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Abstract

Let D(c;r) be the smallest disk, with center ¢ and radius r, containing all
zeros of the polynomial p(z) = (2 — 21)(z — 22) -+ (2 — z,). Half a century
ago, we conjectured that for every zero z; of p(z), the disk D(z;r) contains
at least one zero of the derivative p’(z). More than 100 papers are devoted to
this conjecture, in which it is proved for different special cases. But in general,
this conjecture is proved only for the polynomials of degree n < 8.

In this lecture a stronger conjecture is discussed and proved for polynomials
of degree n = 3. A number of other conjectures are presented, including a
variation of the Smale’s mean value conjecture.
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