# Real submanifolds of codimension 2 of a complex space form Masafumi Okumura 

Professor Emeritus, Saitama University, Japan

Let $M$ be a real submanifold of a complex manifold $\bar{M}$ and $J$ be the natural almost complex structure of $\bar{M}$. For $x \in M$, we call the subspace $H_{x}(M)=J T_{x}(M) \cap T_{x}(M)$ of the tangent space $T_{x}(M)$ the holomorphic tangent space of $M$. If the holomorphic tangent space has constant dimension with respect to $x \in M$, the submanifold is called a CR submanifold and the constant complex dimension is called the CR dimension of $M$.
It is well known that an $n$-dimensional real hypersurface of a complex manifold is a CR submanifold of CR dimension $\frac{n-1}{2}$.
We consider now real submanifolds of codimension 2 of a complex manifold. Then contrary to real hypersurfaces, the submanifolds are something complicated. They are not only CR submanifolds of CR dimension $\frac{n-2}{2}$, but also some other cases. For example a complex hypersurface is a real submanifold of codimension 2. Moreover there exists a submanifold which is not CR submanifold. However, to investigate even dimensional real submanifolds of complex manifold, codimension 2 case is fundamental.
We investigate real submanifolds of codimension 2 of a complex manifold under the condition that

$$
\begin{equation*}
h(F X, Y)+h(X, F Y)=0 \tag{*}
\end{equation*}
$$

and obtained the following results.

Theorem 1. If a complex hypersurface $M$ of a Kähler maniold $\bar{M}$ satisfies the condition (*), $M$ is a totally geodesic submanifold.

Theorem 2. Let $\bar{M}$ be a non Euclidean complex space form. If a real submanifold $M$ of codimension 2 satisfies the condition $\left(^{*}\right)$, then one of the following holds.
(1) $M$ is a totally geodesic complex hypersurface.
(2) $M$ is a CR submanifold of CR dimension $\frac{n-2}{2}$ with $\lambda=0$.

Theorem 3. Let $M$ be a real submanifold of codimension 2 of coplex Euclidean space $\mathbf{C}^{\frac{n+2}{2}}$ which satisfies the condition $(*)$. Then $M$ is one of the following:
(1) $M$ is an n-dimensional Euclidean space $\mathbf{E}^{n}$,
(2) $M$ is an n-dimensional sphere $\mathbf{S}^{n}$,
(3) $M$ is a product of an even dimensinal sphere with Euclidean sspace $\mathbf{S}^{r} \times \mathbf{E}^{n-r}$
(4) $M$ is a CR submanifold of CR dimension $\frac{n-2}{2}$ with $\lambda=0$.

Where $\lambda$ is a function defined on the submanifold $M$.

