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CHAPTER 1

INTRODUCTION

1.1 Univariate polynomial division

It is assumed that the reader already knows how to divide two univariate
polynomials using polynomial long division. In this section we consider
polynomials in K[x], that is, the ring of polynomials in one variable with
coefficients in K (K is a field) and we will consider Euclidean Algorithm. We
will present some of the standard material concerning K[x] but will present
this material using notation that will be more immediately generalizable to
the study of polynomials in many variables.
Suppose 0 6= f ∈ K[x], if f(x) = anx

n + an−1x
n−1 + · · · + a1x + a0, with

a0, · · · , an ∈ k and an 6= 0, so that f has degree n, denoted deg(f) =
n. The leading term of f denoted LT (f) = anx

n, is the term of f with
highest degree, and the leading coefficient of f , denoted LC(f) = an, is the
coefficient in the leading term of f . Note that if we have two polynomials f
and g, then deg(f) ≤ deg(g) if and only if LT (f) divides LT (g).
We call that a subset I ⊆ K[x] is an ideal if the following holds :

• 0 ∈ I.

• If f1, f2 ∈ I, then f1 + f2 ∈ I.

• If g ∈ K[x] and f1 ∈ I, then gf1 ∈ I.
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The main tool in the Euclidean Algorithm is the division algorithm (also
known as long division of polynomials).

Example 1 . Let f = 2x4−3x3 +6x2 +5x, and g = 3x3 +x2 +6 be in Q[x]

we divide f by g to get quotient 2
3x −

11
9 and the remainder 65

9 x
2 + x + 22

3

as follows:

2
3x−

11
9

3x3 + x2 + 6) 2x4 − 3x3 + 6x2 + 5x

− 2x4 − 2
3x

3 − 4x

− 11
3 x

3 + 6x2 + x
11
3 x

3 + 11
9 x

2 + 22
3

65
9 x

2 + x+ 22
3

So,
f

g
=

2

3
x− 11

9
+

65
9 x

2 + x+ 22
3

3x3 + x2 + 6

or, equivalently,

f =

(
2

3
x− 11

9

)
g +

(
65

9
x2 + x+

22

3

)
We first multiplied g by 2

3x and subtracted the resulting product from f . After

this first cancellation we get the first remainder h = f− 2
3xg = −11

3 x3+6x2+

x.

In general if we have two polynomials f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0,
and g(x) = bmx

m+bm−1x
m−1+· · ·+b1x+b0, with n = deg(f) ≥ m = deg(g),

then the first step in the division of f by g is to subtract from f the product
LT (f)
LT (g)g = an

bm
xn−mg, and we get h = f − LT (f)

LT (g)g as the first remainder.

Definition 1 . Let f, g, h ∈ K[x] with g 6= 0. We say that f reduces to h

modulo g in one step if h = f − LT (f)
LT (g)g, and denoted f

g→ h

Going back to the previous example, we had f = 2x4 − 3x3 + 6x2 + 5x,
g = 3x3 + x2 + 6 and h = −11

3 x3 + 6x2 + x, where h was the first remainder

in the division process. We repeat the process on h. By subtracting LT (h)
LT (g)g =
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−11
3 x3 − 11

9 x
2 − 22

3 from h we get the second remainder r = 65
9 x

2 + x + 22
3 ,

which is the final in this example.
We can use the reduction notation f

g→ h
g→ r or f

g→+ r for repetition of
the reduction steps. In the reduction, the polynomial h has degree strictly
less than the degree of f . When we continue this process the degree keeps
going down until the degree is less than the degree of g. So we can describe
the division algorithm.

Theorem 1 .(Division Algorithm) Let g be a nonzero polynomial in K[x],

then for any f ∈ K[x], there exist q and r in K[x] such that f = qg + r,

with r = o or deg(r) < deg(g). The polynomials q and r are unique.

The proof can be found in the most of algebra text books. (See[7],[24])

Now let I = 〈f, g〉 be the ideal generated by f, g, and suppose that f
g→ h.

Then h = f − LT (f)
LT (g)g, it is easy to see that I = 〈h, g〉, so we can replace f by

h in the generating set of I. By using this idea we can prove the following
result.

Theorem 2 . Let I ⊂ K[x] be an ideal. Then there exists h ∈ K[x] with

I = 〈h〉.

Proof. Let h be a nonzero element of I, of minimal degree. For any f ∈ I,
we have by using Division Algorithm f = qh + r with q, r ∈ K[x] and
deg(r) < deg(h). Since r = f − qh ∈ I we get that r = 0 as h is of minimal
degree in I, It follows that f = qh. �
In general, an ideal generated by one element is called a principal ideal. So
we can say that K[x] is a principal ideal domain, or PID. An example of
PID is the ring of integers Z. However, the ring of bivariate polynomials
K[x, y] is not a PID, as we can see from the example.
Take I = 〈x, y〉. If I = 〈f〉, then f \ x, f \ y, deg(f) = 1, f(x, y) = ax+ by,
which is a contradiction.
From the last theorem we know that the generator of an ideal in K[x] is
the nonzero polynomial of minimum degree contained in the ideal but this
description is not useful in practice. To require that, we need to check the
degree of all polynomials (there are infinitly many) in the ideal. We will first
discuss ideals I = 〈f, g〉 ⊂ K[x], generated by two polynomils (f, g 6= 0).
There is some h ∈ K[x] such that I = 〈h〉. How can we find such an h ?.
The above question can be answered using the greatest common divisor.

Definition 2 . Let f1, f2 ∈ K[x]. Then a polynomial r ∈ K[x] is called a

greatest common divisor of f1 and f2 if the following holds:
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1. r divides both f1 and f2.

2. If g ∈ K[x] also divides f1 and f2, then g divides r.

We will denote the greatest common divisor by r = GCD(f1, f2).

Theorem 3 . If f1, f2, r ∈ K[x] and r = GCD(f1, f2), then the following

holds:

1. r is unique up to a constant multiple.

2. r generates the ideal 〈f1, f2〉.

3. There is a way to find r, called the Euclidean Algorithm.

We will explain the Euclidean Algorithm in few steps and then give an
example.
Euclidean Algorithm: Suppose f and g are polynomials in K[x].

• When we divide f by g, we will get f = q1g + r1, with q1, r1 ∈ K[x],
0 < deg(r1) < deg(g).

• We then look at g and divide by the remainder r1. This will give us a
new polynomial and a new remainder.

• Now look at the old remainder and divide it by the new remainder.
Continue in this way until the final remainder is zero:

f = q1g + r1, 0 < deg(r1) < deg(g),

g = q2r1 + r2, 0 < deg(r2) < deg(r1),

r1 = q3r2 + r3, 0 < deg(r3) < deg(r2),

...

rn−2 = qnrn−1 + rn, 0 < deg(rn) < deg(rn−1),

rn−1 = qn+1rn + 0

• The last nonzero remainder rn is the GCD of f and g. Further, by
working back up this list we can find p(x) , q(x) ∈ K[x] such that

GCD(f(x), g(x)) = p(x)f(x) + q(x)g(x).

4



For the proof (see [7], [24]).

Example 2 .Let K = Q, f(x) = 5x3 + 2x2 + 3x − 10, and g(x) = x3 +

2x2 − 5x+ 2.

5x3 + 2x2 + 3x− 10 = 5(x3 + 2x2 − 5x+ 2) + (−8x2 + 28x− 20)

x3 + 2x2 − 5x+ 2 = (
−1

8
x− 11

16
)(−8x2 + 28x− 20) + (

47

4
x− 47

4
)

−8x2 + 28x− 20 =
4

47
(−8x+ 20)(

47

4
x− 47

4
) + 0

We kept applying the division algorithm until the remainder was zero. Then
GCD(f, g) = 47

4 (x−1) tells us that the simpler polynomial x−1 also divides
both f(x) and g(x),

I = 〈f(x), g(x)〉 = 〈x− 1〉 .

The algorithm for computing GCD’s depends on the Division Algorithm and
the following fact.

Lemma 1 . If f, g ∈ K[x], with one of f, g not zero, then GCD(f, g) =

GCD(f − qg, g) for all q ∈ K[x].

(see [24] p.13 )
In the case of ideals generated by more than two polynomials, I = 〈f1, · · · , fs〉
with all of the f ′is not zero, we get the following theorem.

Theorem 4 . Let f1, · · · , ft ∈ K[x], where t ≥ 3 then:

1. GCD(f1, · · · , ft) exists and is unique up to a nonzero constant.

2. 〈GCD(f1, · · · , ft)〉 = 〈f1, · · · , ft〉.

3. For t ≥ 3, GCD(f1, · · · , ft) = GCD(f1, GCD(f2, · · · , ft)).

4. There is an algorithm to calculate the GCD.

For example let f1, f2, f3 ∈ K[x]. To find g = GCD(f1, f2, f3), we first find
r = GCD(f2, f3). Then g = GCD(f1, f2, f3) = GCD(f1, r).
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Definition 3 . The Least Common Multiple of polynomials f and g, de-

noted by LCM(f, g), is the unique polynomial q such that both f and g divide

q and that q is the smallest such polynomial in the sense that q divides any

polynomial which both f and g divide.
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CHAPTER 2

MULTIVARIATE POLYNOMIALS

AND TERM ORDERS

2.1 Multivariate polynomials

The most important algorithm in the polynomial ring is the division al-
gorithm, which is responsible for many nice properties of rings of integers
Z and polynomials K[x] over a field K as we have seen in the introduc-
tion. Classical division algorithm for integers goes back to ancient times,
and its main properties are described in Euclid’s “Elements”, including the
important Euclidean algorithm for determining the greatest common di-
visor of two numbers. The corresponding division algorithm for polyno-
mials is possible due to the existence of a natural ordering of monomials
1 < x < x2 < . . . < xn < xn+1 < . . . which corresponds to natural order-
ing of their powers i.e. of integers: 0 < 1 < 2 < . . . < n < n + 1 < . . ..
All math students are (or at least, should be) familiar with this division
and its properties, including the Euclidean algorithm for polynomials. How-
ever, in the multivariate polynomial ring there is no such natural linear
ordering. Therefore, there is no natural division algorithm in the ring of
polynomials with many variables K[x1, . . . , xn]. There are various conven-
tions, leading to a number of different possible “orderings” of monomials
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and division algorithms. Certainly it is not enough to compare the (total)
degree of multivariate monomials, since this would leave us unclear as to
whether x3y2z < x3 yz2 or x3y2z > x3 yz2.
It is clear that ordering of monomials is equivalent to ordering of their
power exponents: there is a correspondence between a monomial xα =
xα1
1 xα2

2 . . . xαn
n and its multiindex or exponent α = (α1, . . . αn) ∈ Nn0 (the

set of nonnegative integers will be denoted by N0). Monomial orderings are
a particular concern in computation and the results of certain important
algorithms, such as the division algorithm, can vary depending on which
monomial ordering is chosen.

Definition 4 . Let α = (α1, . . . , αn) be a vector in Nn,and let x1, x2, . . . , xn

be any n variables.Then a monomial xα in x1, x2, . . . , xn is defined as the

product xα = xα1
1 xα2

2 . . . xαn
n . Moreover, the total degree of the monomial

xα is defined as |α| = α1 + . . . + αn. A term is an element of the form

cxα1
1 xα2

2 . . . xαn
n , where c is a coefficient in a field K.

Definition 5 . A multivariate polynomial f in x1, x2, . . . , xn with coeffi-

cients in a field K is a finite linear combination,

f(x1, x2, . . . , xn) =
∑
α

aαx
α

of monomials xα and coefficients aα ∈ K.

The multidegree of f is multideg(f) = max {α ∈ Nn0 : aα 6= 0} (the maxi-

mum is taken with respect to < as we will see later in this chapter).

Definition 6 . The set of all multivariate polynomials in x1, x2, . . . , xn

with coefficients in a field K is denoted by K [x1, . . . , xn], it will be called a

polynomial ring. It is easy to Check that K [x1, . . . , xn] forms a commutative

ring.

Another way to define K[x1, . . . , xn] is by induction:

K[x1, . . . , xn] := (K[x1, . . . , xn−1]) [xn]

Definition 7 . Let I ⊆ K[x1, . . . , xn], I 6= φ. I is an ideal in K[x1, . . . , xn]

if :
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1. f, g ∈ I implies that f + g ∈ I.

2. f ∈ I and h ∈ K[x1, . . . , xn] implies that hf ∈ I.

Definition 8 . Let F = {f1, . . . , fs} be a set of multivariate polynomials.

Then the ideal generated by F , denoted by I = 〈F 〉, is given by:{
s∑
i=1

gifi : gi ∈ K [x1, . . . , xn], i = 1, . . . , n

}
.

The polynomials f1, . . . , fs are called a basis for the ideal they generate.

Since F is finite, we say the ideal is finitely generated.

Definition 9 . A partial order on a set X is a relation ≤ on X such that:

(i) a ≤ a for every a ∈ X, for all a ∈ X (the relation is reflexive),

(ii) if a ≤ b and b ≤ c then a ≤ c, for all a, b, c ∈ X (the relation is

transitive),

(iii) if a ≤ b and b ≤ a, then a = b, for all a, b ∈ X (the relation is

antisymmetric).

A partial order is called a total (linear) order if, in addition,

(iv) for all a, b ∈ X, either a ≤ b or b ≤ a.

A partial order is called a well-ordering if moreover the following holds:

(v) Every nonempty subset S ⊂ X has a least element in this ordering.

A corresponding strict order with notation:

a < b⇔ a ≤ b ∧ a 6= b,

will be also used in the sequel. In fact every well ordered set is totally ordered

set, but only a finite set with a total order is well ordered, and this is not

true of infinite sets.
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2.2 Monomial orderings

In this section we discuss different ways to order the monomials of a polyno-
mial ring. This is needed in order to set up a division algorithm in the case of
several variables. A set of monomials in n variables can be considered as the
set of the formal expressions Tn = {xα1

1 xα2
2 . . . xαn

n |αi ∈ N0, i = 1, . . . , n} .
That is the so called multiplicative form of a monomial. So every power
product is a term (with coefficient 1), but a term is not necessarily a power
product. Notice that a term order gives a total order on Nn0 by the rule :

α < β ⇔ xα < xβ,

for α, β ∈ Nn0 . So we can consider term orders to be defined on Nn0 .
First, notice that a term order on Nn0 can be extended to a total order on
Nn that is compatible with its properties as an additive group. For any
α, β ∈ Zn, the rule for the extended order is :

α < β ⇔ xα+γ < xβ+γ ,

for some γ ∈ Nn0 such that α+ γ, β + γ ∈ Nn0 .
Let a total ordering < on Tn or (Nn0 ) be fixed, i.e. any two different mono-
mials are comparable and < is irreflexible, antisymmetric and transitive.

Definition 10 . A term ordering on K[x1, . . . , xn] is a total ordering < on

Tn such that:

1. 1 < N for every N ∈ Tn, M 6= 1.

2. For every N1, N2, N ∈ Tn with N1 < N2, then N1.N < N2.N .

Definition 11 . Let K be a field. A monomial ordering on K[x1, . . . , xn] is

any partial order relation < on Nn0 , or equivalently, any partial order relation

on the set of monomials xα = xα1
1 xα2

2 . . . xαn
n , α = (α1, . . . , αn) ∈ Nn0 such

that:

1. < is a total (linear) ordering on Nn0 ,

2. If α < β ∈ Nn0 and γ ∈ Nn0 then α+ γ < β + γ (the additive property),

3. < is a well-ordering on Nn0 .
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Note that every well-ordering is automatically a total order, so condition (3)
implies (1).

Lemma 2 . The element 0 = (0, . . . , 0) ∈ Nn0 is necessarily the smallest

element in Nn0 under any order.

Proof. If α < 0 then, since α ∈ Nn0 , the additive property implies that
α+ α < 0 + α or 2α < α. We repeat this argument to get that

0 > α > 2α > 3α > . . . .

Then the set {0, α, 2α, . . .} doesn’t have a smallest element and the ordering
is not a well-ordering. �
This is equivalent to condition (3).

Proposition 1 . Let the ordering < on Nn0 satisfy the following properties:

1. It is a total ordering.

2. It is additive in Nn0 i.e. i < j ⇒ i+ k < j + k.

3. 0 < i for all i ∈ Nn0 .

Then < is a well-ordering.

Proof. Conditions 2.) and 3.) clearly imply that i ∈ j + Nn0 ⇒ j � i
or equivalently, i < j ⇒ i /∈ j + Nn0 . Now, it is sufficient to prove that <
satisfies the descending chain condition (DCC for short).
Let now

S : . . . < i(k) =
(
i
(k)
1 , . . . , i(k)n

)
< . . . < i(1) =

(
i
(1)
1 , . . . , i(1)n

)
be a descending chain in Nn0 . It would suffice to show that the set S1 ={
i(k) ∈ S|i(k)1 < i

(1)
1

}
⊂ S is finite, since this can be applied to any coor-

dinate i1, . . . , in. Let i′1 = max
{
i
(k)
1 |i(k) ∈ S1

}
< i

(1)
1 be the biggest first

coordinate of elements in S1. Condition 1) and the property following from
2.) and 3.) imply that there can be only finitely many points in S1 with
the first coordinate i′1, and there is the smallest one (with respect to <)

i(m) ∈ S1. So, i
(m)
1 = i′1 < i

(1)
1 . By infinite descent reasoning, one obtains

that the set S1 must be finite. �
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Note that we have defined a monomial ordering as an ordering on n-tuples
α = (α1, . . . , αn) ∈ Nn0 . Since there is a one–to–one relationship between the
monomials in K [x1, . . . xn] and Nn0 so that monomial xα = xα1

1 xα2
2 . . . xαn

n

corresponds to n-tuple α (its exponent), the ordering < on Nn0 gives us an
ordering on monomials in K [x1, . . . , xn]. This is, if α < β then xα < xβ.
Obviously, the additive property changes to multiplicative property in this
case. The monomial ordering in one variable case can also be thought of
simply as divisibility. That is x is smaller than x2, since x divides x2. One
can easily see that divisibility is not a monomial ordering in K [x1, . . . , xn]
for n > 1, since divisibility can not help us to decide in general whether one
monomial is greater than another. In the terms of exponents, divisibility
corresponds to addition:

xα|xβ ⇔ ∃γ : β = α+ γ.

This implies, but is not equivalent to α < β. We must have some way of
ordering these variables.

2.3 Examples of monomial orderings

1. Lexicographic order
The lexicographic order (lex ) with x1 > . . . > xn on the monomials of
K [x1, . . . , xn] is defined as follows:
For α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Nn0 , we define xα <lex x

β if
the first coordinates αi and βi in α and β from the left, which are different,
satisfy αi < βi. So, we say

xα <lex x
β if α <lex β.

It is important to realize that there are many lex orders, corresponding to
how variables are ordered.
For example, if the variables are x and y, then we get one lex order with
x < y and another with y < x. In the general case of n variables, there are
n! different lex orders.

2. Graded lexicographic order
The graded lexicographic order (grlex ) with x1 > . . . > xn on the monomials
of K[x1, . . . , xn] is defined as follows:
For α and β ∈ Nn0 , xα <grlex xβ if |α| =

∑n
i=1 αi < |β| =

∑n
i=1 βi or

|α| = |β| and xα <lex x
β. The number |α| is called the degree of α.
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3. Graded reverse lexicographic order
The graded reverse lexicographic order (grevlex ) with x1 > . . . > xn on the
monomials of K[x1, . . . , xn] is defined as follows:
For α and β ∈ Nn0 , xα <grevlex xβ if |α| =

∑n
i=1 αi < |β| =

∑n
i=1 β1 or

|α| = |β| and the first coordinates αi and βi in α and β from the right,
which are differen, satisfy αi > βi

Definition 12 . Let f =
∑

α aαx
α be a nonzero polynomial in K[x1, . . . , xn]

and let < be a monomial order, then:

1. The leading coefficient of f is LC(f) = amultideg(f) ∈ K,

2. The leading monomial of f is LM(f) = xmultideg(f) (with coefficient 1),

3. The leading term of f is LT (f) = LC(f) · LM(f),

4. The support of a polynomial f is the set supp(f) = {α ∈ Nn0 : aα 6= 0} ⊂
Nn0 .

We will consider the polynomial f = 4x2y3z2 + 3y5z − 5x3 + 3xy2z3 in
K[x, y, z], to see how the different monomial orderings affect the ordering of
polynomials then.

(a) We order the terms of f with respect to the (lex ) order, as follows:

f = −5x3 + 4x2y3z2 + 3xy2z3 + 3y5z

multideg(f) = (3, 0, 0), LM(f) = x3, LC(f) = −5, LT (f) = −5x3.

(b) We order the terms of f with respect to the (grlex ) order, as follows:

f = 4x2y3z2 + 3xy2z3 + 3y5z − 5x3

multideg(f) = (2, 3, 2), LM(f) = x2y3z2, LC(f) = 4, LT (f) = 4x2y3z2.

(c) We order the terms of f with respect to the (grevlex ) order, as follows:

f = 4x2y3z2 + 3y5z + 3xy2z3 − 5x3

multideg(f) = (2, 3, 2), LM(f) = x2y3z2, LC(f) = 4, LT (f) = 4x2y3z2.
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4. Matrix ordering
Let α, β ∈ Nn0 and let M ∈ GL(n,R) be an invertible matrix over real
numbers. We define a relation <M on Nn0 by the condition:

α <M β ⇐⇒M

 α1
...
αn

 <lex M

 β1
...
βn


This is a total ordering since M is invertible. It is monomial if for all α ∈ Nn0
the first nonzero term of M (α1, . . . , αn)T is positive (because the monomial
1 is the minimal element on Tn the set of monomials in K [x1, . . . , xn]).
Here are some examples of matrix orderings.
The matrix associated with lexicographic ordering (lex) in three variables is: 1 0 0

0 1 0
0 0 1

,

and deglex is given by

 1 1 1
1 0 0
0 1 0

,

and degrevlex is given by

 1 1 1
0 0 −1
0 −1 0

.

The matrix associated with the given monomial ordering is clearly not
uniquely determined.(see [1],[8][19])

Lemma 3 ([7] p. 60). Let f, g ∈ K[x1, . . . , xn] be nonzero polynomials.

Then:

1. multideg(fg) = multideg(f) +multideg(g).

2. If f + g 6= 0, then multideg(f + g) ≤ max(multideg(f),multideg(g)).

If, in addition, multideg(f) 6= multideg(g) then equality occurs.

Proof. Let f =
∑

α aαx
α and g =

∑
β bβx

β for α, β ∈ Nn0 .

1. first we have to proof that multideg(fg) = multideg(f)+multideg(g).

fg =
∑
α

aαx
α
∑
β

bβx
β
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=
∑
α

∑
β

aαbβx
αxβ

=
∑
α

∑
β

aαbβx
α+β

Then

multideg(fg) = max(α+ β ∈ Nn0 : aαbβ 6= 0)

= max(α ∈ Nn0 : aα 6= 0) +max(β ∈ Nn0 : bβ 6= 0)

= multideg(f) +multideg(g).

2. Suppose that f + g 6= 0 and that multideg(f) = multideg(g). So
LM(f) = LM(g). We have to proof that:

multideg(f + g) ≤ max(multideg(f),multideg(g)).

If LC(f)+LC(g) = 0, then LT (f) and LT (g) cancel and multideg(f+
g) < max(multideg(f),multideg(g)). If LC(f) + LC(g) 6= 0, then
LM(f + g) = LM(f) = LM(g).

Suppose that f+g 6= 0 andmultideg(f) 6= multideg(g). If, multideg(f) >
multideg(g). Then LM(f) > LM(g) and so LM(f + g) = LM(f).
Thereforemultideg(f+g) = multideg(f) = max(multideg(f),multideg(g)).
�

2.4 Classification of monomial orders

The orderings on a polynomial ring are related with the computation of
Gröbner bases and the efficiency of Buchberger Algorithm. These orderings
have been classified by L. Robbiano in [18] by using ordered systems of
vectors. He showed that term orders are in one-to-one correspondence with
a certain subset of real matrices. And this classification was originally done
by C.Riquier [6] G.Trevisan [13] and E.R.Kolehin [12]. Unfortunately his
classification gives little information as to the intuitive shape of these sets.
He classified total orders on Qn that are compatible with the vector space
structure of Qn to characterize term orders. An ordering on Zn can be
extended to an ordering on Qn that is compatible with its properties as an
abelian group. For any α, β ∈ Qn, the rule for the extension is:

α < β ⇔
{
rα < rβ with respect to the order on Zn

for some r ∈ Z+ such that rα, rβ ∈ Zn.
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Furthermore, a total ordering on Qn compatible with its properties as an
abelian group can be restricted to a term order if α > (0, . . . , 0) for all
α ∈ Nn0 − (0, . . . , 0).
For example, lexicographic order will be used both as a term order on the
terms of K[x1, . . . , xn] and as an order on Rn with α, β ∈ Rn.
Sturmfels discusses another method for classifying term orders in [4] by
using weight vectors and arbitrary term orders, to describe term orders in
K[x1, . . . , xn].

Definition 13 . let ω = (ω1, ω2, . . . , ωn) be a nonzero vector with real en-

tries (called a weight vector), and arbitrary term order < on K[x1, . . . , xn].

We define the term order <ω for ω ≥ 0 by:

xα <ω x
β if α.ω < β.ω or α.ω = β.ω and xα < xβ.

For example, take ω = (1, 2) and consider x2 + y2. Then (2, 0).ω = 2 while
(0, 2).ω = 4, which would give that x2 < y2. And we can see that orders
<ω, for ω ≥ 0 correspond to previously mentioned examples of term orders.

Proposition 2 . For an arbitrary term order < and ω ≥ 0, then <ω satis-

fies the conditions of a term order.

Proof. We want to show that each of the three conditions are true.
1. Take two power vectors α 6= β. Then for ω ≥ 0 either α.ω > β.ω, α.ω <
β.ω or α.ω = β.ω. In the first two cases, we have that α >ω β and α <ω β
respectively. In the third case, the term order < implies that either α > β
or α < β.
2. Since ω, α ∈ Nn0 , then we have α.ω ≥ 0. If α.ω > 0, then α >ω 0. If
α.ω = 0 then α > 0 because < is a term order, therefore α >ω 0.
3. Let α, β two power vectors and suppose that α >ω β. Then either
α.ω > β.ω or α.ω = β.ω and α > β. Suppose that α.ω > β.ω, then
(γ + α).ω = (γ.ω) + (α.ω) > (γ.ω) + (β.ω) = (γ + β).ω for all γ ∈ Nn0 and
thus γ + α >ω γ + β.
Now suppose α.ω = β.ω, then we have that α > β in the term order <.
Since < is a term order, γ + α > γ + β and thus γ + α >ω γ + β �

Definition 14 . Let ω ∈ Rn. For any polynomial f =
∑

α∈Nn aαX
α ∈

K[x1, . . . , xn] we define the initial form

inω(f) =
∑
α′∈Nn

aα′X
α′ ,
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where the vectors α′ maximize ω.α′ in {α|aα 6= 0} that is ω.α′ ≥ ω.α for any

α with aα 6= 0.

Definition 15 . For an ideal I ⊂ K[x1, . . . , xn] we define the initial form

of the ideal I:

inω(I) = 〈inω(f)|f ∈ I〉

Example 3 . Let I be an ideal generated by

f(x, y) = x6y2 + x5y3 − x3 + 2x2y4 + x2 − xy + y2 − 2

We can compute the initial form for ω = (2, 1) and ω = (1, 1), as follows:

The vectors α with aα 6= 0 are α1 = (6, 2), α2 = (5, 3), α3 = (3, 0), α4 =

(2, 4), α5 = (2, 0), α6 = (1, 1), α7 = (0, 2), α8 = (0, 0).

For ω = (2, 1) then ω.αi = {14, 13, 6, 8, 4, 3, 2, 0}, i = 1, . . . , 8 and the max-

imum of this list is ω.α1 = 14 . So inω(f) = x6y2, and inω(I) =
〈
x6y2

〉
.

This is a monomial ideal.

For ω = (1, 1) then ω.αi = {8, 8, 3, 6, 2, 2, 2, 0}, i = 1, . . . , 8 and the maxi-

mum of this list is 8 given by ω.α1 and ω.α2. So inω(f) = x6y2 + x5y3, and

inω(I) =
〈
x6y2 + x5y3

〉
. Which is not a monomial ideal.

Also, Sturmfels mentions to important results for term ordering with respect
to weight vectors.

Corollary 1 . If ω ≥ 0 and inω(I) is a monomial ideal, then inω(I) =

in<ω(I), (in<ω(I) = in< 〈inω(I)〉).

And the following proposition shows, for every term order <, we can find a
vector ω which represents this term order and it is easier to use it instead
of < in computations.

Proposition 3 . For any term order < and any ideal I ⊂ K[x1, . . . , xn],

there exists a non-negative integer vector ω ∈ Rn such that inω(I) = in<(I).

For ω ∈ Rn and a term order < such that inω(I) = in<(I), we call ω a
term order for I which represents the term order <. For proofs and more
details(see [4]).
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There is a geometrical point of view, which deals with convex hulls and
supporting planes. In the case of two variables, the weight vectors can be
expressed as line slopes. So the weight vector ω = (p, q) is converted to q

p ,
where p 6= 0 (and ∞ if p = 0). The slope m represents the weight vector
ωm = (1,m) and the corresponding family of parallel lines x+my = d. We
start with two important propositions about irrational slopes.

Proposition 4 . Any positive irrational number m determines a term or-

der.

Proof. Let ω = ωm = (1,m) with m irrational, and choose an arbitrary
term order <. Then we can compare any two exponent vectors e1 = (a1, b1),
and e2 = (a2, b2) using <m. If we define term order <m on K[x1, . . . , xn] for
nonzero weight vector by xα <m yβ if α.ωm < β.ωm or if α.ωm = β.ωm and
xα < yβ, then

e1 <m e2 ⇔ e1.ωm < e2.ωm or e1.ωm = e2.ωm and e1 < e2.

But m is irrational and a1+b1m 6= a2+b2m (since a1+b1m = a2+b2m would
imply m = a1−a2

b2−b1 ∈ Q), e1 <m e2 ⇔ a1 + b1m < a2 + b2m⇔ e1.ωm < e2.ωm.
The vector ωm determines a family of lines (x, y).ωm = d or x + my = d
with different d’s.
Since m is irrational, every such line can contain at most one point from
Z2. The relation e1 <m e2 means that points e1 and e2 lay on different lines
with respective parameters d1 < d2. �
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Figure 2.1:

One can immediately see that the resulting order <m for irrational m does
not depend on the choice of the original order < in Z2.
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Proposition 5 . Different numbers give different term orders.

Proof. Take two positive numbers m1 6= m2, then there exists a rational
p
q such that m1 <

p
q < m2. Take ω1 = (1,m1), ω2 = (1,m2) two weight

vectors. For the two points (p, 0), (0, q) ∈ Z2 one has (p, 0) >ω1 (0, q), but
(p, 0) <ω2 (0, q). Hence m1 and m2 represent different term orders. �
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Figure 2.2:

Proposition 6 . Any positive rational q defines exactly two different term

orders.

Proof. If we have q = s
r 6= 0 a rational number, where r, s ∈ Z2 then

the polynomial f = xs + yr represents a tie between the terms. So, here a
”tiebreaking” order is needed. In two variables, there is a simple choice. We
can choose lex with x < y or lex with y < x.
Geometrically, in this case we have two points (s, 0) and (0, r) on the same
line x+qy = s look at the Figure (1.3), and we have to compare them: either
(s, 0) < (0, r) or (0, r) < (s, 0). We will use q− to represent the term order
defined by q with the tiebreaker of lex with y < x and q+ to represent the
term order defined by q with the tiebreaker of lex with x < y. Obviously,
q+ and q− are different term orders. �
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There are two exceptions. The first term order is described by the slope
0 : m = 0, ω = (1, 0) (we need only to consider the case 0+). So that
weight 1 is given to the x component of the exponent vector, but no weight
is given to the y component. Geometrically, the lines of this family are
parallel to y-axis and contain infinitely many net points, and the order is
uniquely determined by the condition (0, 0) < (0, 1). This order is denoted
by 0+. It is actually lex with y < x. The second one is the term order
described by the slope ∞ (we need only to consider the case ∞−): m =∞,
ω = (1,∞) = (0, 1). Geometrically, the lines of this family are parallel
to x-axis and contain infinitely many net points, and the order is uniquely
determined by the condition (0, 0) < (1, 0), this order is denoted by ∞−. It
is actually lex with x < y.
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Figure 2.4:

We will give some examples for these term orders to calculate a Gröbner
basis for ideals in the chapter[4].
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Theorem 5 . The set of all term orders on N2
0 is

{0+,∞−} ∪ {q+, q− : q positive rational} ∪ {m : m positive irrational}.

Proof. We first remark that any term order < on N2
0 is determined by all

pairs (s, r) ∈ N2 such that (s, 0) < (0, r).
Indeed, take α, β ∈ N2

0. If (0, 0) 6= α − β ∈ N2
0, then α is bigger then β

with respect to any term order. So, it remains to compare α = (x1, y1), β =
(x2, y2) ∈ N2

0 such that α − β ∈ N × (−N), that is x1 > x2, y2 > y1.
Term orders are total and additive, therefore in this case we have α ≺ β ⇔
(x1 − x2, 0) < (0, y2 − y1).
For a given term order < define the non-empty subset Λ< of Q≥0 by

Λ< =
{s
r

: (s, r) ∈ N0 × N, (s, 0) < (0, r)
}
.

Then, take its least upper bound ` = sup(Λ<) ∈ R≥0 ∪ {∞}. According to

previous propositions, Λ< determines another order <′=

{
`+, if ` ∈ Λ<;
`−, if ` 6∈ Λ<.

If (s, r) ∈ N0 × N then (s, 0) <′ (0, r)⇔
{ s

r ≤ `, ` ∈ Λ<;
s
r < `, ` 6∈ Λ<.

We want to prove that this order is the same as the original one. According
to the initial remark, it is sufficient to show that for all (s, r) ∈ N2 one has
(s, 0) < (0, r)⇔ (s, 0) <′ (0, r).
First, note that (s, 0) < (0, r) ⇒ s

r ∈ Λ< ⇒ s
r ≤ ` ⇒ (s, 0) <′ (0, r).

Now, assume that (s, 0) <′ (0, r) and consider the above definitions.
If s

r = ` ∈ Λ<, then (s, 0) < (0, r).

If s
r < `, then there exists s′

r′ ∈ Λ< such that s
r <

s′

r′ ≤ ` and (s′, 0) < (0, r′).
Therefore r′s < rs′ and (r′s, 0) < (rs′, 0) < (0, rr′). The latter imply
(r′s, 0) < (0, rr′). Hence (s, 0) < (0, r), as required.
Symbols α,α′,β,β′,γ, k, k′ from the second picture correspond to
(0, r),(0, r′),(s, 0),(s′, 0),r′α = rα′, r′, r from the proof. �

This classification agrees with classification of Robbiano in [18] for the case
n = 2. If we denote the set of all term orders in Nn0 by Term(2) and introduce
an order topology in it as in [9], then there are specific links between the
Cantor set and the set Term(2) obtaind by using the topological fact that
any compact, perfect, totally disconnected metric space is homeomorphic to
the Cantor set (See[])
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Theorem 6 . Term(2) is homeomorphic to the Cantor set.

For the proof in [9]. This classification will lead to a natural approach to
some of results of T. Mora and L. Robbiano in the the bivariate case [22].
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CHAPTER 3

MULTIVARIATE REDUCTION

AND DIVISION

3.1 Multivariate reduction

The multivariable division algorithm consists of a sequence of reduction steps
as follows.

Definition 16 . Let f, g, h ∈ K[x1, . . . , xn] with g 6= 0. We say that f

reduces to h modulo g in one step, denoted

f →g h,

if and only if LM(g) divides a non-zero term axα that appears in f and

h = f − axα

LT (g)
g.

This mimics the steps in the univariate polynomial long division as we have
seen in our previous example(1). In the multivariate case, one can think of
h in Definition(16) as the remainder of an one step division of f by g.
In the multivariate case, it may also be the case that we have to divide by
more than one polynomial at a time. We extend the previous Definition to
include this possibility:
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Definition 17 . Let f ,h and f1, . . . , fs be polynomials in K[x1, . . . , xn] with

fi 6= 0 for i = 1, . . . , s. Let F = {f1, . . . , fs}. We say that f reduces to h

modulo F , denoted

f →+
F h,

if and only if there exist a sequence of indices i1, i2, . . . , it ∈ {1, . . . , s} and

a sequence of polynomials h1, . . . , ht−1 ∈ K[x1, . . . , xn] such that

f →fi1
h1 →fi2

h2 →fi3
. . .→fit−1

ht−1 →fit
h.

A polynomial h is called reduced with respect to a set of non-zero polyno-
mials F = {f1, . . . , fs} if h = 0 or no monomial that appears in h is divisible
by any one of the LM(fi), i = 1, . . . , s. Then we call h a remainder for f
with respect to F .

Example 4 . Let F = {f1, f2}, where f1 = 3xy2 + 2x + y2 and f2 =

2y2 − y − 1. Consider the polynomial f = x3y3 + 2y2. These polynomials

are ordered with respect to the lex order with y < x in Q[x, y].

First, we reduce f modulo f1 in one step:

We have LT (f1) = 3xy2, and axα = x3y3 is a power product in f such that

LT (f1) divides it. So, we get

h1 = f − axα

LT (f1)
f1

= x3y3 + 2y2 − x3y3

3xy2
(3xy2 + 2x+ y2)

= −2

3
x3y − 1

3
x2y3 + 2y2.

That is, f →f1 h1.

Second, we reduce h1 modulo f2 in one step:

We have LT (f2) = 2y2. Since LT (f2) divides both −1
3x

2y3 and 2y2, we have

two choices for axα. We let axα = −1
3x

2y3. Then, we get

h2 = h1 −
axα

LT (f2)
f2

= −2

3
x3y − 1

3
x2y3 + 2y2 −

−1
3x

2y3

2y2
(2y2 − y − 1)

= −2

3
x3y − 1

6
x2y2 − 1

6
x2y + 2y2.
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That is, h1 →f2 h2. If we take axα = 2y2, then we get

h2 = h1 −
axα

LT (f2)
f2

= −2

3
x3y − 1

3
x2y3 + 2y2 − 2y2

2y2
(2y2 − y − 1)

= −2

3
x3y − 1

3
x2y3 + y + 1.

It is also h1 →f2 h2.

3.2 Multivariable division algorithm

In the division algorithm for polynomials in one variable as stated in the
introduction, for the input of a divisor and a dividend we are guaranteed a
unique and well defined output of a quotient and remainder. However, in
the case of multivariate polynomials, the “quotients” and remainder depend
on the monomial ordering and on the order of the divisors in the division.
The division algorithm in the multivariable case allows us to divide f ∈
K [x1, . . . , xn] by f1, . . . , fs ∈ K [x1, . . . , xn], so that we can express f in
the form f = q1f1 + . . . + qsfs + r where q1, . . . , qs, r ∈ K[x1, . . . , xn]. The
strategy is to repeatedly cancel the leading term of f by subtracting off an
appropriate multiple of one of the fi. However, the result of the division
algorithm fails to be unique for multivariate polynomials because there may
be a choice of divisor at each step.
The division algorithm is described in what follows.

1. Start with q1= q2= . . . = qi = r = 0.

2. If f = 0, stop. Otherwise, for each i = 1, . . . , s check if LT (fi) divides

LT (f). If so, replace f by f − LT (f)
LT (fi)

, add LT (f)
LT (fi)

to qi and then

return to the beginning of 2). If LT (gi) doesn’t divide LT (f) for any
i, continue to 3).

3. Add LT (f) to r, replace f by f − LT (f), and then return to the
beginning of 2).

This algorithm always terminates, because we have built in the definition of a
monomial order that it is well-ordered, and the multidegree of f is reduced
in each iteration. Recall that an ideal I in a commutative ring R is an
additive subgroup in R which has the ideal property: a ∈ R, b ∈ I ⇒ ab ∈ I.
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The ideal I = 〈b1, . . . , bn〉 ⊂ R generated by b1, . . . , bn ∈ R is the set of all
elements of the form a1b1 + . . .+anbn, where a1, . . . , an ∈ R. Now, if the
remainder when f is divided by f1, . . . ., fs is zero, then clearly f is in the
ideal generated by fi. However, as examples show, the converse does not
hold.

Theorem 7 . (Division algorithm in K [x1, . . . , xn]). Fix a monomial or-

der < on Nn0 , and let G = {f1, . . . , fs} be an ordered s-tuple of polynomials

in K [x1, . . . , xn]. Then every f ∈ K [x1, . . . , xn] can be written as:

f = q1f1 + . . .+ qsfs + r,

where qi, r ∈ K [x1, . . . , xn], and either r = 0 or r is a linear combination,

with coefficients in K of monomials none of which is divisible by any of

LT (f1), . . . , LT (fs). We call r a remainder of f in division by G. Further-

more, if qifi 6= 0 then we have

multideg(f) ≥ multideg(qifi)

.

For the proof (see [7] p. 64-66)

Example 5 . We will divide f = x2y3 + 2xy + x + 1 by f1 = x2 + 1 and

f2 = y3 + 1 using lex order with y < x. Then according to our algorithm we

get the following:

(x2y3+2xy+x+1) : (x2 + 1) = y3 r

−(x2y3 + y3)

(2xy + x− y3 + 1) : (y3 + 1) = −1 →2xy+x

−(−y3 − 1)

2 →2xy+x+2

The graphical representation used above for the division process is standard.
After dividing f by LT (f1), we get the polynomial 2xy + x − y3 + 1 with
no terms that are divisible by the LT (f1). Furthermore, the first low terms,
2xy and x are not divisible by the LT (f2), so these go to the remainder
column r. We are left with −y3 + 1 and we divide this by the LT (f2). We
get q1 = y3. After dividing by the LT (f2), we get the 2, and so this term is
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sent to the remainder column r and we have a total remainder 2xy+ x+ 2.
Thus we get q2 = −1 and

f = q1f1 + q2f2 + r

x2y3 + 2xy + x+ 1 = y3(x2 + 1) + (−1)(y3 + 1) + (2xy + x+ 2).

Example 6 . Let us divide f = x3y2−2xy by f1 = x3y−2x and f2 = y2+3.

We will use lex order with y < x. we have to change the order of the divi-

sors.

Our first case will be F = {f1, f2}. Then, by the procedure described above

we obtain

(x3y2 − 2xy) : (x3y − 2x) = y r

−(x3y2 − 2xy) 0

And

x3y2 − 2xy = y(x3y − 2x) + 0(y2 + 3) + 0.

If, however, we take F = {f2, f1} in the second case, then we obtain

(x3y2 − 2xy) : (y2 + 3) = x3 r

−(x3y2 + 3x3)

(−3x3 − 2xy) 2xy + x

And

x3y2 − 2xy = x3(y2 + 3) + 0(x3y − 2x)− 3x3 − 2xy.

So we can see that the two cases in the example produce two different re-

mainders, 0 and −3x3 − 2xy, respectively, due to a switch in the order of

polynomials in F .

This shows that the remainder r is not uniquely characterized by the re-
quirement that none of its terms be divisible by LT (fi), . . . , LT (fs). And
the qi and r can change if we rearrange the fi (may also change if we change
the monomial ordering). If after division of f by F = {f1, . . . , fs} we obtain
a remainder r = 0, then

f = q1f1 + . . .+ qsfs,

27



so, that f ∈ 〈f1, . . . , fs〉. Thus r = 0 is a sufficient condition for ideal
membership, but is not a necessary condition for being in the ideal. we wil
see the division procedure in the ring of multivariate polynomials over a field
terminates even if the division term is not the leading term, but is freely
chosen.
Now, introduce the support of f with respect to g

Suppg (f) = {i ∈ Supp (f) |i = deg (g) + kforsomek ∈ Nn0}
= Supp (f) ∩ (deg (g) + Nn0 ) ⊂ Nn0

as the set of multiindices of all monomials in f divisible by LT (g). The
standard algorithm described above takes for the next division step the
maximal divisible term in f , which corresponds to the multiindex

maxSuppg (f) .

Clearly, r is the remainder in the division algorithm f = gh+r⇔ Suppg (r) =
∅. It is not obvious whether the algorithm would stop if, instead of always
choosing the maximal index in the set Suppg (f), one chooses an arbitrary
one. This is because after reducing f modulo g1 and then modulo g2, it
is possible that some terms divisible by LT (g1), which were previously
eliminated, reappear. Therefore, it is natural to ask whether any reduc-
tion process modulo a given m-tuple (g1, . . . , gm), with arbitrary choice of
division term in each step would terminate? For a set of m polynomials
G = {g1, . . . , gm} let us introduce SuppG (f) = Suppg (f) ∪ . . . ∪ Suppg (f).

Theorem 8 Let f ∈ K [x1, . . . , xn] and G = {g1, . . . , gm} a set of m poly-

nomials, gi ∈ K [x1, . . . , xn]. Then, any reduction process (with arbitrary

choice of the next reduction term in Suppgij (fj−1))

f →gi1
f1 →gi2

f2 → . . .

with gik ∈ G must terminate in finitely many steps. This means that

there exists k such that fk does not contain a term divisible by any of the

LT (g1) , . . . , LT (gm).

Proof. Let rj be the index used for reduction by gij+1 and let mj =
maxSuppgij+1

(fj) (j = 0, 1, 2, . . ., f0 := f).

Clearly, rj ∈ Suppgij+1
(fj) and rj ≤ mj . It is easy to see that

m0 ≥ m1 ≥ . . .
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According to DCC, from some point on mk1 = mk1+1 = . . ..

Let m
(1)
k1

= max[Suppgik1+1
(fk1)\{mk1}] < mk1 . Clearly, rk1 ≤ m

(1)
k1

< mk1 .

Repeat the process for the sequence m
(1)
k1
≥ m

(1)
k1+1 ≥ . . .. In this way we

obtain a sequence of indices

m
(1)
k1
≥ m(2)

k2
≥ . . . .

Again, according to DCC, this sequence must be stationary from some

point on m
(p)
kp

= m
(p+1)
kp+1

= . . . , which means that from that point on,

Suppgip (fp−1) = ∅ and the reduction process terminates. �
So, no matter how we choose the next term in the division algorithm (in the
set of all possible terms), the algorithm will stop in finitely many steps. The
polynomial fk obtained in this way is then the remainder of the particular
reduction process. As we have already noted, the remainder depends on the
order in which the reductions are performed.

3.3 Ordered sets and multivariate division

The fact that in the reduction process one can arbitrarily choose the term
for the next reduction in the set SuppG(f) was known to Buchberger (see
[3] p. 14). However, it was not widely used and even not mentioned in
the standard textbooks. Buchbergers argument in [3] involves extension of
a given monomial order to a partial order on the set of all polynomials.
This order seems somehow unnatural. It is not total because the coefficients
are also taken into account. However, we have already seen that it is not
necessary to speak about monomials and polynomials, but about underlying
monomial orders on the exponent set Nn0 = (Zn+) instead. When we took a
closer look, we discovered more natural, underlying combinatorial fact about
total orders, which actually belongs to set theory.

Lemma 4 . Let (X,≤) be totally ordered and A ⊂ X its nonempty finite

subset. Then the minimal element minA and the maximal element maxA of

A exist and are unique. Actually, the elements in A are ordered in a unique

way.

As we know ordered set (X,≤) is well-ordered if every nonempty subset has
a least element. A well-ordered set is totally ordered. We now come to the
settheoretic essence of the division algorithm in the multivariate polynomial
ring, Buchbergers polynomial order and Buchbergers proof.
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Let (X,≤) be a well-ordered set and F the family of all its (nonempty) finite
subsets. Consider the following binary relation on F :

A < B ⇔ max(A∆B) ∈ B

. Here, A∆B = (A \B) ∪ (B \A) is a common symmetric difference of the
two sets. It is easy to see that this definition is equivalent to the following :
A < B ⇔ there exists b ∈ B \ A such that the strict upper intervals A>b

and B>b
are either empty Here, A>b

= {x ∈ A|x > b} is the upper interval
of b in A. Clearly, such element must be unique.

Theorem 9 . With respect to this (strict) order <, the set F is well-ordered.

Proof.
(1) It is easy to see that this is an order on F. Reflexivity is obtained in the
usual way by reflexive completion of the given strict order A ≤ B ⇔ (A <
B) ∨ (A = B). Antisymmetry is obvious, since A < B and B < A leads to
a contradiction. Now, let A < B and B < C, and let b = max(A∆B) ∈ B
and c = max(B∆C) ∈ C. Then c /∈ B and therefore c 6= b. There are two
possibilities:
either b < c or b > c. In the first case, c /∈ A and max(A∆C) = c. In the
second case, b ∈ C and max(A∆C) = b. This proves transitivity. This is a
total order since the maximal element in A∆B 6= φ has to be either in A or
in B.
(2) Now, let us prove that this is a well-order i.e. it satisfies the (DCC)
condition. Let

A1 > A2 > · · · > An > · · ·

be a strictly descending chain in F. For n ∈ N, define two sequences in X,

an = max(An \An+1) ∈ An

and
pn = max {a1, · · · , an} .

The last sequence is actually an ascending chain

p1 ≤ p2 ≤ · · · ≤ pn ≤ · · ·

Now notice that if there is a strict jump in the sequence i.e. if pn > pn−1,
then pn = an ∈ Ai for all i ≤ n. But A1 is finite, so the number of

30



strict jumps is also finite, and the chain must be stationary. Let p(1) be its
stationary value :

pm = pm+1 = · · · = p(1),

which means that from that point on all subsets Am+i∩
{
x ∈ X|x ≥ p(1)

}
=

S ⊂ Am+i coincide for all i ≥ 1. The following easy fact will be used without
proof.

Lemma 5 . (”cut− off”). Let A < B, max(A∆B) = b ∈ B \ A and let

S ⊂ A ∩ B. Denote A(1) = A \ S and B(1) = B \ S. Then A(1) < B(1) and

max
(
A(1)∆B(1)

)
= b.

Let A
(1)
i = Am+i ∩

{
x ∈ X|x < p(1)

}
⊂ Am+i (we (”cut− off”) the set S

i.e. all elements in the original chain which are ≥ p(1)). If A
(1)
1 6= φ, then

A
(1)
i also form a strictly descending chain of finite sets

A
(1)
1 > A

(1)
2 > · · · > A(1)

n > · · ·

such that all corresponding maxima coincide: a
(1)
i = am+i. Now apply the

same construction to this chain and obtain the stationary value p(2) < p(1).
In this way, we obtain a strictly descending chain

p(1) > p(2) > · · · > p(k)

in X which eventually must stop since X is well-ordered. This means that at

this point A
(k)
1 = φ, the construction can not be continued and the original

sequence must be finite. This proves the theorem. �
If we now apply this theorem to the sequence of finite sets of exponents of
polynomials in the division algorithm, we obtain the previous theorem:
the fact that in the reduction process one can arbitrarily choose the term for
the next reduction in the set SuppG(f). This leads to a conclusion that for
certain special classes of polynomials one could try to find heuristics which
could improve the calculation speed of Gröbner basis. This remark could
open a quite new and broad area of research.

3.4 Monomial ideals and Hilbert basis theorem

In this section we will study the properties of monomial ideals, and we will
see formally why divisibility is so important for finding an element of an
ideal.
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Definition 18 . A monomial ideal is an ideal generated by a set of mono-

mials. That is, I is a monomial ideal, if there is a subset A ⊂ Nn0 such that

I consists of all polynomials which are finite sums of the form
∑

α∈A hαx
α,

where hα ∈ K[x1, . . . , xn]. We write

I = 〈xα|α ∈ A〉

.

For example I =
〈
x2y, xy4, x5y3

〉
∈ K[x, y] is a monomial ideal with corre-

sponding set A = {(2, 1), (1, 4), (5, 3)}. The least common multiple of two
monomials xα and xβ, α, β ∈ Nn0 is:

LCM(xα, xβ) = x
max(α1,β1)
1 . . . xmax(αn,βn)

n

and their greatest common divisor is:

GCD(xα, xβ) = x
min(α1,β1)
1 . . . xmin(αn,βn)

n

Monomial ideals are easier to manipulate than arbitrary ideals. Consider, for
instance, the ideal membership problem: If I ⊂ K[x1, · · · , xn] is a monomial
ideal, given by monomial generators m1, · · · ,ms, a term is contained in I
iff it is divisible by at least one of the mi, an arbitrary polynomial f ∈
K[x1, · · · , xn] is contained in I iff all its terms are contained in I.

Lemma 6 ([7] ,p 70). Let I = 〈xα|α ∈ A〉 be a monomial ideal. Then a

monomial xβ lies in I if and only if xβ is divisible by xα for some α ∈ A.

Proof . (⇐) Assume xβ is a multiple of xα for some α ∈ A. Then by the
definition of an ideal it follows that xβ ∈ I.
(⇒) Assume xβ ∈ I, and by the definition, xβ =

∑s
i=1 hix

αi where hi ∈
K[x1, . . . , xn] and αi ∈ A. Then we can write hi as a linear combination of
monomials as follows,

hi = apix
pi + a(p−1)ix

(p−1)i + . . .+ a0i .

And
hix

αi = apix
pi+αi + a(p−1)ix

(p−1)i+αi + . . .+ a0ix
αi .

Thus we can see that every term of
∑s

i=1 hix
αi must be divisible by some

xαi . Since the sum of these terms is the monomial xβ, then each term must
be divisible by same xαi . So xβ must also be divisible by some xαi . �
The next lemma describes how we can characterize a polynomial that is in
a given monomial ideal.
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Lemma 7 ([7] p. 71). Let I be a monomial ideal, and let f ∈ K[x1, . . . , xn].

Then the following are equivalet:

1. f ∈ I.

2. Every term of f lies in I.

3. f is a k-linear combination of the monomials in I.

Proof . (3⇒ 2) Let f is a k-linear combination of the monomials in I. Then
every term of f is a multiple of an element of I. Thus by definition, each
term of f is in I. Since I is closed under addition, it follows that the sum
of these terms f is also in I.
(2 ⇒ 1) Assume every term of f lies in I. Then f ∈ I. since I is closed
under addition.
(1 ⇒ 3) Let f ∈ I and suppose I = 〈xα|α ∈ A〉. Then by definition,
f =

∑s
i=1 hix

αi where hi ∈ K[x1, . . . , xn] and αi ∈ A. Let

hi = a0ix
m(i) + a1ix

m−1(i) + . . .+ ami .

Then
hix

α(i) = a0ix
qixαi + a1ix

(q−1)ixαi + . . .+ aqix
αi .

Which means the terms of f are linear combinations of monomials xαi in I.
�
Now we can prove that any monomial ideal has a finite basis, by using the
previous two lemmas, which will be the first step to show that every ideal
has a finite generating set.

Lemma 8 . (Dicksons Lemma) Let I = 〈xα|α ∈ A〉 ⊂ k[x1, . . . , xn] be a

monomial ideal. Then I can be written in the form I = 〈xα1 , . . . , xαs〉, where

α1, . . . , αs ∈ A. In particular, I has a finite basis

For details of the proof, (see [7] p. 71-72).
Now we will use this fact to show that every ideal has a finite generating set.
To do this, we have to introduce a monomial ideal that is generated by the
leading terms of each polynomial in the ideal. Once we have a monomial
ordering, each f ∈ k[x1, . . . , xn] has a unique leading term denoted LT (f)
and these leading terms generate a monomial ideal.

Definition 19 . Let I ⊂ k[x1, . . . , xn] be a nonzero ideal.
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• Let LT (I) be the set of leading terms of I.

LT (I) = {axα|there existsf ∈ IwithLT (f) = axα}

• We denote by 〈LT (I)〉 the ideal generated by the elements of LT (I).

So for example 〈LT (I)〉 is a monomial ideal. As we will see the ideals 〈LT (I)〉
and 〈LT (g1), . . . , LT (gs)〉 where g1, . . . , gs are a finite generating set for I,
are not always the same. Though we always have 〈LT (g1), . . . , LT (gs)〉 ⊂
〈LT (I)〉, but the opposite does not hold. The following example explains
this.

Example 7 . Consider I =
〈
x2 + 1, xy

〉
by use the lex ordering with y < x.

Then LT (x2 + 1) = x2 and LT (xy) = xy. So,
〈
LT (x2 + 1), LT (xy)

〉
=〈

x2, xy
〉
. Since,

y(x2 + 1)− x(xy) = y,

we know y ∈ I and so LT (y) ∈ 〈LT (I)〉. However, LT (y) = y /∈
〈
x2, xy

〉
,

since is not divisible by LT (x2 + 1) or LT (xy). Therefor

〈LT (I)〉 6=
〈
LT (x2 + 1), LT (xy)

〉
.

The next proposition will show that there is a set of polynomials in the ideal
I for which they are the same.

Proposition 7 ([7] .p 76). Let I ⊂ K[x1, . . . , xn] be an ideal then:

1. 〈LT (I)〉 is a monomial ideal.

2. There are g1, . . . , gt ∈ I such that 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉.

Proof. Let I ⊂ K[x1, . . . , xn] be an ideal. We have to show that the above
two Properties hold.
1. We know that the LM(g) of elements g ∈ I−{0} generate the monomial
ideal 〈LM(g)|g ∈ I − {0}〉 . Let xαi ∈ 〈LM(g)|g ∈ I − {0}〉 be the lead-
ing monomial of gi and aαi the leading coefficient of gi. Then aαi .x

αi ∈
〈LM(g)|g ∈ I − {0}〉.
Let start with aαjgj ∈ 〈LT (g)|g ∈ I − {0}〉. Then a−1αj

∈ K, since K is a

feild. So a−1αj
.aαjgj = gj ∈ 〈LM(g)|g ∈ I − {0}〉. Thus

〈LM(g)|g ∈ I − {0}〉 = 〈LT (g)|g ∈ I − {0}〉 = 〈LT (I)〉
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Therefore 〈LT (I)〉 is a monomial ideal.
2. By using Dicksons Lemma, then We have the monomial ideal 〈LT (I)〉 =
〈LT (g1), . . . , LT (gt)〉 for finitely many generated g1, . . . , gt ∈ I. �
The set of monomials g1, . . . , gt in the above proposition such that 〈LT (I)〉 =
〈LT (g1), . . . , LT (gt)〉 are in fact a finite generating set for ideal I and it is
known as Gröbner basis, as we will see in the next chapter. We will fix a
monomial ordering to use in the division algorithm and in computing leading
terms.

Theorem 10 (Hilbert Basis Theorem). Every ideal I ⊂ K[x1, . . . , xn] has

a finite generating set. That is, I = 〈g1, . . . , gt〉 for some g1, . . . , gt ∈ I.

Proof.([7] p. 76) If I = 0, then our generating set is 0, which is finite.
If I contains some nonzero polynomial, then by proposition (7), there are
g1, . . . , gt ∈ I such that 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉.
We want to show I = 〈g1, . . . , gt〉.
(⊇) 〈g1, . . . , gt〉 ⊂ I, because each gi ∈ I.
(⊆) Let f ∈ I be any polynomial. By using the division algorithm we divide
f by 〈g1, . . . , gt〉 , then we get an expression of the form

f = q1g1 + . . .+ qtgt + r.

Where every term in r is not divisible by any LT (gi), . . . , LT (gt). We have
to show that r = 0. Note that

r = f − q1g1 − . . .− qtgt ∈ I.

So, since r ∈ I, then LT (r) ∈ 〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉 . Then by
lemma(6) LT (r) must be divisible by some LT (gi). But, except r = 0, this
is contradiction which means that for r to be a remainder by the division
algorithm. Thus,

f = q1g1 + . . .+ qtgt + 0 ∈ 〈g1, . . . , gt〉 ,

and so f ∈ I. Then I ⊂ 〈g1, . . . , gt〉. �

Corollary 2 . If Ik are ideals, for k ≥ 1 of K[x1, . . . , xn] with I1 ⊂ I2 ⊂
I3 ⊂ · · · then there exist m such that Im = Im+1 = Im+2 = . . .

The proof follow form Hilberts basis theorem.
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3.5 The original proof of Hilbert basis theorem

Before we start with the details of the original Hilbert’s proof, let us quickly
review the historical development leading to the concept of Gröbner bases.
In his paper of (1890) D. Hilbert [10] gave a proof of his famous Basis Theo-
rem as well as of the structure and length of the sequence of syzygy modules
of a polynomial system. Implicitly he also showed that the Hauptproblem
(the main problem of the theory of polynomial ideals, according to B.L. van
der Waerden), i.e. the problem whether f ∈ I for a given polynomial f
and polynomial ideal I, can be solved effectively. Hilberts solution of the
Hauptproblem (and similar problems) was reinvestigated by G. Hermann
[14] in (1926). She counted the field operations required in this effective
procedure and arrived at a double exponential upper bound in the number
of variables. In fact, Hermanns, or for that matter Hilberts, algorithm al-
ways actually achieves this worst case double exponential complexity. The
next important step came when B. Buchberger, in his doctoral thesis [2] of
(1965) advised by W. Gröbner, introduced the notion of a Gröbner basis (he
did not call it this at that time) and also gave an algorithm for computing
it. Gröbner bases are very special and useful bases for polynomial ideals.
In subsequent publications Buchberger exhibited important additional ap-
plications of his Gröbner bases method, e.g. to the solution of systems of
polynomial equations. In the worst case, Buchbergers Gröbner bases algo-
rithm is also double exponential in the number of variables, but in practice
there are many interesting examples which can be solved in reasonable time.
But still, in the worst case, the double exponential behaviour is not avoided.
And, in fact, it cannot be avoided by any algorithm capable of solving the
Hauptproblem, as was shown by E.W. Mayr and A.R. Meyer in [11] (1982).
When we are solving systems of polynomial (algebraic) equations such as,
f1(x1, . . . , xn) = . . . = fm(x1, . . . , xn) = 0,the important parameters are the
number of variables n and the degree d of the polynomials f1, . . . , fm. The
Buchberger algorithm for constructing Gröbner bases is at the same time
a generalization of Euclids algorithm for computing the greatest common
divisor (GCD) of univariate polynomials (the case n = 1) and of Gauss tri-
angularization algorithm for linear systems (the case d = 1). Both these
algorithms are concerned with solving systems of polynomial equations, and
they determine a canonical basis (either the GCD of the inputs or a trian-
gularized form of the system) for the given polynomial system. Buchbergers
algorithm can be seen as a generalization to the case of arbitrary n and d.
Let us reproduce Hilbert’s proof from [10].
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Theorem 11 . Let F1, F2, F3, . . . , be an infinite series of forms of n vari-

able x1, . . . , xn. Then there are always a number m such that each form of

that series can be expressed in the form :

F = A1F1 +A2F2 + . . .+AmFm,

where A1, . . . , Am are suitable forms of the same n variables.

Proof. Let F1, F2, F3, . . . are the given number of forms of n variables
x1, . . . , xn. And let F1 6= 0, deg(F1) = r. Then we determine first a liner
change of the variables which has a nonzero determinant

y = A.x,

so, that the form F1 transforms in a form G1 of the variables y1, . . . , yn, and
the coefficient of yrn in the form G1 is different from zero. By using this linear
substitution, forms F2, F3, . . . respectively transform in G2, G3, . . .. Now we
consider the relation of the form

Gs = B1G1 +B2G2 + . . .+BmGm,

where s is any index and B1, B2, . . . , Bm are forms of the variable y1, . . . , yn,
it will transform by using inverse linear change in a relation of the form

Fs = A1F1 +A2F2 + . . .+AmFm,

where A1, . . . , Am are forms of the original variables x1, . . . , xn.
Since the coefficient yrn 6= 0 in G1, then the degree of each forms Gs of the
given series with respect to the variable yn is less than r. That multiplies
G1 with a suitable form Bs, and the obtained product is subtracted from
Gs, for any s = 1, 2, . . .

Gs = Bs.G1 + gs1y
r−1
n + gs2y

r−2
n + . . .+ gsr,

where Bs is a form in n variables y1, . . . , yn, while the forms gs1, . . . , gsr in
the n− 1 variables y1, . . . , yn−1.
Now, we assume that our theorem for series of forms with n− 1 variables is
true, and apply the same to the first series of g11, g21, g31, . . . . Then there is
a number µ, of the type that for each value of s,

gs1 = bs1g11 + bs2g21 + . . .+ bsµgµ1 = ls(g11, g21, . . . , gµ1).
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Where bs1, bs2, . . . , bsµ are forms in n− 1 variables y1, . . . , yn−1.
Now we take the form

g
(1)
st = gst − ls (g1t, g2t, . . . , gµt) t = (1, 2, . . . , r), (3.1)

resulting in particular for t = 1 with

g
(1)
s1 = 0

Apply the theorem for the first sequence, g
(1)
12 , g

(1)
22 , g

(1)
32 , . . .

According to this theorem, there is a number µ(1) such that for each value
of s there is a relation of the form

g
(1)
s2 = b

(1)
s1 g

(1)
12 + b

(1)
s2 g

(1)
22 + . . .+ b

(1)

sµ(1)
g
(1)

µ(1)2
= l(1)s

(
g
(1)
12 , g

(1)
22 , . . . , g

(1)

µ(1)2

)
,

where b
(1)
s1 , b

(1)
s2 , . . . , b

(1)

sµ(1)
are forms in n− 1 variables y1, . . . , yn−1. Now we

take the form

g
(2)
st = g

(1)
st − l(1)s

(
g
(1)
1t , g

(1)
2t , . . . , g

(1)

µ(1)t

)
t = (1, 2, . . . , r). (3.2)

The result for t = 1, 2 gives

g
(2)
s1 = 0, g

(2)
s2 = 0

Applying the theorem for the formal series g
(2)
13 , g

(2)
23 , g

(2)
33 , . . ., we have the

relation
g
(2)
s3 = l(2)s

(
g
(2)
13 , g

(2)
23 , . . . , g

(2)

µ(2)3

)
,

then we set

g
(3)
st = g

21)
st − l(2)s

(
g
(2)
1t , g

(2)
2t , . . . , g

(2)

µ(2)t

)
t = (1, 2, . . . , r). (3.3)

Then it follows
g
(3)
s1 = 0, g

(3)
s2 = 0, g

(3)
s3 = 0,

and after repeated application of this procedure, one obtains the relation

g
(r−1)
st = g

r−2)
st − l(r−2)s

(
g
(r−2)
1t , g

(r−2)
2t , . . . , g

(r−2)
µ(r−2)t

)
t = (1, 2, . . . , r), (3.4)

and
g
(r−1)
s1 = 0, g

(r−1)
s2 = 0, . . . , g

(r−1)
s(r−1) = 0.
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Finally we obtain

g(r−1)sr = l(r−1)s

(
g
(r−1)
1r , g

(r−1)
2r , . . . , g

(r−1)
µ(r−1)r

)
,

so that

0 = g
(r−1)
st − l(r−1)s

(
g
(r−1)
1t , g

(r−1)
2t , . . . , g

(r−1)
µ(r−1)t

)
t = (1, 2, . . . , r). (3.5)

By adding the equations (2.1), (2.2), (2.3), . . . , (2.4), (2.5) we get

gst = ls (g1t, g2t, . . . , gµt) + l
(1)
s

(
g
(1)
1t , g

(1)
2t , . . . , g

(1)

µ(1)t

)
+ . . .

+ l
(r−1)
s

(
g
(r−1)
1t , g

(r−1)
2t , . . . , g

(r−1)
µ(r−1)t

)
t = (1, 2, . . . , r).

On the right hand side of this formula, we can replace forms

g
(1)
1t , g

(1)
2t , . . . , g

(1)

µ(1)t
, . . . , g

(r−1)
1t , g

(r−1)
2t , . . . , g

(r−1)
µ(r−1)t

.

As a result of repeated application of above equations by linear combinations
of the form g1t, g2t, . . . , gmt, where m = max(µ, µ(1), . . . , µ(r−1)), we get a
system of equations of the form

gst = cs1g1t + cs2g2t + . . .+ csmgmt = ks(g1t, g2t, . . . , gmt)t = (1, 2, . . . , r),

where cs1, cs2, . . . , csm again are forms in n− 1 variables y1, . . . , yn−1. If we
multiply the last formula by yr−tn and add equations for t = 1, 2, . . . , r then

Gs −BsG1 = ks(g11, . . . , gm1).y
r−1
n + . . .+ ks(g1r, . . . , gmr).1

=
r∑
i=1

ks(g1i, . . . , gmi).y
r−i
n

=
r∑
i=1

 m∑
j=1

csjgji

 .yr−in

=
m∑
j=1

r∑
i=1

csjgjiy
r−i
n

=
m∑
j=1

csj

r∑
i=1

gjiy
r−i
n

=

m∑
j=1

csj(Gj −BjG1)

= ks (G1 −B1G1, G2 −B2G1, . . . , Gm −BmG1) .
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Or, if Gs denotes a form of n variables y1, . . . , yn

Gs = BsG1 + [cs1(G1 −B1G1) + cs2(G2 −B2G1) + . . .+ csm(Gm −BmG1)

= (Bs + cs1 − cs1B1 − cs2B2 − . . .− csmBm)G1 + cs2G2 + . . .+ csmGm

= ls(G1, G2, . . . , Gm)

It is a constructive proof and not an existence proof, that means it gives an
algorithm for how to find the expression. �
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CHAPTER 4

GRÖBNER BASIS

As we have seen, in general we do not obtain a uniquely determined re-
mainder from the division algorithm. However, the subsequent definition
of a Gröbner basis will have the quality that the division of f by G yields
the same remainder, no matter how the elements of G are ordered in the
division. Since we will show that every ideal I has a Gröbner basis, we are
able to resolve the ideal membership problem with a necessary and suffi-
cient condition for a polynomial f to be a member of an ideal I, namely
that division of f by the Gröbner basis of I returns a remainder of 0.

4.1 Gröbner basis and Buchberger’s algorithm

Definition 20 . Let a monomial ordering on K [x1, . . . , xn] be fixed. A

finite subset G = {g1, . . . , gs} of an ideal I is said to be a Gröbner basis of

the ideal I if

〈LT (g1) , . . . , LT (gs)〉 = 〈LT (I)〉 .

As a corollary to the Hilbert Basis Theorem applied to 〈LT (I)〉 we have:

Corollary 3 ([7].p 77). Fix a monomial order > on K [x1, . . . , xn], and let

I be a non zero polynomial ideal. Then I has a Gröbner basis. Furthermore,

any Gröbner basis of I is a basis of I.
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Proof. Let I be a nonzero ideal. Then the set G = {g1, · · · , gs} constructed
in the proof of Hilbert Basis Theorem is a Gröbner basis by definition, and
then every ideal has a Gröbner basis. For a Gröbner basis G note that if

〈LT (I)〉 = 〈LT (g1) , . . . , LT (gs)〉 ,

and so I = 〈g1, · · · , gs〉 by the proof of Hilbert Basis Theorem. Therefore G
is a basis for I. �
Gröbner bases give some very useful algebraic results. Here is the first
important result:

Corollary 4 . let I ⊂ K [x1, . . . , xn] be a non zero polynomial ideal.

1. The ideal I has a Gröbner basis.

2. A Gröbner basis G = {g1, · · · , gs} of I generates I (as an ideal):

〈g1, · · · , gs〉 = I.

3. If G is a Gröbner basis for I, then division by g1, · · · , gs leaves a uniqe

remainder r independent of the order of the gi. In fact, r is charac-

terized as the unique polynomial such that.

(a) r = 0 or no term of r is divisible by any of the leading terms of

the gi(i = 1, · · · , s).

(b) f − r ∈ I for f ∈ G.

In a given Gröbner basis there may be elements of additional elements.
For example, if G = {g1, · · · , gs} is a Gröbner basis for I and for f ∈ G
if LT (f) is also contaoned in the ideal 〈LT (G− {f})〉, then G − {f} is
also a Gröbner basis for I. Given the definition of Gröbner basis, this is
almost a trivality: Since LT (f) ∈ 〈LT (G− {f})〉, we find 〈LT (G− {f})〉 =
〈LT (G)〉 = 〈LT (I)〉. The resulting equality of the first and third term imply
that G− {f} is also a Gröbner basis.
The following definitions are intended to produce unique Gröbner bases in
some sense.

Definition 21 . A minimal Gröbner basis for an ideal is a Gröbner basis

G for I satisfying:
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1. LC(f) = 1 for all f ∈ G;

2. LT (f) /∈ 〈LT (G− {f})〉 for all f ∈ G.

A reduced Gröbner basis for an ideal I satisfies (1.) and the following
condition which is stronger than (2):
No nonzero term of f is in 〈LT (G− {f})〉 for all f ∈ G.

Theorem 12 . Every nonzero ideal I ⊂ K [x1, . . . , xn] has a unique reduced

Gröbner basis (for a given monomial ordering).

For the proof (see [7], [24]).
Once reduced Gröbner basis can be effectively computed, one has a method
to decide whether two ideals are equal (they are equal if and only if they
have the same reduced Gröbner basis).
As we have seen previously, the corollary (3) proves the existence of a
Gröbner basis, its proof is not constructive and offers us little insight as
to how to actually obtain one. We would like to obtain a generating set
such that all that leading terms of the polynomials in the set generate the
leading terms of the ideal I. This fails when there is a cancellation of lead-
ing terms of the kind in the previous example. To better determine when
this cancellation occurs, Buchberger constructed a special polynomial that
produces new leading terms.

Definition 22 . Let f, g ∈ K [x1, . . . , xn] be nonzero polynomials of multi-

degree α and β, respectively, we define their S-polynomial as the polynomial

S(f, g) =
xγ

LT (f)
f − xγ

LT (g)
g,

where the monomial xγ = LCM(LT (f), LT (g)).

Note that (S stands for ”syzygy”, from Latin syzygia ”conjunction”, or Greek

σζυγoς - syzygos, ”yoked together”)

Example 8 . Let f = x3yz+xy2z+x and g = 2x2y2z+xy+xz in Q [x, y, z]

are ordered with respect to the lex order with x > y. Then γ = (3, 2, 1) and

we have:

S (f, g) =
x3y2z

x3yz
f − x3y2z

2x2y2z
g = yf − 1

2
xg = −1

2
x2y − 1

2
x2z + x3yz + xy.
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Notice that the cancellation of the leading terms according to the con-
struction of the S-polynomial. Once a basis contains all the possible S-
polynomials of polynomials in the ideal generating set, there are no extra
polynomials in 〈LT (I)〉 that are not in 〈LT (I)〉 = 〈LT (g1), . . . , LT (gs)〉.
This leads to the very important criterion.

Definition 23 We write fG for the remainder in the division of f by the

(ordered) list of polynomials G = {g1, . . . , gj}.

Theorem 13 (Buchberger’s criterion). Let I be a polynomial ideal. Then

a basis G = {g1, · · · , gs} for I is a Gröbner basis for I if and only if for all

pairs i 6= j, we have

S(f, g)G = 0

(See [7] p.40-42 or [24] p.85-87)

Theorem 14 (Buchberger’s Algorithm). Let I = 〈f1, . . . , fs〉 6= (0) be a

polynomial ideal. Then a Gröbner basis for I can be constructed in a finite

number of steps.

4.2 Computing Gröbner bases

The theory mentioned above formulates the algorithm criterion for com-
puting Gröbner bases. And the next algorithm is the original algorithm
presented by Buchberger in his PH.D.dissertation [2].
Algorithm:
Given: let the set {g1, · · · , gs} generating the ideal I ⊂ K[x1, · · · , xn] and a
fixed monomial order <.
We compute: Gröbner basis of I with respect to <.

1. Take G0 = {g1, · · · , gs}, for i := 0.

2. If for all f, g ∈ Gi, with S(f, g)Gi = 0 then Gi is a Gröbner basis and
we will stop.

3. If there are f, g ∈ Gi and h := S(f, g)Gi 6= 0 then we take Gi+1 :=
Gi ∪ {h}, i := i+ 1 and back to (2).

Proposition 8 . This algorithm will terminates correctly
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Proof. When the algorithm terminates then Gi will be a Gröbner basis for
I because:

• Gi ⊂ I it generates I as it contains g1, · · · , gs.

• According to the Theorem (13) then Gi is a Gröbner basis of the ideal
it generates.

Now for termination consider the the ideals Ji = 〈LM(g)|g ∈ Gi〉. We claim
that Gi ⊂ Gi+1 ⇒ Ji ⊂ Ji+1. Actually Gi+1 = Gi ∪ {h} and LM(h) is not
divisible by any LM(g) for g ∈ Gi. Hence LM(h) /∈ Ji (Lemma 6). But
LM(h) ∈ Ji+1 so Ji ⊂ Ji+1.
By Corollary (2), the algorithm must terminate. �

Example 9 . Let I =
〈
f1 = xyz − x, f2 = x2y − yz

〉
with the deglex order

with z < y < x.

Let G0 = {f1, f2}. Since S(f1, f2) = xf1−zf2 = −x2y+yz2 and S(f1, f2)
G0 =

yz2 − yz 6= 0, so we add f3 := S(f1, f2)
G0 = yz2 − yz to G0 as a new gen-

erator. And set

G1 = {f1, f2, f3} .

Next compute

S(f1, f3) = zf1 − xf3 = 0, and we get S(f1, f3)
G1 = 0

S(f2, f3) = z2f2 − x2f3 = x2yz − yz3, and we get S(f2, f3)
G1 = 0

We have S(fi, fj)
G1 = 0 for all 1 ≤ i ≤ j ≤ 3. By Buchberger’s criterion, it

follows that G1 = {f1, f2, f3} =
{
xyz − x, x2y − yz, yz2 − yz

}
is a Gröbner

basis for I.

The Gröbner basis is determined by choice of a term order. C. Kollreider,
in [5] (1978) showed the importance of the choice of the term order in the
reduction process and influence at the complexity of the Buchberger’s al-
gorithm. First we have to select it, after that we can apply Buchberger’s
algorithm to obtain a Gröbner basis in that term order. Here are some ex-
amples of computing the Gröbner basis of an ideal with respect to different
monomial orders.
Term orders that are close to one another will produces the same Gröbner
basis.
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Example 10 . Let I =
〈
x2 + xy2, x2 − y3, y3 − y2

〉
. First, let <lex be the

lexicographic order with y < x as our term order. By using Buchberger’s

algorithm as follows:

We have G =
{
x2 + xy2, x2 − y3, y3 − y2, xy2 + y2

}
. Since S(g1, g2) =

xy2 + y3 and S(g1, g2)
G = xy2 + y2 6= 0, we add it to G as a new gen-

erator. Then we get G =
{
x2 + xy2, x2 − y3, y3 − y2, xy2 + y2

}
. Computing

all S-polynomials we obtain S(gi, gj)
G = 0, for all 1 ≤ i ≤ j ≤ 4.

We get a Gröbner basis for I, G =
{
x2 + xy2, x2 − y3, y3 − y2, xy2 + y2

}
in one step. Second, let <grlex be the graded lexicographic order. For the

same I by using Buchberger’s algorithm we get a different Gröbner basis

G =
{
xy2 + x2,−y3 + x2, y3 − y2, x3 + x2y, x2y + xy2,−x2 + y2

}
in three

steps.

Example 11 . Let I =
〈
xy + y2, x2y + xy2 + x2

〉
, then the Gröbner basis

of I with respect to the lex order with y < x is G =
{
xy + y2,−x2,−y3

}
,

but the Gröbner bases with respect to the lex order with x < y is G ={
y2 + xy,−x2

}
.

Note that we underline the leading terms of polynomials in I with respect
to the term order <.

Example 12 . Let I =
〈
xy3 − x2, x3y2 − y

〉
and let us use 2− as our term

order. We can use Buchberger’s algorithm to calculate a Gröbner basis for

I.

Let G =
{
g1 = xy3 − x2, g2 = x3y2 − y

}
. Since S(g1, g2) = −x4 + y2 and

S(g1, g2)
G = −x4 + y2 6= 0, we add S(g1, g2)

G to G as new generator

g3 := −x4 + y2.

Now set G = {g1, g2, g3}. Computing S-polynomial we obtain:

S(g1, g3) = y5 − x5 and S(g1, g3)
G 6= 0. We must add g4 = y5 − x5 to our

generating set, letting G = {g1, g2, g3, g4}.
Compute S(g1, g2)

G = S(g1, g3)
G = 0, and S(g2, g3) = y4−xy, S(g2, g3)

G 6=
0. Then we add g5 := y4 − xy to G. Letting

G = {g1, g2, g3, g4, g5} ,
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compute: S(g2, g3)
G = 0, S(g1, g4) = x6 − x2y2, S(g1, g4)

G = 0, S(g1, g5) =

S(g1, g5)
G = 0, S(g2, g4) = x8 − y4, S(g2, g4)

G = 0. S(g2, g5) = x4y − y3,

S(g2, g5)
G = 0, and S(g3, g4) = −y7 + x9, S(g3, g4)

G = 0, S(g3, g5) =

−y6 + x5y, S(g3, g5)
G = 0, S(g4, g5) = −x5 + xy2, S(g4, g5)

G = 0.

We see that S(gi, gj)
G = 0 for all 1 ≤ i ≤ j ≤ 5, and it follows that

G = {g1, g2, g3, g4, g5} is a Gröbner basis for I with respect to 2−.

Theorem 15 . Let I = 〈g1, . . . , gm〉 ⊂ K[x1, . . . , xn] be the ideal generated

by the set G = {g1, . . . , gm}. Then the following conditions are equivalent.

1. G = {g1, . . . , gm} is a Gröbner basis,

2. For all nonzero f ∈ I, LT (f) ∈ SuppG(f),

3. For all nonzero f ∈ I, SuppG(f) 6= φ,

4. The remainder h of a complete reduction process f →G h with SuppG(h) 6=
φ is uniquely determined,

5. For all f ∈ I, f →G 0,

6. All syzygies S(gi, gj)→G 0.

Proof. Equivalences (1)⇔ (2)⇔ (4)⇔ (5)⇔ (6) are standard (see[7],[24])

And are stated here just for reasons of completeness. The proof is required

only for the new equivalent condition (3). Obviously, (2) ⇒ (3). Suppose

that For all nonzero f ∈ I, SuppG(f) 6= φ holds and let f →G h1 and

f →G h2. Then h1− h2 ∈ I and SuppG(h1− h2) 6= φ which contradicts (3).

Therefore, (3)⇒ (4) is proved. �

4.3 Gröbner fan

It is known how to obtain the Newton polygon and the corresponding fan of a

given polynomial. But, we can not guess the Gröbner fan of an ideal I from

the fans of its generators. Rather, we should obtain the Gröbner basis G of

I, for one monomial order <. The starting order < and the members of the
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basis G determine one cone CG of the Gröbner fan of I. Then, we cross the

boundary of the cone CG by choosing one of the neighboring orders <new.

There are two well known ways to compute the corresponding Gröbner basis.

One, to apply Buchberger’s algorithm for obtaining Gröbner basis to G, with

the new monomial order. The other, to take the previous Gröbner basis G,

to extract leading forms of polynomials in G with respect to boundary order

<b and to compute (reduced) Gröbner basis H for the ideal they generate,

with respect to the new order <new. If we denote by fG the reduced form of

the polynomial f with respect to the starting order ≺ and with respect to G,

then the Gröbner basis of I for the new order is
{
f − fG|f ∈ H

}
. The use

of the Newton polygon in the example follows Sturmfels [4].

Example 13 . Let us consider the ideal I =
〈
xy3 − x2, x3y2 − y

〉
. We

want to describe the Gröbner fan of I. The idea is to determine boundaries

of its cones starting from the slope 0+ and moving in positive direction along

the arc in the first quadrant.

1) The first step. Let <1 be the lexicographical order. Its weight vector is

(1, 0) with the slope 0+. The corresponding matrix is

M1 =

(
1 0

0 1

)
.

For more details (see [1], [8], [13]). Note that we underline the leading

terms in f1 := xy3 − x2 and f2 := x3y2 − y from I. Then S(f1, f2) =

f2+xy2f1 = −y+x2y5 = −y5f1+xy8−y = −y5f1+f3, where f3 := xy8−y.

From the former, we eliminate f2. Now, S(f1, f3) = y8f1 + xf3 = xy11 −
xy = y3f3 + y4 − xy = y3f3 + f4, where f4 := y4 − xy. Then S(f1, f4) =

yf1 − xf4 = 0, and S(f3, f4) = f3 + y7f4 = y11 − y =: f5. From that we

can eliminate f3. We now consider only f1, f4, f5. Further, S(f1, f5) =

y11f1 + x2f5 = xy14 − x2y = xy3f5 + yf1, and S(f4, f5) = y10f4 + xf5 =

y14 − xy = y3f5 + f4. The basis {f1, f4, f5} =
{
xy3 − x2, y4 − xy, y11 − y

}
is a Gröbner basis of I with respect to <1. We take the reduced Gröbner

basis of I, G1 =
{
x2 − y6, xy − y4, y11 − y

}
. From the Newton polygon of
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y6 − x2 we read (2, 0) − (0, 6) = (2,−6)⊥(3, 1). Similarly, using f4 we

have (1, 1)− (0, 4) = (1,−3)⊥(3, 1). Therefore, the vector (3, 1) spans one-

dimensional cone, the border between two-dimensional cones in the Gröbner

fan of I. Then, C1 := R≥0 · (1, 0) + R≥0 · (3, 1) is the cone in the Gröbner

fan of I that corresponds to the basis G1.

2) The second step. Assume that <2 is the monomial order with the slope
1
3

+
. Then, the corresponding matrix is

M2 =

(
3 1

0 1

)
.

Let g1 := y6 − x2, g2 := y4 − xy, g3 := y11 − y from G1. Then S(g1, g2) =

g1 − y2g2 = xy3 − x2 =: g4. This eliminates g1. S(g2, g3) = g3 − y7g2 =

xy8 − y = x(g2 + xy)2 − y = x(g2 + 2xy)g2 + g5, where g5 := x3y2 − y.

We also eliminate g3. S(g2, g4) = xg2 − yg4 = 0, S(g4, g5) = x2g4 − yg5 =

y2 − x4 =: g6, S(g2, g5) = x3g2 − y2g5 = −x4y + y3 = yg6, S(g2, g6) =

x4g2+y4g6 = −x5y+y6 = y2g2+xyg6, S(g4, g6) = x3g4+y3g6 = −x5+y5 =

yg2 + xg6, S(g5, g6) = xg5 + y2g6 = −xy + y4 = g2. The set G2 :={
y4 − xy, xy3 − x2, x3y2 − y, x4 − y2

}
is the reduced Gröbner basis with re-

spect to <2. From the Newton polygons of g2 and g4 we read (0, 4)− (1, 1) =

(1, 3)− (2, 0) = (−1, 3)⊥(3, 1). Similarly, using g6, we have (4, 0)− (0, 2) =

(4,−2)⊥(1, 2). Then, C2 := R≥0 · (3, 1) + R≥0 · (1, 2) is the cone in the

Gröbner fan of I corresponding to the basis G2.

3) The third step. Assume that <3 is the monomial order with the slope 2+.

The corresponding matrix is

M3 =

(
1 2

0 1

)
.

We mark h1 := y4 − xy, h2 := xy3 − x2, h3 := x3y2 − y, h4 := y2 − x4

from G2. Since the leading term of h4 is y2 and it divides all other leading

terms, we will eliminate h1, h2 and h3, by using syzygies. S(h2, h4) = h2 −
xyh4 = x5y − x2 =: h5, S(h3, h4) = h3 − x3h4 = x7 − y =: h6, S(h1, h4) =

h1 − y2h4 = x4y2 − xy = x4h4 + x8 − xy = x4h4 + xh6. S(h4, h5) =
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x5h4 − yh5 = −x9 + x2y = −x2h6, S(h4, h6) = x7h4 − y2h6 = −x11 + y3 =

−x4h6 + yh4, S(h5, h6) = x2h5 − yh6 = −x4 + y2 = h4. The set G3 :={
y2 − x4, x5y − x2, x7 − y

}
is the reduced Gröbner basis for <3. From the

Newton polygon of h4 we read (4, 0)−(0, 2) = (4,−2)⊥(1, 2). Also, using h6,

we have (7, 0) − (0, 1) = (7,−1)⊥(1, 7). Therefore, the cone corresponding

to the basis G3 is C3 := R≥0 · (1, 2) + R≥0 · (1, 7).

4) The fourth step. Assume that <4 is the monomial order with the slope

7+. The corresponding matrix is

M4 =

(
1 7

0 1

)
.

We mark k1 := y2 − x4, k2 := x5y − x2, k3 := y − x7 from G3. Since

the leading term of k3 is y and it divides all other leading terms, we will

eliminate k1 and k2 by using syzygies. S(k1, k3) = k1 − yk3 = −x4 + x7y =

x2k2, S(k2, k3) = k2 − x5k3 = x12 − x2 =: k4, S(k3, k4) = yk4 − x12k3 =

−x2y + x19 = x4k4 − x2k3. The set G4 :=
{
y − x7, x12 − x2

}
is the reduced

Gröbner basis with respect to <4. We have (0, 1) − (7, 0) = (−7, 1)⊥(1, 7)

from the Newton polygon of k3. Also, using k4, we observe (12, 0)− (2, 0) =

(10, 0)⊥(0, 1). Then, C4 := R≥0 ·(1, 7)+R≥0 ·(0, 1) is the cone corresponding

to the basis G4.

-
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Figure 4.1: Gröbner fan for I
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4.4 Bivariate Gröbner fan algorithm

In the case of two variables a precise algorithm can be given.

Algorithm:

INPUT: An ideal I = 〈f1, · · · , fs〉.
OUTPUT: The Gröbner fan of the ideal, GF (I).

INTIALIZATION: m = 0, GF (I) = φ.

WHILE: m ≥ 0, m 6=∞.
Compute the reduced Gröbner basis of I with respect to m+, Gm+ = {gm1 , gm2 , · · · , gmt}.
If there exist gmj ∈ Gm+ and k ∈ Q, k > m such that initial form ink(gmj )

is nonmonomial, take n to be the smallest k with that property. Otherwise ,

set n :=∞.

GF (I) := GF (I) ∪ {the cone from the slope m to the slope n}, m := n.

The above algorithm is illustrated in the Example (13).
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Mathematics, (2013), Vol. XVI, 1, pp. 22-28.

53
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Graduate Studies in Mathematics, Vol. 3, AMS, Providence RI, (1994).

54


