any pair of
distinct circles Ci and Cj do not overlap each other, i.e., the euclidean distance
between their centers must be greater than or equal to the sum of their radii
ri + rj . Equations 3–4 mean that any circle Ci does not exceed the container
boundary. Finally, Equation 5 indicates that the objective to minimize (L) has
a lower bound value, denoted by L, which is equal the sum of the surfaces of the
n circles divided by the width of the rectangle W . Any value for L cannot then
be smaller than this lower bound otherwise this will mean that there is no space
between the circles and between the circles and the container boudary.

A solution for the strip packing problem consists to find the minimum value
for the length of the rectangle that will contain all the pieces while verifying the
constraints represented by Equations 2–4.

2 Literature Review

The problem of packing circular objects of different radii into a container is well
known and very studied in the literature. Since there is no method calculating
exact solutions, the authors use generally heuristic-based approaches in order
to compute approximate solutions for the problem. Two main categories of con-
tainers can be distinguished: the first one corresponds to a circle and the second
one to a rectangle. In addition, the circular pieces may have the same radius or
have different radii.

Packing different-sized circles into the smallest circle was for example studied
by Huang et al. [8] where the authors proposed greedy algorithms based on
the Maximum Hole Degree (MHD) heuristic. Hifi and M’Hallah [9] proposed
a dynamic adaptive local search where the radius of the containing circle is
increased when placing the circles. For the same problem, Akeb et al. [10] used
beam-search based algorithms. Packing equal circles inside a circle was studied
by several authors. Graham et al. [11] proposed two methods in order to pack a
set of congruent circles inside the unit circle. The first method is called Billiards
simulation and the second one is based of the Energy Function Minimization.
Liu et al. [12] proposed a heuristic based on a technique called Energy landscape
paving in order to pack equal circles inside the smallest containing circle.

The problem of packing circles of different radii into a rectangular container
is more studied in the literature because of its various applications. For example
George et al. [13] proposed several rules based essentially on the use of a ge-
netic algorithm as well as a random strategy. Stoyan and Yaskov [14] designed
a mathematical model whose objective is to search for feasible local optima
by combining a tree-search procedure and a reduced gradient. A genetic algo-
rithm was also used by Hifi and M’Hallah [15]. Huang et al. [16] designed two
greedy algorithms for the strip packing problem, the algorithms, denoted by B1.0
and B1.5, are based on the Maximum Hole Degree (MHD) heuristic. Birgin et
al. [17] used a non-linear approach for placing circles inside a rectangle. Kubach
et al. [18] proposed a parallel version for the MHD heuristic for tackling the
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strip packing problem. Finally, Akeb et al. [19] proposed a beam-search based
algorithm coupled with a restarting strategy for solving SPP.

Packing equal circles inside a square and/or a rectangle was for example stud-
ied by Huang and Ye [20], the authors proposed a stochastic method in order to
place up to 200 circles. E. Specht [21] proposes a deterministic method in order
to compute high density packings of equal circles in a rectangle. Several years
before, Locatelli and Raber [22] used a branch-and-bound algorithm in order to
pack a given number of equal circles into the unit square.

Some authors proposed several methods in order to place circles inside con-
tainers of different shapes. This is for example the case of López and Beasley [23]
who used a non-linear formulation, involving Cartesian and polar coordinates,
solved by the SNOPT solver. Birgin and Sobral [24] proposed several results
for packing circles and spheres inside 2D and 3D containers. Finally, Birgin and
Gentil [25] considered the packing of unitary radius circles inside triangles, rect-
angles, and strips.

In this paper, an improved algorithm is proposed for the strip packing prob-
lem. This algorithm combines beam search, a restarting strategy, and a look-
ahead method. The objective of the look-ahead is to accelerate the search to
obtain quickly solutions. In addition, the parameters of the restarting and the
look-ahead strategies are studied in order to adapt them to the characteristics
of each instance.

The rest of the paper is organized as follows. Section 3 explains how to use
beam search in order to resolve the strip packing problem (SPP). Section 4 re-
turns on some existing beam-search based algorithms for SPP. Section 5 details
the improved algorithm denoted by IA. Section 6 discusses the results obtained
by IA on the most known instances in the literature. Finally, Section 7 summa-
rizes the results obtained and indicates some orientations for future work.

3 Beam Search for Resolving SPP

Beam search (BS) [26] is a tree-based search and is an adaptation of the best
first search. BS selects, at each level � of the tree, the most promising nodes to
expand in order to create the nodes of the next level �+1. So a criterion, allowing
to evaluate each node, must be defined. The number of the nodes chosen at each
level is denoted by ω and is called the beam width.

A standard implementation of the BS method is given in Algorithm 1. BS
receives two parameters: the root node B0 that contains a starting solution
(partial solution) and the value of the beam width ω. The algorithm’s output is
a feasible solution if it succeeds, or the empty set if not.

At line 1 of Algorithm 1, the root node is assigned to B (the set of nodes of
the current level). The set of offspring nodes, i.e., the descendants of the nodes
in B, is denoted by Bω. After that, at line 2, the value of the best solution z∗

is initialized to the best known solution if this one exists, otherwise z∗ is set to
+∞, meaning that the problem at hand is a minimization (for a maximization,
z∗ is set to −∞).
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At each level of the search tree, i.e, the while loop (Lines 3–14), each node
η ∈ B generates several descendant nodes. Theses ones are inserted into the set
Bω (line 4). If a node in Bω is a leaf (no branching is possible from it), then its
solution value is computed (line 6) and the best solution z∗ is updated if a better
one is found. After that, the node is removed from Bω (line 10). The other nodes
in Bω are after that evaluated by calculating their solution values and only the
best ω nodes are kept, the other nodes are removed (line 12). The nodes chosen
are then assigned to the set B and Bω is reset to the empty set (line 13). The
instructions in lines 3–14 are repeated until no branching is possible, i.e., B = ∅.
At line 15, the algorithm returns the best solution found so far.

Note that the method described above is a width-first implementation of
beam-search. Of course there also exists a depth-first implementation where the
exploration goes as far as possible along each branch before backtracking. For
more details, see [27].

Require: The root node B0 (starting solution) and the beam width value ω.
Ensure: A feasible solution if such one is reached, the empty set otherwise.

1: Let B = B0 be the set of nodes of the current level and Bω the set of offspring
nodes;

2: If a feasible solution is known then set z∗ to its value, otherwise set z∗ = +∞;
3: while (B �= ∅) do
4: Branch out of each node η ∈ B and insert the resulting (offspring) nodes into

Bω;
5: if a node ηi ∈ Bω is a leaf then
6: compute zηi the value of node ηi;
7: if zηi < z∗ then
8: update the best solution z∗ (z∗ := zηi);
9: end if
10: Remove zηi from Bω;
11: end if
12: Keep only the ω best nodes in Bω (those having the best values of z) and

remove the others;
13: B := Bω and Bω := ∅;
14: end while
15: return the best solution if it exists, otherwise the empty set;

Algorithm 1. The Beam Search Method

The rest of this section is organized as follows. First, the different notations
used throughout the paper are given. After that, a greedy procedure, denoted
by MLDP (Minimum Local Distance Position) is described. The objective of
MLDP is to try to place the n circles inside the current rectangle R = W × L,
i.e., when the length of the rectangle is fixed to a given value L.

3.1 Notations

In order to simplify the reading of the paper, here are the different notations
used throughout the document:
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Fig. 3. The MLDP strategy

1. N = {1, ..., n} is the set of circles to pack into the strip S placed with its
bottom left corner at point (0, 0) in the Euclidean plan,

2. M = {1, ...,m} is the set of circle types (the set of different radii in the
instance),

3. Sleft, Stop, Sright, and Sbottom are the four edges of S,
4. The circular piece Ci of radius ri is placed with its center at coordinates

(xi, yi),
5. Ii corresponds to the set of circles already packed inside the strip (|Ii| = i),
6. Ii contains the circles not yet placed (Ii ∪ Ii = N),
7. PIi is the set of distinct corner positions for the next circle to place Ci+1

given the set Ii,
8. A corner position pi+1 ∈ PIi for Ci+1 is computed by using two elements

e1 and e2. An element is either a piece already placed (set Ii) or one of the
three edges of S (Sleft, Stop, Sbottom). Tpi+1 denotes the set composed of
both elements e1 and e2.

3.2 The MDLP Greedy Procedure

The Minimum Local Distance Position (MLDP) procedure can be used as a
greedy algorithm in order to compute a solution. Indeed, given the set Ii of
circles already placed inside the current rectangle and the set of corner positions
Pi+1 for the next circle Ci+1, MLDP selects the best corner position for this circle.
This process is repeated until all the circles are placed or no additional circle can
be placed. Fig 3 explains the mechanism of MLDP where two circles are already
placed, thus i = 2 and I2 =

{
C1, C2

}
. There are also three possible positions to

place the next circle C3: PI2 =
{
p
(k)
3 , k = 1, .., 3

}
. The first corner position p

(1)
3

touches circle C2 and the top-edge of the strip Stop, then T
p
(1)
3

= {C2, Stop}. For
the two others corner positions, T

p
(2)
3

= {C1, C2} and T
p
(3)
3

= {C1, Sbottom}.
Let Ci+1 be the circular piece to place at position pi+1 and δi+1(edge), edge ∈

Eedge = {Sleft, Sbottom, Stop}, the three distances defined as follows: δi+1(Sleft) =
xi+1 − ri+1, δi+1(Sbottom) = yi+1 − ri+1, and δi+1(Stop) = W − yi+1 − ri+1.
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The euclidean distance from the edge of the next circle to pack Ci+1 (when
positioned at pi+1) and Cj is denoted by δi+1(j) and is computed as follows:

δi+1(j) =
√
(xi+1 − xj)2 + (yi+1 − yj)2 − (ri+1 + rj) (6)

The MLDP of the circular piece Ci+1 when placed at pi+1 ∈ PIi is calculated as
follows:

δ̂pi+1 = min
α∈Ii∪Eedge\Tpi+1

{δi+1(α)} (7)

Equation (7) gives the MLDP of Ci+1 which is computed by using the distances
between the piece to place at position pi+1 and the elements of the set Ii ∪
{Sleft, Sbottom, Stop}\Tpi+1 containing the pieces already placed, the three edges
of the strip, but by excluding the two elements of Tpi+1 used for computing the
coordinates of Ci+1 because the corresponding distance is always equal to zero.
Note however that the MLDP is equal to zero when Ci+1 touches more than two
elements because one of the three elements does not belong to the set Tpi+1 and
then the distance to this element can be taken into account. Fig. 3 indicates the

MLDP δ̂
p
(k)
3

of each position p
(k)
3 , k = 1, 2, 3.

For calculating a packing of the pieces when using the MLDP procedure, the
following process is executed: MLDP starts by placing the first circular piece C1

at the bottom-left corner (at coordinates (r1, r1)), the n−1 remaining pieces are
successively packed by using the MLDP rule as explained above. For example,

in Fig. 3, C3 will be placed at position p
(1)
3 since the corresponding MLDP has

the minimum value.

4 Beam Search-Based Algorithms for SPP

Akeb et al. [19] proposed an augmented beam search algorithm, denoted by SEP-
MSBS, for the strip packing problem. SEP-MSBS combines two main techniques:

– A strategy based on the use of separate beams that aims to diversify the
search space compared to the standard beam search,

– A restarting strategy that consists to rerun the search by changing the first
circle to place. The objective of this second technique is to escape from local
optima.

The separate-beams mechanism is displayed in Fig. 4. The root node η1 at level
� = 1 contains the starting configuration (one circle placed in the bottom-left
corner of the rectangle) as well as the possible positions for the n− 1 remaining
circles. The best positions (having the smallest MLDP values) are chosen for
branching, this creates the second level � = 2 (note that each branching consists
to choose a position where to place the next circle). From this second level,
separate beams are initiated. More precisely, a beam of width ω = 1 is initiated
from the first node (the best node), a beam of width ω = 2 is initiated from the
second best node, and so on. Thus, the node at position i in the second level is
explored by applying a beam search of width ω = i. This is to say that the best
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nodes do not require an extensive search, the beam width has then a small value,
unlike the last nodes in the level that need larger values for the beam width.
The separate-beams strategy was shown in [19] to be better than the standard
beam search.

Even if SEP-MSBS obtains good results (often the best results in the litera-
ture) on the instances used, its run time remains too large. This is mainly due
to the restarting strategy, which is executed m times (the number of different
circles (radii) in the instance).

5 An Improved Algorithm for SPP

In this paper, we try to improve the SEP-MSBS algorithm by adding a look-
ahead strategy. The look-ahead-basedmechanism will be described in Section 5.1.
The proposed improved algorithm, denoted by IA, will be given and explained
in Section 5.2. Some adjustments are introduced in algorithm IA in order to
reduce the computation time, these adjustments concern the number of corner
positions to explore by the look-ahead strategy as well as the number of circles
to take into account in the restarting strategy.

5.1 A Look-Ahead Based Algorithm

Algorithm SEP-MSBS [19] selects, at each level of the tree, the best nodes by
using the MLDP rule (Sect. 3.2). This can be assimilated to a local evaluation,
the packing process does not take into account the remaining circles to place. The
look-ahead proceeds differently. Indeed, given the set of nodes B = {η1� , ..., ηω� }
of the current level � in the tree, each node ηi� is characterized by the set I�i of �
circles already placed in the current rectangle and the set P�i of corner positions
for the remaining circles, the look-ahead evaluates each position p ∈ P�i by
continuing the placement of the remaining circles by using the MLDP rule.
The objective is to compute final solutions which will help to choose the actual
positions for branching from the current level �. This strategy is implemented in
the Look-Ahead Branching Procedure (LABP) displayed in Algorithm 2.

In addition to the set of nodes B, LABP (Algorithm 2) receives as input
parameter an indicator feasible set to the value false as well as a real number
0 < ψ ≤ 1. Parameter ψ serves to determine the proportion of corner positions
to evaluate by the look-ahead, for example, if ψ = 0.8, then only the best 80%
of corner positions (those having the smallest MLDP values) are evaluated. The
objective of this parameter is to accelerate the algorithm for large instances
(those containing a large number of circles, and therefore a large number of
corner positions at each step).

The set Π of positions to evaluate by the look-ahead, as explained above, is
constructed in Steps 2 and 3. After that, LABP considers each position pj ∈ Π
(Step 4) by packing the corresponding circle in pj (Step 5). This generates a new
node η�+1 that is added to the set of offspring nodes Bω. The new node is then
processed by placing the remaining circles by using the MLDP rule (Step 6).
Two cases may then be distinguished:
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– A feasible packing is obtained (Step 7), meaning that the n circles were
successfully placed inside the current rectangle. In this case, the procedure
stops with feasible=true (Steps 8 and 9), meaning that the length L of
the rectangle could be decreased;

– A feasible packing was not obtained (the n circles cannot be placed into the
current rectangle by MLDP). In this second case, the procedure assigns to
the node η�+1 the density of the circles placed (Step 11). The density of a
given packing is equal to the sum of the surfaces of the circles placed divided
by the surface of the rectangle L×W.

Finally, when all the corner positions are processed without obtaining a feasible
packing, then the ω best nodes (those that have led to the highest densities) are
returned (Steps 14, 15). This means that the current length of the rectangle is
too small and should be increased.

Note that procedure LABP (Algorithm 2) is called by a beam search algorithm
denoted by BSLA (Algorithm 3, Line 10). BSLA implements a width-first beam
search. It uses an interval search [L,L] in order to compute the best length of
the rectangle containing all the circles. BSLA receives several input parameters:
the starting node η� containing the starting configuration, the beam width value
ω, the values of the interval search, and parameter ψ indicating the proportion
of corner positions to process by LABP.

BSLA calls, at Step 10, the LABP procedure (Algorithm 2) for each value
of the rectangle’s length L∗. If LABP has computed a feasible packing with
the current value of L, then the best length (Lbest) is updated (Step 12) and

Require: A set B = {η1
� , ..., η

ω
� } of ω nodes, a boolean indicator feasible=false,

and 0 < ψ ≤ 1

Ensure: A feasible solution if feasible=true, or a set Bω of ω nodes (those leading
to the highest densities through the MLDP packing procedure).

1: Let P�i denotes the set of corner positions of node ηi
� ∈ B;

2: Let Π be the set of all corner positions of B, i.e., Π =
⋃

P�i ;
3: Reduce Π to the �ψ × |Π |� best corner positions (having the best MLDP values);
4: for all corner positions pj ∈ Π do
5: Pack C�+1 in pj and insert the resulting node η�+1 into Bω;
6: Place in η�+1 the remaining circles by using the MLDP packing procedure;
7: if all circles are placed then
8: feasible = true;
9: exit with a feasible solution;
10: else
11: Assign to η�+1 the density obtained by MLDP;
12: end if
13: end for

14: Reduce Bω to the ω nodes that led to the highest densities by MLDP;
15: return Bω.

Algorithm 2. The Look-Ahead Branching Procedure (LABP)
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the upper bound of the interval search L is set equal to the current length.
Otherwise, level � is incremented by 1, the best expanded nodes returned by
LABP (Step 10) replace the nodes of the current level in the tree (B = Bω), and
Bω is reset to the empty set (Step 14). If LABP did not succeed to compute a
feasible packing with the current value of the rectangle’s length (Step 17), then
the lower bound of the interval search L is set equal to the current value of L,
i.e., L = L∗ (Step 18) meaning that the rectangle’s length is too small. Finally, it
is to note that the binary interval search is stopped when the difference between
L and L becomes less than or equal to a given gap δ.

5.2 The Improved Algorithm (IA)

The improved algorithm, denoted by IA, is given in Algorithm 4. It combines
three main techniques: separate beam search, a restarting strategy, and look-
ahead. Fig.4 shows how algorithm IA works.

IA receives as input parameters the beam width ω, parameter τ that serves to
indicate the proportion of circles taken into account by the restarting strategy,

Require: A node η�, the beam width ω, the bounds of the interval search (L,L),
and 0 < ψ ≤ 1

Ensure: The best value for the rectangle’s length (Lbest) and the corresponding
feasible packing.

1: Let B denote the set of nodes to be considered;
2: Let Bω denote the set of descendants of the nodes in B;
3: Let Lbest be the best length found so far;
4: Let feasible be a boolean indicator;

5: while (L− L > δ) do
6: Set B = {η�}, where η� is a starting node of level � characterized by I�, I�, and

PI� ;
7: L∗ = (L+ L)/2;
8: feasible = false;
9: while (B �= ∅ and feasible=false) do
10: Bω = LABP(B, feasible, ψ);
11: if feasible=true then
12: Lbest = L∗; L = L∗;
13: else
14: � = �+ 1; B = Bω; Bω = ∅;
15: end if
16: end while
17: if feasible=false then
18: L = L∗;
19: end if
20: end while

Algorithm 3. Beam Search Look-Ahead algorithm (BSLA)
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Require: The beam width ω, parameters τ and ψ
Ensure: A feasible packing with the best length Lbest for the strip

1: Lbest = L; L = (π ×
∑n

i=1 r
2
i )/W ;

2: Rank the pieces of N in decreasing value of their radii;
3: Let T be the set of circle types (different circles in N);
4: Reduce T by keeping only �τ × |T |� circles;
5: Set iorder = 1, where iorder is the index of the first circular piece of the set T ;

6: while (iorder ≤ |T |) do
7: Generate the node η1, characterized by I1, I1, and PI1 , by placing the first

circle Ciorder inside the current rectangle and let B = η1;
8: Branch out of B and generate the list of offspring nodes Bω;
9: Let B = min(ω, |Bω|) nodes having the best MLDPs and corresponding to

distinct corner positions and reset Bω = ∅;
10: Let η2 be the node at position ω in B;
11: feasible = BSLA(η2, ω,L, L, ψ);
12: if feasible= true then
13: L and Lbest are updated if a better length is obtained by BSLA;
14: end if
15: L = (π ×

∑n
i=1 r

2
i )/W ;

16: iorder = iorder + 1;
17: end while

18: exit with the best target length Lbest.

Algorithm 4. The Improved Algorithm (IA)

and parameter ψ used to choose the proportion of corner positions to evaluate
by the look-ahead branching procedure LABP (Algorithm 2). The output of
algorithm IA is a feasible packing and the corresponding best length of the
rectangle Lbest.

At Step 1 of algorithm IA, the best length Lbest is set equal to the upper
bound of the length L which is computed by an Open Strip Generation Solution
Procedure (OSGSPa) [28]. The lower bound of the interval search L is set equal
to the natural lower bound, i.e., L = (π ×

∑n
i=1 r

2
i )/W which corresponds to a

density equal to 1, this density is of course not possible to obtain because there
is always a non-occupied space between the circles and between the circles and
the edges of the rectangle. The pieces are then ranked by decreasing value of
their radii (Step 2). The set of circle types T to use in the restarting strategy
is constructed in Steps 3 and 4. The index serving to indicate the first circle to
place in the bottom-left corner of the current rectangle is initialized in Step 5.

The root node η1 (cf. Fig. 4) is generated in Step 7. This corresponds to
the placement of circle Ciorder in the bottom-left corner of the rectangle. In
Step 8, the list of offspring nodes Bω is generated. The set B is after that set
equal to the ω best nodes of Bω, this correspond to level � = 2 in Fig. 4. Since
the separate-beams mechanism is used, then only the node at position ω in
this level is explored. The node chosen (η2) is then transmitted to the Beam
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level ℓ=2 

level ℓ=3 

level ℓ=4 

level  ℓ = n 

BSLA with 
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. . . . . 

..... 

..... 

..... 

BSLA with 
  = 2 

BSLA with 
  = 3 

. . . . . 

Starting node 1, level ℓ=1 

Fig. 4. Separate beams and Look-ahead

Search Look-Ahead algorithm BSLA (Algorithm 3) in order to try to compute
a feasible solution (Step 11). If BSLA have reached a feasible packing, then the
upper bound L of the interval search and the best solution Lbest are updated
(Step 13). Indeed, the upper bound L is set to the best value obtained Lbest.
After that the lower bound L is reset to the natural lower bound (Step 15). In
Step 16, the next circle in set T is chosen in order to restart the algorithm.

It is to note that the main interest of the look-ahead strategy is that it allows
algorithm IA, for which the mechanism is described in Fig.4, to compute feasible
solutions from the second level (� = 2) in the search tree in opposite to the other
beam search-based algorithms where feasible solutions are obtained in the last
level (� = n).

6 Computational Results

The algorithms are coded in C++ language and run on a computer with a
3-GHz processor and 256 MB of RAM. Eighteen instances are considered con-
taining from 20 to 200 circles (note that the problem is considered to be large
when the number of pieces is at least n = 100). The first six instances, denoted
by SY1, SY2, SY3, SY4, SY5, and SY6, contain from 20 to 100 circles. They
were proposed by Stoyan and Yaskov [14] and are the most known ones in the
literature for the strip packing problem, they were for example used in [14],
[16], [28], [18], and [19]. Twelve additional instances were proposed by Akeb and
Hifi [28], these instances are obtained by concatenating the six original instances
of Stoyan and Yaskov and contain from 45 to 200 pieces.

It is to note that all these instances are strongly heterogeneous, i.e., the pieces
are practically all of different radii (m � n) where n is the number of circles in
the instance and m the number of circle types (different radii).
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6.1 Varying the Beam Width When the Look-Ahead Is Used

In a standard beam-search based algorithm, like for algorithm BSBIS [28], it is
difficult to know in advance what value to use for the beam width (ω). Indeed,
increasing the value of ω does not necessarily improve the solution, even if that
increase the search space. This can be explained by the fact that a standard
beam search is based on a local evaluation (e.g. MLDP rule) for branching from
the current level of the search tree in order to create the next level. As a result,
the value of the solution (the length of the rectangle L) oscillates when increasing
the beam width. An example is shown in Fig. 5 where BSBIS was executed on
instance SY 13 (n = 55, m = 54 pieces) for all the values of 1 ≤ ω ≤ 30. Note
that this phenomenon concerns also algorithm SEP-MSBS [19] since this one is
based on the MLDP selection strategy.
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Fig. 5. Comparison between the standard beam search (BSBIS) and BSLA (including
look-ahead) on instance SY13 (n = 55, m = 54 pieces)

But when the look-ahead is introduced (see Algorithm 3, BSLA), the solution
L oscillates much less (as indicated in Fig. 5) and the value of L often decreases
when the value of the beam width ω increases. In addition, the solution obtained
by the look-ahead (BSLA) is practically always better than that given by BSBIS
and the example shown in Fig. 5 is very representative since this phenomenon
was shown for all the instances. It is then not necessary to run a look-ahead-
based algorithm with all the possible values of ω. In fact, the computational
investigation showed that starting with the value ω = 10 and increasing this
value by step of 5, i.e., (ω = 10 + 5 × k, k ∈ N) corresponds to a good setting.
Then, the proposed algorithm (IA) is run with these values of ω.

6.2 Values of Parameters ψ and τ

Another investigation was conducted. It concerns the values of parameter ψ
corresponding to the proportion of positions to evaluate by the look-ahead
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branching procedure (see Algorithm 2) at each level of the tree, and param-
eter τ that indicates the proportion of circles to use for restarting algorithm IA
(see Algorithm 4).

Each parameter ψ and τ was varied in the discrete interval {0.5, 0.75, 1},which
gives 9 possibilities. The nine possibilities were tested on 3 sets of instances:

– the two smallest instances SY2 (n = m = 20) and SY3 (n = m = 25),

– two medium-sized instances SY23 (n = m = 45) and SY14 (n = m = 65),

– two large instances SY6 (n = 100,m = 98) and SY1234 (n = 110,m = 105).

Table 1 indicates the best values for parameters ψ and τ according to the size
of the instance. For example, when considering a small-sized instance (n < 40),
then all the corner positions have to be processed by the look-ahead (ψ = 1)
and each circle type have to be used by the restarting strategy (τ = 1). The
results of algorithm IA presented in Table 2 and Table 3 are obtained by using
the values indicated in Table 1.

Table 1. Best values for parameters ψ and τ according to the size of the instance

Instance size ψ τ

small (n < 40) 1 1

medium (40 ≤ n < 100) 0.75 0.75

large (n ≥ 100) 0.5 1

6.3 Solution Quality of Algorithm IA

Table 2 shows the results obtained by algorithm IA as well as those obtained by
different other algorithms. Column 1 (Inst.) contains the name of the instance.
Column 2 (n) gives the size of the instance and Column 3 (m) is the number
of circle types in the instance. Column 4 (MHD) represents the best length of
the rectangle obtained by the Maximum Hole Degree (MHD) heuristic (Huang et
al. [16]). The next column (B16) contains the result obtained by a parallel version
of MHD (Kubach et al. [18]), symbol “–” means that the result of B16 is not
known for the corresponding instances. Column 6 indicates the result obtained
by the Beam Search Binary Interval Search algorithm (Akeb and Hifi [28]),
the value between parentheses correspond to the value of the beam width with
which the solution was obtained. The solution obtained by algorithm SEP-MSBS
(Akeb et al. [19]) is given in Column 7 as well as the corresponding beam width.
Column 8 (Best Lit.) shows the best known solution in the literature for the
studied instances. Finally, the last column contains the result obtained by the
Improved Algorithm (IA), the corresponding beam width (ω) is also indicated
between brackets. Values in bold characters indicate which algorithm obtains
the best solution.
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Table 2. Solution quality of algorithm IA

Inst. n m MHD B16 BSBIS SEP-MSBS Best Lit. IA

SY1 30 30 17.291 17.247 17.2315 (45) 17.2070 (50) 17.2070 17.0954 (20)

SY2 20 20 14.535 14.536 14.6277 (86) 14.5287 (24) 14.5287 14.4548 (15)

SY3 25 25 14.470 14.467 14.5310 (78) 14.4616 (44) 14.4616 14.4017 (80)

SY4 35 35 23.555 23.717 23.6719 (42) 23.4921 (66) 23.4921 23.3538 (10)

SY5 100 99 36.327 35.859 36.0796 (95) 36.1818 (22) 35.8590 36.0045 (15)

SY6 100 98 36.857 36.452 36.8456 (85) 36.7197 (26) 36.4520 36.5573 (10)

SY12 50 48 30.067 – 29.7011 (52) 29.6837 (61) 29.6837 29.7024 (30)

SY13 55 54 30.891 – 30.6371(100) 30.3705 (68) 30.3705 30.4231 (20)

SY14 65 65 38.265 – 38.0922 (79) 37.8518 (63) 37.8518 37.6187 (10)

SY23 45 45 28.270 – 27.8708 (98) 27.6351 (89) 27.6351 27.7148 (35)

SY24 55 54 34.605 – 34.5476 (26) 34.1455 (49) 34.1455 34.0970 (30)

SY34 60 59 34.901 – 34.9354 (39) 34.6859 (43) 34.6859 34.5983 (25)

SY56 200 193 69.979 – 64.7246 (65) 65.2024 (06) 64.7246 64.6904 (10)

SY123 75 72 43.626 – 43.2558 (64) 43.0306 (25) 43.0306 43.1709 (15)

SY124 85 82 49.335 – 48.8927 (90) 48.8411 (35) 48.8411 48.6432 (10)

SY134 90 88 49.721 – 49.3954(100) 49.3362 (27) 49.3362 49.2238 (10)

SY234 80 78 45.888 – 45.9526 (83) 45.6115 (39) 45.6115 45.4260 (10)

SY1234 110 105 61.906 – 60.2613 (48) 60.0564 (25) 60.0564 60.0036 (10)

It is to note that the beam-search based algorithms (BSBIS, SEP-MSBS, and
IA) were run by using a beam width limit ω̄ = 100 and a computation time limit
of thirty hours (as in [19]). For a fair comparison, MHD was also run (on the
same computer) by using a time limit of thirty hours.

From the results of Table 2, we can see clearly that the new algorithm (IA)
has improved twelve results out of eighteen, i.e, 67% of the best known results
in the literature. Algorithm SEP-MSBS remains better on four instances (SY12,
SY13, SY23, and SY123) and algorithm B16 is better on instances SY5 and SY6.

The computation time is not indicated in Table 2 for algorithm IA because the
limit of thirty hours was reached for all the instances except for the smallest one
(SY2, n = m = 20) for which the algorithm has attained the beam width limit
(ω̄ = 100) and terminated after 13 hours. For the SEP-MSBS algorithm [19],
the time limit was reached for thirteen instances out of eighteen (except for in-
stances SY1, SY2, SY3, SY4 and SY23), i.e., when n ≤ 45. The reason for which
algorithm IA reached the time limit is that the look-ahead strategy consumes a
lot of time.

What will be the behavior of the proposed algorithm (IA) when fixing a rela-
tively short time limit? Another investigation, in which the time limit was fixed
at thirty minutes, was conducted. Table 3 displays the comparison between the
beam search-based algorithms (BSBIS, SEP-MSBS, and IA) when using this new
time limit. The first column (Inst.) contains the name of the instance. Column 2
contains the best value obtained by the BSBIS algorithm (based on a standard
beam search) as well as the corresponding beam width. Column 3 (t∗) indicates
the cumulative computation time (in seconds) in order to obtain the best value
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Table 3. Solution quality of algorithm IA when fixing the time limit at 30 minutes

BSBIS SEP-MSBS IA %imp. %imp.

Inst. L t∗ L t∗ L t∗ BSBIS SEP-MSBS

SY1 17.2315 166 17.2145 1463 17.2029 1790 0.17% 0.07%

SY2 14.6277 222 14.5287 155 14.4548 216 1.18% 0.51%

SY3 14.5310 308 14.4616 1253 14.4106 750 0.83% 0.35%

SY4 23.6719 211 23.5335 1662 23.3538 1007 1.34% 0.76%

SY5 36.4042 445 36.3362 1324 36.1707 1432 0.64% 0.46%

SY6 36.9387 1637 37.2555 669 36.9232 1135 0.04% 0.89%

SY12 29.7011 875 30.0447 650 29.9744 1800 -0.92% 0.23%

SY13 30.7415 165 30.7843 1800 30.6149 1710 0.41% 0.55%

SY14 38.3573 885 38.2962 851 37.9690 1501 1.01% 0.85%

SY23 27.9146 1116 28.0388 885 27.8493 1768 0.23% 0.68%

SY24 34.5476 266 34.6732 766 34.3544 675 0.56% 0.92%

SY34 34.9354 720 34.9614 1304 34.7531 914 0.52% 0.60%

SY56 65.5565 1022 65.7608 1800 65.3079 1800 0.38% 0.69%

SY123 43.4907 1745 43.5815 1412 43.4793 1511 0.03% 0.23%

SY124 49.3281 456 49.6348 1720 49.1915 1661 0.28% 0.89%

SY134 49.8705 1536 49.9136 1397 49.8184 1621 0.10% 0.19%

SY234 45.9913 775 46.1901 880 45.9209 1321 0.15% 0.58%

SY1234 60.9055 565 60.8783 1800 60.5660 1369 0.56% 0.51%

L in Column 2. The results obtained by the two other algorithms (SEP-MSBS
and IA) are indicated in Columns 4–7. Column 8 gives the percentage of im-
provement obtained by the new algorithm IA on BSBIS, the improvement is
computed as LBSBIS−LIA

LBSBIS
× 100%. In the same way, the last column contains the

percentage of improvement obtained by algorithm IA on algorithm SEP-MSBS.
From Table 3, we can see clearly that when using a relatively short time limit

(which is more practical), the proposed algorithm (IA) is practically always the
best one (in 17 cases out of 18), except for the instance SY12 where BSBIS
remains better. The good results obtained by algorithm IA can be explained by
the fact that the look-ahead strategy computes quickly feasible solutions, i.e.,
from level � = 2 in the search tree (see Fig. 4) when BSBIS and SEP-MSBS
obtain feasible solutions at level � = n only. So, even if algorithm IA is stopped
after a short computation time, it will have calculated a lot of feasible solutions,
increasing the probability to obtain good ones.

Fig. 6 shows the evolution of the best solution obtained by algorithms BS-
BIS, SEP-MSBS, and IA on instance SY124 (85 circles) when the computation
time is limited to thirty minutes (1800 seconds). Algorithm SEP-MSBS is taken
as a reference and the x−Axis indicates the cumulative computation time for
this algorithm for each value of ω (the beam width). For example, SEP-MSBS
needs 108 seconds for a complete run with ω = 1 and 1699 seconds for the five
first values of ω. Then after each run of SEP-MSBS with a given value of ω, the
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Fig. 6. Evolution of the solution on instance SY124 in the interval of 30 minutes

best length achieved is compared to that obtained by the two other algorithms
(BSBIS and IA) for the same cumulative computation time. The results indicate
that algorithm BSBIS is better than SEP-MSBS when ω > 2 but within thirty
minutes (SEP-MSBS is better on this instance when using a large computation
time as indicated in Table 2). Algorithm IA is better than the two others (BSBIS
and SEP-MSBS) until t = 670 seconds. After that BSBIS achieved a better
solution than IA. But IA outperforms BSBIS when t > 1300 seconds.

Fig. 7 displays the solution obtained by the proposed algorithm (IA) on the
smallest instance (SY2) that contains 20 circles. The new best length is L =
14.4548, the previous best known value in the literature was L = 14.5287. Fig. 8
shows the new solution obtained by algorithm IA on a medium-sized instance
(SY14) that contains 65 circles with L = 37.6187. Finally, Fig. 9 displays the
solution obtained by algorithm IA on the largest instance (SY56) that contains
200 circles. The new best length is L = 64.6904.

 

Fig. 7. Solution obtained by the proposed algorithm IA on the smallest instance SY2
(n = m = 20, L = 14.4548)
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Fig. 8. Solution obtained by algorithm IA on a medium-sized instance SY14 (n = m =
65, L = 37.6187)

 

Fig. 9. Solution obtained by algorithm IA on the largest instance SY56 (n = 200, m =
193, L = 64.6904)

7 Conclusion

In this paper an improved algorithm, denoted by IA, was proposed in order
to solve the strip packing problem. IA is a beam-search based algorithm that
includes a look-ahead strategy in order to improve the selection mechanism at
each level of the tree. In addition, a restarting strategy was also used.

The computational investigation, conducted on a set of well-known instances
in the literature, showed the effectiveness of the proposed algorithm since it has
succeeded to improve 67% of the best known solutions in the literature. In addi-
tion, another experimentation indicated that the look-ahead obtains good solu-
tions more quickly, i.e., faster than the existing beam-search based algorithms.
More precisely, algorithm SEP-MSBS, that does not implement the look-ahead
strategy, works well when the computation time is large but its performance
decreases when using a relatively short computation time (thirty minutes for
example) where algorithm BSBIS is better than SEP-MSBS on more than half
of the instances used. The proposed algorithm (IA), thanks to the look-ahead
and the optimization of the parameters of this strategy as well as those of the
restarting one, achieve good results even for short computation time.

As a future work, it would be interesting to use a parallel algorithm in order
to reduce the computation time.
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Abstract. The problem of optimally routing the wiring in large-scale
modular skins for robots is gaining much attention in the literature.
Theoretically, the problem is NP-hard. On the basis of previous work [3],
[37], we solve the skin wiring problem using an Ant Colony Optimization
approach. In this Chapter, we address the problem of designing a good
pheromone structure: we propose five alternatives, which are validated
using both real and artificially generated problem instances.

Keywords: ant colony optimization, robotics, pheromone structures,
skin wiring.

1 Introduction

In order to provide humanoid robots with tactile sensing capabilities, the de-
velopment of robot skins has been an active field of research in the past few
years [15]. A robot skin is a sensing device composed of a huge number of net-
worked tactile sensors. Robot skins are expected to enable new means of physical
human-robot interaction [5].

Different transduction principles are usually exploited, namely pressure, prox-
imity or temperature [15]. However, to design a robot skin is a hard engineering
task, since it requires to deal with such conflicting requirements as resolution
[42], reaction dynamics and bandwidth [6], weight, energy consumption, optimal
placement and calibration [11], as well as reliability and real-time SW perfor-
mance [10], [47].

The reference robot skin [12], [41] exploits capacitance-based transducers. In
the current HW design, up to 12 tactile elements (i.e., taxels) are hosted by
a triangular module, which is made by flexible Printed Circuit Board (PCB)
and hosts also the read-out electronics, as shown in Figure 1a. Each triangu-
lar module can be interconnected to up to 3 other triangular modules to cover
large robot body parts, thereby forming a skin patch (Figure 1b). A patch can
be composed of up to C = 16 interconnected triangular modules. Each patch

S. Fidanova (Ed.): Recent Advances in Computational Optimization, SCI 470, pp. 93–114.
DOI: 10.1007/978-3-319-00410-5_6 c© Springer International Publishing Switzerland 2013


