<u>Utorak, 11.06.2019. u 14h, sala 301f, MI SANU</u>: Ismael González Yero, Departamento de Matemáticas, Escuela Politécnica Superior de Algeciras, Universidad de Cádiz, Spain

ON THE FRACTIONAL VERSION OF THE k-METRIC DIMENSION OF GRAPHS

Abstract: Let G be a graph with vertex set V(G). For any two distinct vertices x and y of G, let $R\{fx,y\}$ denote the set of vertices z such that the distance from x to z is not equal to the distance from y to z in G. For a function g defined on V(G) and for $U \subseteq V(G)$, let $g(U) = \sum_{s \in U} g(s)$. Let $\kappa(G) = \min\{|R\{x,y\}| : x \neq y \text{ and } x,y \in V(G)\}.$ For any real number $k \in [1,\kappa(G)]$, a real-valued function $g:V(G)\to [0,1]$ is a k-resolving function of G if $g(R\{x,y\})\geq k$ for any two distinct vertices $x,y \in V(G)$. The fractional k-metric dimension, $\dim_f^k(G)$, of G is $\min\{g(V(G)): g \text{ is a k-resolving }\}$ function of G. Several results on the fractional k-metric dimension of graphs shall be presented in this talk.