THE $4^{\text {th }}$ ROMANIAN MASTER OF MATHEMATICS COMPETITION
 DAY 1: FRIDAY, FEBRUARY 25, 2011, BUCHAREST

Language: English

Problem 1. Prove that there exist two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, such that $f \circ g$ is strictly decreasing and $g \circ f$ is strictly increasing.

Problem 2. Determine all positive integers n for which there exists a polynomial $f(x)$ with real coefficients, with the following properties:
(1) for each integer k, the number $f(k)$ is an integer if and only if k is not divisible by n;
(2) the degree of f is less than n.

Problem 3. A triangle $A B C$ is inscribed in a circle ω. A variable line ℓ chosen parallel to $B C$ meets segments $A B, A C$ at points D, E respectively, and meets ω at points K, L (where D lies between K and E). Circle γ_{1} is tangent to the segments $K D$ and $B D$ and also tangent to ω, while circle γ_{2} is tangent to the segments $L E$ and $C E$ and also tangent to ω. Determine the locus, as ℓ varies, of the meeting point of the common inner tangents to γ_{1} and γ_{2}.

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

