
УНИВЕРЗИТЕТ У БЕОГРАДУ
МАТЕМАТИЧКИ ФАКУЛТЕТ

Александар Н. Вељковић

СЕМАНТИЧКО ОБJЕДИЊАВАЊЕ И
ПРЕТРАЖИВАЊЕ

БИОИНФОРМАТИЧКИХ БАЗА
ПОДАТАКА КОРИШЋЕЊЕМ МЕТОДА

ИСТРАЖИВАЊА ПОДАТАКА
Докторска дисертациjа

Београд, 2023

UNIVERSITY OF BELGRADE
FACULTY OF MATHEMATICS

Aleksandar N. Veljković

SEMANTIC UNIFICATION AND
SEARCHING OF BIOINFORMATICS
DATABASES USING DATA MINING

METHODS
Doctoral dissertation

Belgrade, 2023

Подаци о ментору и члановима комисиjе

Ментор

проф. др Ненад Митић, редовни професор, Математички факултет,
Универзитет у Београду

Чланови комисиjе

проф. др Саша Малков, ванредни професор, Математички факултет,
Универзитет у Београду

др Jована Ковачевић, доцент, Математички факултет, Универзитет у Београду

др Александар Картељ, ванредни професор, Математички факултет,
Универзитет у Београду

проф. др Наталиjа Половић, редовни професор, Хемиjски факултет,
Универзитет у Београду

проф. др Jуриj Орлов, професор Руске академиjе наука, Институт за
дигитално здравље, Први московски државни медицински универзитет
И.М.Сеченов, Москва, Русиjа

Датум одбране:

Advisor and Committee members

Advisor:

dr Nenad Mitić, full professor, University of Belgrade, Faculty of Mathematics

Committee:

dr Saša Malkov, associate professor, University of Belgrade, Faculty of Mathematics

dr Jovana Kovačević, assistant professor, University of Belgrade, Faculty of Mathe-
matics

dr Aleksandar Kartelj, associate professor, University of Belgrade, Faculty of Math-
ematics

dr Natalija Polović, full professor, University of Belgrade, Faculty of Chemistry

dr Yuriy Orlov, PhD, DrSci, Professor of the Russian Academy of Sciences, The
Digital Health Institute, I.M. Sechenov First Moscow State Medical University of
the Ministry of Health of the Russian Federation, Moscow, Russia

Date of the defense:

vi

Подаци о докторскоj дисертациjи

Наслов дисертациjе: Семантичко обjедињавање и претраживање
биоинформатичких база података коришћењем метода истраживања података

Резиме: Биоинформатика као наука будућности суочава се са проблемима
обраде велике количине података коjа се свакодневно увећава. Поред
проблема складиштења података, изазов представља и анализа података
и разумевање скривених веза између биолошких поjмова коjе се уочаваjу
тек након обjедињавања података из различитих извора. Ова дисертациjа
дефинише нови модел података за обjедињавање хетерогених података
из различитих биоинформатичких база података и дизаjн архитектуре
система за имплементациjу софтверског система заснованог на предложеном
моделу података. Додатно, дисертациjа дефинише аутоматизовани протокол
за откривање нових веза семантичке сличности заснованих на методама
истраживања података коришћењем података добиjених из дефинисаног
модела. Модел података, софтверска архитектура и аутоматизовани протокол
су тестирани над подацима из пет биоинформатичких база података. Резултати
показуjу високу флексибилност модела и високу ефикасност софтверског
система имплементираног према описаном дизаjну архитектуре.

Кључне речи: семантика, обjедињавање биоинформатичких база,
кластеровање, правила придруживања, граф знања

Научна област: Рачунарство

Ужа научна област: Истраживање података, Биоинформатика

УДК броj:

Dissertation Data

Dissertation title: Semantic unification and searching of bioinformatics databases
using data mining methods

Abstract: Bioinformatics as a science of the future faces the problems of process-
ing a large amount of data that is increasing every day. In addition to the problem
of data storage, the challenge is also data analysis and the understanding of hid-
den relations between biological entities that are observed only after unifying data
from different data sources. This thesis proposes a novel data model for the unifi-
cation of heterogeneous data from multiple bioinformatics databases and a system
architecture design for implementing software systems based on the proposed data
model. Additionally, the thesis defines an automated pipeline for discovering new
semantic similarity relations based on data mining methods using the data found
in the proposed data model. The data model, software architecture, and automatic
pipeline are evaluated using data from five real-world bioinformatics databases. The
results demonstrate a high flexibility of the data model and the high efficiency of
the software system implemented following the proposed architecture design.

Keywords: semantics, bioinformatics database unification, clustering, association
rules, knowledge graph

Scientific field: Computer Science

Scientific discipline: Data mining, Bioinformatics

UDC number:

ii

Contents

1 Introduction 1
1.1 Proximity measures . 3

1.1.1 Proximity measures of simple attributes 3
1.1.2 Proximity measures of data objects 4

1.2 Semantic similarities . 7
1.3 Related work . 11
1.4 Related topics . 12

2 Cluster analysis and association rules mining 13
2.1 Cluster analysis . 13

2.1.1 Cluster types . 14
2.1.2 Properties of clustering methods 14
2.1.3 Categorization of clustering methods 15
2.1.4 Measuring quality of clustering results 20

2.2 Association rules mining . 23
2.2.1 Apriori algorithm . 24
2.2.2 FP-growth algorithm . 25

3 Searching bioinformatics databases 27
3.1 Primary and secondary databases . 27
3.2 Identifiers of bioinformatics data . 28
3.3 Storing bioinformatics data . 29
3.4 Accessing and searching bioinformatics data 29

4 New Data Joining Model Proposal 33
4.1 BioGraph data model . 34

4.1.1 Entity objects . 35
4.1.2 Identifiers . 36
4.1.3 Data objects . 37
4.1.4 Entity relations . 37
4.1.5 Duplicate entries . 38
4.1.6 Data updates . 38
4.1.7 Mapping BioGraph model to graph and relational database . . 38

iii

iv Contents

4.1.8 Efficient indexing . 40
4.2 Generalized method for deriving semantic relations 40

4.2.1 Selecting a subset of relations 42
4.2.2 Generating relation matrix . 42
4.2.3 Deriving semantic similarity relations 43
4.2.4 Automated method for deriving semantic similarity relations . 44

5 Model implementation and validation 51
5.1 Software architecture . 51

5.1.1 Data importers . 51
5.1.2 Core service . 52
5.1.3 Indexers . 53
5.1.4 Database adapters . 53
5.1.5 HTTP REST API . 54
5.1.6 Internal query language . 54
5.1.7 Data flows . 54

5.2 Material . 56
5.2.1 DisProt dataset . 57
5.2.2 HGNC dataset . 58
5.2.3 IEDB dataset . 58
5.2.4 Tantigen 2.0 dataset . 59
5.2.5 DisGeNET dataset . 59

5.3 Deriving new semantic similarity relations in BioGraph data model . 60
5.4 User interface . 61

6 Results and discussion 65
6.1 Comparison with the existing data unification and querying systems . 66
6.2 Advantages and disadvantages . 68
6.3 Examples of biomedical applications 68

6.3.1 Genes related to Parkinson’s disease 68
6.3.2 Genes related to pancreatic cancer 73

7 Conclusion 77

Bibliography 85

A Database importers 87
A.1 DisProt data importer . 87
A.2 HGNC data importer . 90
A.3 DisGeNET data importer . 96
A.4 IEDB data importer . 98
A.5 DisGeNET data importer . 105

List of Figures

4.1 A schema of the BioGraph model . 35
4.2 Network of objects from five different sources 36
4.3 Diagram of the BioGraph data model mapped to a relational model. . 39
4.4 General pipeline for automated deriving of new semantic relations. . . 45
4.5 Relation deriving substeps of the pipeline for automated deriving of

new semantic relations based on clustering method. 45
4.6 Relation deriving substeps of the pipeline for automated deriving of

new semantic relations based on association rules mining. 46
4.7 Example of selecting relations as inputs for deriving similarity relations. 47
4.8 Example of constructed data matrix based on the selected relations

and their weights. 48
4.9 Parallel overview of clusters (a), hyperedges (b), and cluster entity

objects (c). 48

5.1 Example of an internal BioGraph query in JSON format. The query
fetches all genes and related proteins where the protein disorder con-
tent is 0.9 or higher. 55

5.2 Diagram representing the architecture of the system which imple-
ments BioGraph data model. 56

5.3 Diagram representing metadata from DisGeNET dataset record
mapped to BioGraph model. 57

5.4 Diagram representing spectral clustering substeps for relation deriving. 60
5.5 Example of a graphical query drawn using BioGraph Web interface . 62
5.6 List of results received when querying the genes which are transcribed

into highly disordered proteins . 63
5.7 Details of a single gene entity, displaying information collected from

multiple data sources. 64
5.8 Searching diseases using keyword “pneumonia”. 64

6.1 Blank canvas of the BioGraph Web interface. 69
6.2 Steps required for the user to create the disease entity node. 70
6.3 Example of the process of associating the disease node to a specific

disease. 70

v

vi List of Figures

6.4 Steps required for the user to create the gene entity node. 71
6.5 Creating relation between gene and disease nodes. 72
6.6 Query for extracting all genes highly related to Parkinson’s disease. . 73
6.7 Results of the query for extracting all genes highly related to Parkin-

son’s disease and details of the PLA2G6 gene. 73
6.8 Query for extracting all genes highly related to pancreatic cancer . . 74
6.9 Results of the query for extracting all genes highly related to pancre-

atic cancer . 75

List of Tables

4.1 Basic types of the relations between entity objects in BioGraph data
model. 41

6.1 Comparison between the BioGraph system and currently existing so-
lutions . 67

6.2 Genes found to be related to pancreatic cancer 74

vii

viii List of Tables

Chapter 1

Introduction

In order to obtain a general understanding of an object or phenomenon, it is impor-
tant to observe it from multiple angles and put it in a wider context. Biological data
comes from a wide variety of experiments and analyses, adding context to potentially
overlapping sets of biological entities. Crystallography experiments provide insight
into the structure of proteins, while functional analysis of the same proteins may
give a deeper understanding of their roles and detect interaction networks among
them. Additional research may further extend the knowledge of proteins by noting
their presence and activity in different conditions and diseases. The holistic view,
achieved by observing multiple pieces of information, is the only way to understand
complex biological concepts and interactions among the entities. Although many of
the analyses add bits of information to the same subsets of entities, the data that
they produce is structured following different data formats and stored in different
data silos. Often the only link connecting information on the same entity from
different datasets is the common identifier of the entity. Unique identifiers, such
as gene symbols or sequence accession numbers, are assigned to biological entities.
These identifiers can be shared among multiple datasets, but some identifiers are
strictly local and are not recognized in other datasets, which makes it challenging
to link similar or identical data in different datasets.

Although identifiers play an important role in connecting the data from different
datasets, they represent only one part of the solution. Entities with different iden-
tifiers, which are not explicitly connected, can have multiple common properties,
making them similar in a certain context. Such values can even be seen through un-
structured text descriptions of the entities, where the similarity is observed through
the similarity of texts written using natural language. Another complex case of
similarity is the similarity that can be seen only by analyzing similar patterns of
behavior or interaction between groups of entities. Detecting such similarities helps
to recognize patterns in biological processes but also enables a powerful semantic
search that goes beyond the identifier-based lexical search and overcomes the prob-
lem of unmatched identifiers.

1

2 Introduction

A sentence is an array of characters until the semantics give meaning to it. Arrays of
characters become words and the sentence becomes an array of words. Words have
their individual meaning, which can be found in a dictionary, but a different ordering
of words and their forms give a different meaning to the sentence. Semantics is the
science of meaning and it is an important part of data search. A keyword search,
based on matching the exact keywords to a range of documents, may prove useful,
but exact keyword matching is not always applicable. Processing a query “protein
similar to P53”[50] would require a deeper understanding of the concept of similarity.
Two genes may have similar roles, can be involved in similar biological processes, or
even be linked to similar diseases. The concept of similarity is difficult to capture
using keyword-based search only. Structured queries, like the ones used in relational
database systems, provide the ability to establish relations by following the keys
between tables. Such queries are well-defined and can be used to find semantically
similar data but the cost is paid in the complexity of the query itself. An average
user is unable to properly construct the query or know in advance all possible entity
types and relations that could be utilized in query construction. The third option is
natural language search, which enables writing queries in an unstructured, natural
language form. This way of creating semantic queries may be the easiest for the
user but adds complexity in parsing the query and introduces potential ambiguity
in the intentions of the user, due to ambiguities in natural languages.

A direct approach for finding similarities in data is to apply some data mining algo-
rithms on data specifically preprocessed for the given task. Finding similarities in
the data from different datasets may require a different approach to preprocessing
or even a different data mining method. The problem with the direct approach
is inflexibility, especially when combining data from multiple sources. Designing a
unified data model for storing heterogeneous biological data and generalizing the
methods for analyzing the similarities between entities on different levels could en-
able a unified semantic search over biological data from multiple data sources. Such
ability would provide deeper insight into biological and biochemical processes and
become a powerful tool in biomedical domains, such are gene therapy, drug discov-
ery, immunology, and many more.

There are different approaches to solving the problem of the unification of data and
semantic searches. The key data structures for supporting unified data are graphs.
The generic structure of a graph, consisting of nodes and edges is useful when the
possible set of relation types between data nodes is not known in advance. Adding
a new edge of a previously unknown type to a populated graph does not change the
underlying structure nor introduce new foreign keys like it is the case with relational
databases. Additionally, the graph databases handle traversals by following links in
constant time, while relational databases show lower performance when handling
join queries [48]. A knowledge based on interconnected data, consisting of entities
and links between the entities that represent semantic relations, organized in a graph

Proximity measures 3

structure is called a knowledge graph.

1.1 Proximity measures

Similarity and dissimilarity measures evaluate the degree of association between
objects. Both types of measures are commonly referred to as proximity measures.
Values of the similarity measures are higher when two objects are more look alike,
and lower otherwise. Dissimilarity measures behave in the opposite way, resulting
in lower values when the objects are more similar.

1.1.1 Proximity measures of simple attributes

Dissimilarity measures are also known as distance measures, commonly taking val-
ues in the interval [0,+∞). A value of 0 indicates no dissimilarity or equivalence
and higher values indicate greater differences between the objects. Similarity mea-
sures commonly take values from the interval [0, 1], where a value of 0 indicates no
similarity and a value of 1 indicates complete similarity or equivalence. Material
listed in this section is based on the descriptions found in [81].

Data types of the compared values highly influence the choice of the similarity and
dissimilarity measures. In some cases, it is more intuitive to define a dissimilarity
measure and transform it into a similarity measure, or the other way around. Simi-
larity and dissimilarity measures will be presented for simple attributes of nominal,
ordinal, and interval types.

Nominal attributes

Nominal attributes can only be compared with equality relation, resulting in a sim-
ilarity measure s defined as:

s(x, y) =

{
1, x = y

0, otherwise
(1.1)

Inversely, a dissimilarity measures d defined for the nominal attributes is defined as:

d(x, y) =

{
1, x ̸= y

0, otherwise
(1.2)

or

(x, y) = 1 − s(x, y). (1.3)

4 Introduction

Ordinal attributes

Ordinal attributes are discrete attributes with ordinal relations defined between the
values. A dissimilarity measure for ordinal data can be defined as:

d(x, y) =
|x− y|
n− 1

(1.4)

where n is a number of values of the ordinal attribute and attribute values are
mapped to integers 0 to n− 1. A similarity measure can be derived from the given
dissimilarity measure:

s(x, y) = 1 − d(x, y). (1.5)

Interval attributes

Interval attributes are continuous attributes and a dissimilarity measure for such
attributes can be defined as:

d(x, y) = |x− y| (1.6)

Values of the defined dissimilarity measure are in the interval [0,maxval), where
maxval is the maximum value of the attribute. There are many similarity measures
that can be derived from the given dissimilarity measure. Some of those similarity
measures that return values from the interval [0, 1] are:

• s(x, y) = e−d(x,y)

• s(x, y) = 1
1+d(x,y)

• s(x, y) = 1 − d(x,y)−mind

maxd−mind

Where mind and maxd respectively are minimum and maximum values of the dis-
similarity function d.

1.1.2 Proximity measures of data objects

A similarity or dissimilarity measure that perfectly fits all data types does not exist.
However, for specific objects’ data types, certain measures prove better than others.
This section will cover some examples of the similarity and dissimilarity measures
that were used in further work and discuss their advantages and weaknesses.
A distance measure d is called a metric when the following conditions are satisfied:

• d(x, x) = 0

• Positivity: x ̸= y ⇒ d(x, y) ≥ 0

• Symmetry: d(x, y) = d(y, x) ∀x, y

• Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) ∀x, y, z

Proximity measures 5

Various similarity measures often do not satisfy all the conditions to be called metric,
but commonly satisfy two conditions:

• Simmetry: s(x, y) = s(y, x) ∀x, y

• s(x, y) = 1 ⇔ x = y ∀x, y; i.e. s = 1 iff d = 0, the consequence of Positivity

where s is a similarity measure function.

Minkowski distance

An example distance measure in multidimensional space is Minkowski distance [81]
defined as:

Minkowski(x, y) = (
n∑

i=1

|xi − yi|p)
1
p (1.7)

where p is the parameter and n is the size of vectors x and y. Commonly used values
of p are:

• p = 1; Manhattan distance [81] or L1 norm

Manhattan(x, y) =
n∑

i=1

|xi − yi|. (1.8)

A common example is Hamming distance [14] where a distance between binary
data objects can be computed by counting attributes for which the two com-
pared objects have different values. This is the approach of Hamming distance
measure, formally defined as:

Hamming(x, y) =
n∑

i=1

d(xi, yi) (1.9)

where d is a distance measure between nominal attributes. Although the
Hamming distance is easily computed, the measure can provide misleading
values when computed on sparse vectors. The measure equally treats matches
between two ones and two zeros, meaning any two sparse vectors will have a
low distance value due to a large number of matched zero attribute values.

• p = 2; Euclidean distance or L2 norm [81]

Euclidean(x, y) =

√√√√ n∑
i=1

(xi − yi)2. (1.10)

• p = ∞; Supremum or L∞ norm [81], defined as

Supremum(x, y) = lim
p→∞

(
n∑

i=1

|xi − yi|p)
1
p = max

i=1...n
|xi − yi|. (1.11)

6 Introduction

Minkowski distance, for any given value of the parameter p, in general, is not
suitable for high-dimensional data. However, Minkowski distance is commonly used
in clustering algorithms for low-dimension data, such as DBSCAN mentioned on
page 17.

Jaccard coefficient

The Jaccard coefficient [58] is a similarity measure that considers binary vectors as
sets of items included in a transaction. Each vector coordinate corresponds with an
item where the item is included in the transaction if its respective attribute value is
non-zero. This measure ignores matches between two zero values, solving the issue
recognized in the case of Hamming distance. The Jaccard coefficient for sets A and
B is defined as:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

(1.12)

or, specifically for binary vectors

Jaccard(x, y) =
f11(x, y)

f01(x, y) + f10(x, y) + f11(x, y)
(1.13)

where fab(x, y) are count functions counting the number of attributes where vector
x has the attribute value equal to a and vector y has a value of b for the same
attribute.

The measure does not take into account the frequency values of the items in the set,
just their presence in both compared transactions.

Tanimoto coefficient

Tanimoto coefficient [72], or extended Jaccard coefficient, uses the idea of the Jac-
card coefficient but is modified to be more suitable for non-binary vectors. The
coefficient is defined as:

Tanimoto(x, y) =
xTy

||x||2 + ||y||2 − xTy
(1.14)

The measure applied to binary data results in the same values as those computed
using the Jaccard coefficient. Both Jaccard and Tanimoto coefficients can be used
in deriving new semantic similarity relations explained on page 47.

Cosine similarity

The cosine similarity measure [36] is among the most commonly used similarity mea-
sure between vectors, specifically document-term vectors. The measure is defined
as a cosine of the angle between the normalized input vectors x and y:

CosineSimilarity(x, y) =
x · y

||x|| ||y||
(1.15)

Semantic similarities 7

where · denotes the vector dot product. As the measure computes only the cosine
value of the angle, the vector intensities are ignored, which can result in the highest
similarity value of one even if the vectors are not equal but one vector is a scalar
multiple of the other.

Correlation

Correlation is a statistical measure that computes a linear relationship between
vectors. The vectors can represent the values of two variables or two objects. The
definition of the correlation measure is not unique. One specific correlation measure
is Pearson’s correlation [20] defined as:

Pearson(x, y) =
Σ(x, y)

σ(x) · σy
(1.16)

where Σ is a covariance function and σ is a standard deviation function. The val-
ues of Pearson’s correlation are in the range [−1, 1], where the value of 1 indicates a
perfect positive correlation, while the value of −1 indicates a perfect negative correla-
tion. The value of 0 indicated no correlation between the vectors. Another approach
to computing the correlation between the variables is using Kendall’s rank correla-
tion [45]. Kendall’s rank correlation, or Kendall’s τ coefficient, is a non-parametric
statistic test that does not require variables to come from the normal distribution.
The only requirement for the tested variables is to have ordinal attribute values.
The τ value is calculated as:

τ =
C −D

C + D
(1.17)

where C and D are, respectively, the numbers of concordant and disconcordant pairs
of ranks of the tested variables. The values of Kendall’s rank correlations are also
in the range [−1, 1] and their interpretation is analogous to the interpretation of the
Pearson’s correlation value. Correlation values computed by any of the two listed
correlation coefficients can also be used in deriving new semantic similarity relations
explained on page 47.

1.2 Semantic similarities

As metadata that describes objects in a database is mostly textual, it is important
to find semantic similarities among these descriptions in order to connect various
objects together. The similarity in the sense of semantics relies on the measures
defined in the previous section but requires a proper transformation of the objects
to a vector format suitable for the computation of the similarity measures. There is
no single way of transforming the data. Transformation depends on the properties of
the objects, such as object type, available object attributes, additional annotations,
and the availability of ontology information.

8 Introduction

The ontology is a graphical structure containing objects and semantic relations be-
tween them, representing a basic knowledge about the observed objects and their
relations. Besides observed objects, the ontology may contain concepts and cat-
egories that can define the hierarchy or taxonomy between the objects. Without
knowing any of the objects’ attributes, the similarity between two objects within
a defined ontology can be derived from the number of edges on the shortest path
connecting the two objects in the ontology graph. This measure is called path [69]
and is defined as:

PathSimilarity(x, y) =
1

MinPathLength(x, y) + 1
(1.18)

where MinPathLength is a function that returns the length of the shortest path
between the objects x and y in the ontology graph.

Observing the ontology graph constructed from the organism taxonomy relations,
the shortest path between two taxons is also the only path between them, due to
the tree structure of the ontology graph. It is expected that the similarity is higher
between two mammals than between a mammal and bacteria. The length of the
path in the ontology graph is inversely proportional to the similarity, thus the path

similarity reflects the true nature of the semantic similarity relation.

Analogous to counting the edges on the path, the distance between nodes can be seen
as the number of edges on the paths from the two objects to their least common
subsumer (LCS), also known as the lowest common ancestors (LCA) in tree-like
graphs [8]. The number of edges on the shortest path between the objects and
the number of edges from the objects to their LCS is equal, but the reformulated
description of the problem introduces another similarity measure derived from the
distance between the objects and their LCS. This similarity can be defined as the
relation between the distance of the LCS from the root node and the sum of dis-
tances from the objects to the root. The distance between the root node and other
objects represents the depth of the objects in the ontology graph. Denoted as wup

measure, from the names of the authors that first introduced it, this measure was
first introduced in the context of text terms ontology [93] but can be generalized
to any hierarchical ontology. For two objects x and y in the ontology graph, wup
similarity measure is defined as

WupSimilarity(x, y) = 2 · Depth(LCS(x, y))

Depth(x) + Depth(y)
(1.19)

Another similarity measure obtained by combining both the shortest path dis-
tance and node depth distance [52] can be used for determine similarity between
two objects x and y:

Semantic similarities 9

CombSimilarity(x, y) = e−α·MinPathLenght(x,y) · eβ·Depth(LCS(x,y)) − e−·Depth(LCS(x,y))

eβ·Depth(LCS(x,y)) + e−β·Depth(LCS(x,y))

(1.20)
where α ≥ 0 and β ≥ 0 are user-defined parameters. Parameter α controls the
influence of the minimal path length while the parameter β controls the influence
of the node depth in the ontology tree.

When the ontology information is not available, a large corpus of documents con-
taining information about the objects can be used to infer similarities between the
objects based on their mutual appearances. An example of such an approach is
tf -idf (term frequency-inverse document frequency) vectorization of the text docu-
ments and computing cosine similarity between the document vectors.

tf(d, t) =
f(d, t)∑

t′∈d f(d, t′)
(1.21)

idf(D, t) = log(
N

|t ∈ d : d ∈ D|
) (1.22)

tf -idf(D, d, t) = tf(d, t) · idf(D, t) (1.23)

where tf represents the relative frequency of the term t in a single document d, scaled
by the total number of different terms in the same document. Function f(d, t) is
the frequency of the term t in document d. Function idf is the inverse document
frequency, having a lower value when the term is present in a higher number of doc-
uments. D represents a corpus of documents while N is the number of documents
in the corpus D.

The tf -idf vectorization is based on the term frequencies in the documents. The
term that is frequent in some documents, but not so frequent in others, is a good
representative of the group of documents where it is frequent. On the other side,
if the term is frequent in all documents, such a term does not provide any distinc-
tion between the documents and its significance is low. Special cases of frequent
words without special meaning are stopwords1. Those terms are removed before the
transformation. The terms may come in different forms, singular and plural nouns,
present and past tenses, and similar. To account for the different forms of the same
term, the stemming procedure is performed, reducing all terms to their base form.
The values of the tf -idf vectors are an example of information content (IC), where
the IC of a concept is defined as the information derived from the concept when it
appears in context [18]. A formal definition of the IC is:

IC(c) = −log(p(c)) (1.24)

1Stopwords are defined specifically for each language. Some examples of stopwords in the
English language are: the, a, an, is, has...

10 Introduction

where p(c) is frequency concept c in a given corpus.

If the ontology is also known, the IC value of LCS of the terms can be used for
computing similarity between the objects:

ICLCSSimilarity(x, y) = IC(LCS(x, y)). (1.25)

Analogous to the relation between the path and the wup similarities, the similarity
based on the IC of the LCS can be modified to account for IC of individual objects
[54].

ICLCSSimilarityModified(x, y) = 2 ·
IC(LCS(x, y))

IC(x) + IC(y)
(1.26)

Combining the IC value for the LCS with the path similarity adds support for
weighted edges to path similarity measure. The resulting measure is denoted as
wpath [99]:

WPathSimilarity(x, y) =
1

1 + minPathLength · kIC(LCS(x,y))
(1.27)

where the value k is a configurable parameter dependent on the knowledge graph
implementation and data domain. [18].

tf -idf matrix of a set of documents can be used as input for further analysis, reveal-
ing hidden topics within the documents and the relations between the topics and
words that are the representatives of the topics. The method used for extracting
the topics from the tf -idf matrix is the latent semantic analysis (LSA) [24], which
represents the singular value decomposition (SVD) applied to the text document
data. The decomposition performs a dimensionality reduction, reducing the indi-
vidual words to topics, thus uncovering the latent topics found in documents. The
similarity between two documents can then be computed as the cosine similarity
between two document vectors with values representing weights of the topics in the
given documents, computed using the LSA. LSA transformation starts with a bag-
of-words representation of text documents, where the counts are computed for each
word, regardless of the order of words in sentences. The text is then vectorized to
a count matrix representation, or tf -idf and the LSA transformation attempts to
decompose the text matrix into three matrices, U , Σ and V , where Σ is a diagonal
matrix of singular values of the text matrix and U and V are respectively matrices
of left and right singular vectors of the text matrix. Interpretation of the matrix U
is the weight of the relation of the concepts found in text documents (corresponding
to rows of the matrix U) in relation to individual original documents. Matrix V re-
flects how important individual words in all documents are in different topics found
in the text. The tf -idf matrix can be used for efficient keyword semantic searches
mentioned on page 51.

Related work 11

LSA(DC) = U · Σ · V T (1.28)

where DC is the document count matrix or tf -idf matrix, U is the dimensionally
reduced matrix of document-topic weights, Σ is the covariance matrix and V T is the
matrix of term-topic weights.

If the documents are represented as sets of words, the similarity can be computed
using the Tanimoto coefficient. This approach is useful for performing a keyword
search against a set of documents.

The defined similarities can be combined to derive new similarity measures. The
similarities between the objects can be materialized as weighted edges representing
similarity relations between the object nodes in the knowledge graphs.

1.3 Related work

Current trends show that knowledge graphs are becoming more popular and widely
used in many domains where the semantic search can be applied [41]. Using knowl-
edge graphs for interconnecting data from biological data sources is not a novel idea.
Knowledge graphs are the foundational structure for intelligent health care [92].

There is a broad range of knowledge graphs in the biomedical domain. The Biolink
model [84] defines a data model for biological entities and is used in some open-
source solutions, like ROBOKOP (Reasoning Over Biomedical Objects linked in
Knowledge-Oriented Pathways) [12]. ROBOKOP system offers a knowledge graph
of biomedical data that uses the Biolink model to represent high-level schemas.
Monarch [77] is another open-source initiative with a knowledge graph solution
based on relations between genotype and phenotype from different species and data
sources. The system provides data querying by identifiers and neighborhood rela-
tions but does not enable querying patterns in graph data. Data loading is done
using the Koza data transformation framework [49] maintained by the Monarch ini-
tiative [77]. GeneCard.org [29] provides tools for searching human gene-centric data
aggregated from more than 190 different data sources. Elsevier’s Biology Knowledge
Graph [25] is a commercial, closed-source software solution designed to link biologi-
cal data from multiple sources through manual annotation, automatic generation of
links between data, and natural language processing of research papers.

Natural language processing enables detecting similarities between entities described
using unstructured text. It also enables extracting knowledge from research docu-
ments, classification, and preprocessing text data to create a knowledge base based
on semantic similarities. Transformers [85], deep learning models relying on atten-
tion mechanism [46], are one of the most powerful methods for dealing with vector-
ization of text data. BioBERT [51] is a biomedical language representation model
designed for biomedical text mining tasks. It is a domain-specific adaptation of

12 Introduction

the BERT (Bidirectional Encoder Representations from Transformers) [23] model.
The semantic similarities between entities discovered using natural language pro-
cessing can be used for constructing relation edges in knowledge graphs and further
enriching the knowledge base beyond simple matched identifier links.

1.4 Related topics

The following chapters will introduce the basic premises required for understanding
the bioinformatics data, problems of data unifications, and the proposed solution
for semantic unification and searching of bioinformatics databases.

Chapter 2 will introduce clustering and association rules mining algorithms that can
be utilized to recognize patterns in data and help in deriving semantic similarity re-
lationships between data objects.

Chapter 3 will provide an overview of some of the most representative bioinformat-
ics databases and address the problems of searching the bioinformatics data due to
heterogeneous data schemas, differences in ways of accessing data, and problems
that arise from the existence of multiple different identifiers for the same entities.

Chapter 4 will provide a theoretical insight into the proposed data joining model
which will be a foundation for unifying bioinformatics data and developing the sys-
tem for deriving new semantic similarity relationships between data objects

Chapter 5 will provide details on how the proposed model can be implemented,
along with the system for deriving new semantic similarity relationships from data.

Chapter 2

Cluster analysis and association rules
mining

Due to their importance for finding semantic relations, a separate chapter is assigned
for cluster analysis and association rules mining. This chapter aims to provide an
overview of different cluster analysis and association rules mining methods as well as
metrics for evaluating the quality of the created clusters and association rules. The
clustering methods used for extracting semantic relations in the following chapters
will be explained in more detail.

2.1 Cluster analysis

Cluster analysis is the process of grouping data objects based on information found
only in the data that describes the objects and their relationships. There are two
broad goals of clustering: clustering for understanding and clustering for a given
utility [81]. Clustering for understanding provides insight into natural groups found
by observing similarities between data objects. On the other side, clustering for
utility groups data in a certain way that provides a representation (or abstraction)
of multiple objects in a dataset using clusters that contain them, for a given utility.
Often the key property that guides cluster formation is having higher similarities

between the objects in the same cluster in comparison to similarities between the
objects in different clusters [81]. The choice of similarity and dissimilarity measures
highly influences the quality of clustering results. As no additional user inputs are
required, besides data values or precomputed similarity or dissimilarity values be-
tween the objects, clustering methods are examples of unsupervised learning meth-
ods. Additionally, new object instances can be assigned to existing clusters based
on similarities to other objects from the cluster, thus performing an unsupervised
classification.

13

14 Cluster analysis and association rules mining

2.1.1 Cluster types

The clusters are formed in a way that serves the original purpose of clustering. Due
to differences in the purposes of clustering, there are different types of clusters [81]:

• Well-separated clusters; Elements of a cluster are closer to each other than to
any element from other clusters.

• Prototype-based clusters; Distances between elements of a cluster and a pro-
totype that defines the cluster are smaller than the distances to the prototypes
of other clusters. Examples of cluster prototypes are centroids, for continuous
attributes, or medoids, for categorical attributes.

• Graph-based clusters; Data objects are represented as graph objects intercon-
nected with given relations. Clusters represent induced subgraphs of highly
connected data objects.

• Density-based clusters; Clusters represent dense regions of data objects sepa-
rated by regions of lower density.

• Conceptual clusters; Clusters define groups of objects that share certain prop-
erties. For example, pixels of a black-and-white image can be done based on
the proximity of the pixels of the same color, where the color represents a
shared property.

2.1.2 Properties of clustering methods

There are multiple characteristics of clustering methods that can be used for group-
ing the methods. Based on the existence of a hierarchy between computed clusters,
clustering methods are divided into partitional and hierarchical methods. Parti-
tional methods divide the elements into non-overlapping subsets, while hierarchical
clustering methods create clusters that can contain nested clusters where a data
object may be a member of multiple hierarchically organized clusters.

Some methods can create clusters that are not exclusive but also not hierarchical,
This is the case with fuzzy clustering methods which assign each element to each
cluster with a certain degree of membership. The degree of membership can be seen
as the degree of truth of the fact that an element belongs to a cluster with a value
in the range [0, 1].

While other methods try to assign every element to some cluster, there are cases
where not all data objects can be assigned naturally to any group. Such outlier el-
ements can be detected and specifically labeled by some clustering methods. Based
on those properties, the clustering methods can be divided into partial and com-
plete clustering methods. Complete methods create results where each element has

Cluster analysis 15

to belong to some cluster, while with partial methods elements do not have to be
assigned to any cluster.

2.1.3 Categorization of clustering methods

There is no unique categorization of clustering methods. This section will follow
the categorization provided by Dongkuan Xu and Yingjie Tian [94]. Additionally,
hard distinctions between different categories of clustering methods are not always
possible, since some algorithms share properties of multiple categories. Clustering
methods are divided according to the basic algorithm into 9 categories

• partition;

• hierarchy;

• fuzzy theory;

• distribution;

• density;

• graph theory;

• grid;

• fractal theory;

• model.

Partition-based algorithms

Algorithms based on partition create clusters by grouping points based on their
proximity to a cluster center. Examples of partition-based algorithms are K-Means
[34] and K-Medoids [64]. The time complexity of these algorithms is relatively low,
but they can get stuck in a local optimum. They are also sensitive to outliers’
presence and require a number of clusters to be set as a parameter.

Hierarchy-based algorithms

Algorithms based on hierarchy create hierarchical relationships between clusters.
Construction of hierarchical clusters can be performed bottom-up (agglomerative),
where initially each cluster contains a single object and they are merged until only
one cluster containing all objects remains. Another approach is a top-down (di-
visive) method which begins with one cluster containing all elements and clusters
are divided until each element is contained in an individual cluster. Examples of

16 Cluster analysis and association rules mining

hierarchy-based algorithms are BIRCH [98], ROCK [30] and Chameleon [43]. Algo-
rithms that belong to this category generally have a high time complexity but they
are not sensitive to differences in the shapes of clusters.

The clusters generated using the hierarchical methods are represented using a
tree-like structure called a dendrogram, where the clusters are connected to their
parent clusters using branches and the length of each branch reflects the distance
between the connected clusters.

Agglomerative hierarchical clustering iteratively merges the currently closest clusters
into a new cluster until one cluster remains. The distance between the two objects
can be computed using some of the distance metrics defined in the previous sections.
There are several ways of selecting which two clusters should be merged for being
the closest, based on the linkage type. There are five commonly used linkage types:

• single linkage;

• complete linkage;

• average linkage;

• centroid linkage;

• ward linkage. [91]

Single linkage merges clusters CA and CB by the smallest minimum distance between
the elements in the two clusters:

min{dist(xi, yj)|xi ∈ CA, yj ∈ CB)}. (2.1)

Complete linkage merges the clusters by the maximum distance between the ele-
ments in the two clusters:

max{dist(xi, yj)|xi ∈ CA, yj ∈ CB)}. (2.2)

Average linkage selects two clusters with the minimum average distance between the
elements in the clusters: ∑

xi∈CA,yj∈CB
dist(xi, yj)

|CA||CB|
. (2.3)

Centroid linkage merges clusters with the smallest distance between the cluster
centroids:

dist(cA, cB) (2.4)

where cA and cB are respectively centroids of the clusters CA and CB.

The Ward linkage method merges clusters in a way that optimizes a selected target
function of the resulting cluster. A frequently chosen criterion is the variance crite-
rion where the target function is the variance of the merged cluster, thus the clusters

Cluster analysis 17

are selected for merging in a way that gives the smallest variance of the resulting
cluster.

An example method that performs agglomerative hierarchical clustering is UPGMA
(Unweighted pair group method with arithmetic mean) [59] which uses unweighted
average linkage for merging the clusters.

Divisive hierarchical clustering or DIANA (Divisive analysis) [44] starts with a single
cluster containing all objects of the dataset and iteratively divides the clusters so
that the resulting clusters have the least similarity with each other. The division
process stops when each cluster contains a single object.

Algorithms based on fuzzy theory

Algorithms based on fuzzy theory assign all objects to all clusters with a given
membership level in the range of [0, 1]. Examples of algorithms belonging to this
category are Fuzzy c-means (FCM) [11], Fuzzy c-shells (FCS) [22], and mountain
method clustering (MM) [95]. The time complexity of these algorithms is low on
average, but they require a preset number of clusters and are highly sensitive to
parameter selection.

Distribution-based algorithms

Algorithms based on distributing group objects by the distribution from which they
most likely originate. An example algorithm from this category is the Gaussian
Mixture Model (GMM) [70], where it is assumed that points originated from several
Gaussian distributions. These algorithms have a reasonably high time complexity
but are very sensitive to the selection of the base parameters and the underlying
distribution assumptions. However, the results of these algorithms may reflect the
true probabilities of elements belonging to different clusters.

Density-based algorithms

Densely colocated points are recognized as clusters by algorithms based on density.
A data point is considered to belong to the same cluster as the points within its
same-density neighborhood. Examples of the algorithms belonging to this category
are DBSCAN [26] and OPTICS [4]. The main problem with these algorithms is
high sensitivity to different density clusters and parameter selection which may
result in bad clustering results. Their time complexity is reasonably high but their
memory complexity can become very high. The good side of these algorithms is
their adaptability to data of arbitrary shape.

18 Cluster analysis and association rules mining

Algorithms based on graph theory

Algorithms based on graph theory consider data objects as graph nodes where
the edges between them represent relationships between the nodes, such as
high-similarity relations or closest neighbors. Some of the algorithms belonging
to this category are spectral clustering [55], which will be described in detail,
MST-based (minimum spanning tree) clustering algorithms [40], and CLICK [7].
These algorithms produce very good clustering results but the time complexity
quickly grows as the graph becomes more complex.

The spectral clustering algorithm is a graph-based clustering algorithm, suitable
for high-dimensional data and clusters of arbitrary shapes. The main idea of the
algorithm is mapping data objects to a lower-dimensional embedding, also known
as spectral embedding, and performing the K-Means algorithm on the mapped
values.

The algorithm starts with a sparse graph adjacency matrix of data objects. The
graph is commonly constructed as a neighbor graph, where each node, representing
a data object, has edges connected to its k nearest neighbors following a selected
proximity measure. A value in the adjacency matrix at index (i, j) indicates
proximity between objects i and j. Let A be a symmetric adjacency matrix of a
graph:

A =

a11 ... a1n
...

an1 ... ann

 (2.5)

Elements aij are weights of the relations between nodes i and j, where diagonal
elements aii are equal to zero. With diagonal matrix D, defined as:

D =

∑n

j=1 a1j ... 0
...
0 ...

∑n
j=1 anj

 (2.6)

Di,j =

{
0, i ̸= j∑n

k=1 ai,k, i = j
(2.7)

a Laplacian matrix L of the adjacency matrix A is computed as:

L = A−D =

−
∑n

j=1 a1j ... a1n
...

an1 ... −
∑n

j=0 a1j

 (2.8)

Cluster analysis 19

For the matrix L, eigenvalues λ and eigenvectors v are computed. The eigenvalues
and eigenvectors satisfy the equation:

Lv = λv. (2.9)

The Laplacian matrix L is symmetric, positive semi-definite, and all eigenvalues
are non-negative. Eigenvalues sorted in ascending order represent a spectrum and
eigenvectors sorted in ascending order by their respective eigenvalues represent em-
beddings of the original data values. The first k eigenvectors are selected to construct
a matrix V . Finally, the K-Means algorithm is applied to matrix V for finding k

clusters in new reduced space.

Grid-based algorithms

Algorithms based on a grid map the data objects to a multi-resolution grid, quan-
tizing the attribute into predefined grid fields. Examples of the algorithms from this
category are STING (Statistical Information Grid in Data Mining) [90] and CLIQUE
(Clustering in Quest) [2]. The time complexity of these algorithms is lower and their
execution can be parallelized, but the grid resolution has a high impact on the qual-
ity of the clustering, requiring a proper balance between the quality of the results
and time complexity.

Algorithms based on fractal theory

Fractal-based clustering algorithms utilize the fractal properties where subsets can
share the same properties as a whole set. An example of an algorithm that belongs
to this category is FC [5] algorithm. The time complexity is low for fractal-based
algorithms with low sensitivity to outliers and adaptability to arbitrary shapes of
clusters. However, for the best efficiency of the algorithm, data has to satisfy the
fractal property. Fine-tuning algorithm parameters is also a critical requirement.

Model-based algorithms

Algorithms based on models are based on the assumption that different clusters are
formed following different underlying models. These methods can be divided into
methods based on statistical learning methods and those based on neural network
learning methods. Statistical learning methods are closely related to distribution-
based methods, which is why the GMM method is also a member of this category.
Self-organizing maps (SOM) [47] is a model based on unsupervised neural network
methods and associates data objects and clusters with nodes of a neural network.
A wide variety of model-based methods suitable for various specific use cases are
available, although their time complexity is generally high and they highly depend
on the choice of parameters.

20 Cluster analysis and association rules mining

2.1.4 Measuring quality of clustering results

All clustering methods can discover some clusters or outliers in a given dataset even
if there are no naturally defined groups in the data. That is why it is essential
to define metrics that can be used to analyze the quality of clustering results and
determine if data has a clustering tendency in the first place.

Determining the clustering tendency of data can be performed by analyzing the data
distribution. If the data objects are distributed randomly, following a uniform distri-
bution, the clustering tendency is very low. This is the core assumption of a Hopkins
statistic [35] that compares data distribution against the uniform distribution. To
compute the statistic, k points are generated and randomly distributed in the space
of the data objects. For each randomly generated point xi, value ui represents the
distance between xi and the closest neighbor object from the original dataset. A
value wi is defined as the closest distance between objects yi from a k-size sample
of the original dataset and their closest neighbors in the original dataset. Finally,
Hopkins statistic H is defined as:

H =

∑k
i=1 wi∑k

i=1 ui +
∑k

i=1wi

(2.10)

Values of the Hopkins statistic close to 0.5 indicate a low clustering tendency, while
values close to 0 or 1 indicate a highly clustered dataset and data that are regularly
distributed in the data space, respectively. Evaluating the statistic multiple times,
by generating different sets of random objects, and computing the average H value
gives more stable results.

There are two types of techniques for evaluating clustering quality:

• unsupervised techniques;

• supervised techniques.

Unsupervised techniques for evaluation of clustering quality

Unsupervised techniques evaluate the quality of clustering based on the properties of
data and do not require external inputs. A general approach to evaluating clustering
quality estimates how close the objects in clusters are in relation to distances between
the points in different clusters. Smaller intracluster distances and bigger intercluster
distances are good indications of higher-quality clustering. A quality measure that
relies on intracluster distances is cohesion, while a measure that relies on intercluster
distances is separation. The overall quality of the clustering can be expressed as a
weighted sum of the validity metrics for each cluster, where a validity metric can be
cohesion, separation, or a combination of both. If data is represented as a graph,
where data objects are nodes and proximities between data objects are expressed as

Cluster analysis 21

weighted edges, the cohesion of a cluster Ci is defined as:

cohesion(Ci) =
∑

x∈Ci,y∈Ci

proximity(x, y) (2.11)

while the separation between two clusters Ci and Cj is defined as:

separation(Ci, Cj) =
∑

x∈Ci,y∈Cj

proximity(x, y) (2.12)

If the clusters are prototype-based clusters, with prototypes c1, c2, ..., ck respective
for each of the k clusters, the cohesion of a cluster Ci is defined as:

cohesion(Ci) =
∑
x∈Ci

proximity(x, ci) (2.13)

and the separation between two clusters Ci and Cj is defined as:

separation(Ci, Cj) = proximity(ci, ci) (2.14)

An overall separation value of all prototype-based clusters can be defined as:

separation(Ci) = proximity(ci, c) (2.15)

where c is a prototype of the entire dataset.

For points in Euclidean space, a commonly used cohesion metric for a cluster Ci is
a sum of squared errors (SSE), defined as:

SSE(Ci) =
1

2|Ci|
∑

x∈Ci,y∈Ci

dist(x, y)2 (2.16)

This metric is a good choice for globular clusters in Euclidean space, but not ap-
propriate for clusters of arbitrary shapes, like the ones found using density-based
clustering methods. The SSE metric can also be used for visual estimation of the
number of clusters in data. The clustering algorithm is performed for every value of
the parameter setting the target number of clusters in range [2,M], where M is a
user-defined parameter. For each clustering result, the SSE metric is computed and
the result is plotted as a point on a chart with coordinates (k, SSE(Ck)), where k is
the number of clusters in the current clustering and SSE(Ck) is the average value
of the SSE metric for clusters in the current clustering. A k coordinate of a point on
a chart, visually recognized as an “elbow” point, where the decrease of SSE values
is noticeably lower compared with the previous points is a good estimation of the
number of clusters in data. The method is subjective and not always applicable but
gives a good base estimation.

Another commonly used metric is the silhouette coefficient [44], which combines
both cohesion and separation by computing the ratio between intracluster distances

22 Cluster analysis and association rules mining

and intercluster distances for each point. Let ai be the average distance between
object xi and every other object belonging to the same cluster as xi and let bi be
the average distance between the object xi and all other objects from other clusters.
Silhouette coefficient for the object xi is defined as:

si =
(bi − ai)

max(ai, bi)
(2.17)

Values of si are in a range [−1, 1], where values close to 1 indicate that the object xi

is close to other objects from its own cluster and distant from the objects from other
clusters. Negative values indicate a bad cluster label of the object xi. The silhouette
coefficient for the entire clustering can be expressed as an average silhouette score
for each object in the dataset.

In the case of hierarchical clustering, a cophenetic distance measure can be used
for evaluating the quality of clustering. Cophenetic distance between two objects,
clustered using agglomerative hierarchical clustering, is the proximity at which the
algorithm adds the objects to the same clusters the first time. If two clusters are
merged at distance d, then the cophenetic distance between any objects in one clus-
ter and any objects in the other cluster is d. A matrix of all pairwise cophenetic
distances between objects can be used to compute the cophenetic correlation coeffi-
cient (CPCC) [27] as a correlation between the cophenetic distances matrix and the
distance matrix used for performing the hierarchical clustering.

Supervised techniques for evaluation of clustering quality

Supervised techniques are techniques that require external inputs to accompany
data, such as class labels. If the correct labels are known, clustering quality eval-
uation represents evaluating the overlapping degree between assigned cluster labels
and true labels. More homogeneous clusters, in relation to true labels of objects
within them, indicate better clustering.

Entropy is a measure that evaluates the level of disorder. If clusters are seen as
sets of true labels of data objects contained within them, entropy can be used to
evaluate the homogeneity of the cluster. For a cluster Ci and L possible class labels,
entropy is defined as:

e(Ci) = −
∑
j∈L

pijlog2(pij) (2.18)

where pij is the probability of class j in cluster Ci. A perfect clustering should result
in the best entropy score for each cluster. More precisely, the entropy of the entire
clustering is evaluated as the sum of entropy values for each individual cluster.

Purity measure uses the notion of probability pij of a label j within a cluster Ci and
evaluates the homogeneity of a cluster as:

purity(Ci) = maxjpij (2.19)

Association rules mining 23

The purity of clustering with K clusters is defined as a weighted sum:

K∑
i=1

|Ci|
|D|

purity(Ci), (2.20)

where |D| is the total number of objects in the dataset.

Precision and recall measures, defined as:

precision(Ci, j) = pij, (2.21)

precision(Ci, j) =
|{x ∈ Ci|label(x) = j}|∑K
l |{y ∈ Cl|label(y) = j}|

(2.22)

and
recall(Ci, j) =

mij

mj

(2.23)

where mj is the number of objects in class j, can be combined into F measure
defined as:

F (Ci, j) =
2 · precision(Ci, j) · recall(Ci, j)

precision(Ci, j) + recall(Ci, j)
. (2.24)

The F measure is suitable for evaluating the quality of hierarchical clustering as a
weighted sum:

F (Ci, j) =
L∑
j

|Cj|
|D|

maxiF (Ci, j) (2.25)

where |D| is the number of objects in the entire dataset.

In special cases, where there are two clusters and two external labels, the Jaccard
coefficient, defined in the section on similarity measures, can also be used for eval-
uating the quality of clustering, comparing the ratio of matched cluster-label pairs
against the overall number of non-0-0 matches.

2.2 Association rules mining

With data containing information about items included in different transactions,
it is often needed to determine which items are often found together in the same
transactions. The described problem is commonly described as determining which
products are commonly found together in shopping carts, but it can be generalized
to analyzing different types of itemsets.

Association rules are defined as expressions X −→ Y where X and Y are itemsets.
The two itemsets X and Y are disjoint. Itemset X is called antecedent and itemset
Y is called consequent. The interpretation of the rule can be described as: “If the
itemset X is a subset of a transaction itemset, then the itemset Y is probably a
subset of the transaction itemset”. A frequent itemset that can not be extended

24 Cluster analysis and association rules mining

without reducing its frequency is called a maximal frequent itemset.

For a rule X −→ Y to be labeled as interesting, the union of itemsets X and Y

needs to be frequent. This means that the items found in the union are frequently
found together in the same transactions. The measure of the frequency of the rule
itemsets is called support, defined as:

support(X −→ Y) =
|X ∪ Y |

|T |
, (2.26)

where T is the set of all transactions. Not all frequent itemsets are considered
interesting. If the itemset X is present in all transactions in the dataset, many rules
in a form X −→ Y may be statistically common but there is nothing unexpected in
them to make them interesting. However, if X is a common itemset and itemset Y

is frequent in most of the transactions along X, then X −→ Y may be considered as
interesting. A measure that expresses this property numerically is called confidence,
defined as a percentage of transactions containing itemset X and Y in relation to
all transactions where the X is present:

confidence(X −→ Y) =
support(X ∪ Y)

support(X)
(2.27)

Another way to label a rule as interesting is by evaluating the probability of a rule
X −→ Y being randomly generated from the available itemsets X and Y if the
itemsets were independent. The measure of this property is called lift, defined as:

lift(X −→ Y) =
support(X ∪ Y)

support(X) · support(Y)
(2.28)

Finding the frequent itemsets as candidates for the interesting rules can be done
by generating all possible itemsets and computing their support using a brute force
method. However, there are 2n possible subsets of a set with n elements and the
direct approach for enumerating all possible subsets is not computationally feasible
for bigger sets. The algorithms that search for frequent subsets use minimum support
thresholds to identify and discard infrequent itemsets and their supersets.

2.2.1 Apriori algorithm

The Apriori algorithm [1] for finding frequent itemsets is based on the apriori princi-
ple, which states that if some itemset is frequent, then every subset of this itemset is
also frequent. As a consequence, if some itemset is not frequent, then any superset
of this itemset is not frequent.

The parameter that specifies the support threshold defines a lower limit of support
for an itemset to be considered frequent. The algorithm generates a graph structure
called a lattice starting with an empty itemset and iteratively generating the lattice

Association rules mining 25

level by level. Items in every itemset in the lattice are sorted in lexicographic order.
The itemsets on level k + 1 of the lattice are generated by joining the itemsets from
the level k which have equal first k − 1 items in itemsets.

If the new itemset fails the minimum support criterion, neither the itemset nor any
of its direct supersets are not included in the lattice. Another condition that could
be set for the algorithm to focus and speed up the search is the maximum allowed
size of the itemset.

The traversal of the lattice performed by the apriori algorithm resembles the breath-
first search (BFS) traversal of the graph. To reduce the cost of storing the frequent
itemsets, only maximal frequent itemsets should be stored.

2.2.2 FP-growth algorithm

The FP-growth (Frequent pattern growth) algorithm [32] skips the candidate gen-
eration using the lattice, as seen in the apriori algorithm. The algorithm consists of
two steps where the first step generates an auxiliary tree structure, called an FP-
tree, for storing frequent items. The items are collected from all transaction itemsets
found in the dataset. Individual items with support lower than the minimum sup-
port threshold are discarded. Transactions containing only subsets of the remaining
items are collected and their itemsets, represented as lists, are sorted descendingly
by the global frequency of the items in the itemset.

Collected itemsets are mapped to the FP-tree tree nodes, starting from the empty
root and adding items from the transactions in the sorted order as new nodes on a
path from the root. When a new node is added, a count value associated with the
node is initialized to one. Each time an existing node is visited during the mapping
process of the itemsets to nodes, the visited node’s count value is increased by one.
The tree nodes are linked to other nodes in the tree representing the co-occurrence
of the items in the itemsets.

The second step of the algorithm is collecting the frequent itemsets by traversing the
FP-tree starting from the root in a DFS manner. The frequent itemsets represent
individual paths from the root to leaves in the FP tree.

26 Cluster analysis and association rules mining

Chapter 3

Searching bioinformatics databases

Bioinformatics databases are mutually very heterogeneous. The differences between
databases can be found in data source domains, data structures for representing
data, sets of data attributes and their data types, formats for storing and delivering
the data, and ways of accessing the data. All these differences make data searching
challenging, especially when the data needs to be retrieved from multiple databases
and have the query results combined.

3.1 Primary and secondary databases

Bioinformatics data primarily comes from biomedical domains. Each domain fa-
vors a different set of domain-specific databases, resulting in a large number of
databases with little or no connections between them. Currently, there are more
than 6000 bioinformatics databases cataloged in Database Commons [56] archive.
The databases can be classified into two broad groups: primary and secondary
databases. The primary databases act as repositories of raw data from individual
experiments, while secondary databases contain data that is created based on the
analyses and annotations of the data entries in primary databases. Each domain

has a group of referent primary databases for depositing the raw data from ex-
periments. Commonly used primary databases for storing nucleotide sequences are
GenBank [9], DNA Data Bank of Japan (DDBJ) [82], Ensembl [37], and EMBL
[42]. Primary protein sequence records can be found in UniProt [21] database while
data regarding protein structure can be found in Protein Data Bank (PDB) [17].
However, the UniProt database also contains secondary protein data. Primary gene
expression data can be found in NCBI Gene Expression Omnibus (GEO) [6] and
gene expression data specifically from immune cells can be found in Database of
Immune Cell EQTLs (DICE) [31]. Secondary databases can combine entries from

multiple primary databases and provide a broader view of a certain domain. Signal
pathway databases, such as Some other examples of secondary databases are the
Database of Disordered Proteins [89] (DisProt), containing disorder information of

27

28 Searching bioinformatics databases

intrinsically disordered proteins, Immune Epitope Database [39] (IEDB), containing
information on immune epitopes, and STRING database [80], containing data on
protein-protein networks.

3.2 Identifiers of bioinformatics data

Biological entities stored in separate databases may still be identified using shared
identifiers. Proteins are commonly identified using the accession identifiers from
UniProt [21] database or using a gene identifier of the protein’s source gene. Genes
are often identified using their symbols or identifiers in one of the referent databases
such as NCBI Gene [15], EMBL [42] or Ensembl [37]. UniProt accession identifiers
are unique identifiers assigned to each protein sequence included in the UniProt
database. As one protein may be sequenced in multiple experiments, each sequence
is assigned a unique identifier, even though the primary sequence of the protein is the
same. Therefore, one protein entity may have multiple UniProt accession identifiers.
Gene symbols can identify genes but do not differentiate between the orthologs in
different organisms. NCBI Gene identifiers are different for each gene from each
organism. Ideally, each database containing gene entity data should provide the
NCBI Gene identifier to remove any ambiguity, but, unfortunately, that is not the
case. Diseases can be identified using Concept Unique Identifiers (CUI), as well as

other, non-disease concepts. Overall, even if there are identifiers that are shared
between multiple databases, it does not mean they are the only or even unique,
identifiers for individual entities. Nucleotide and protein sequences are identified
using accession numbers in their respective databases. There are identifiers that
encode additional information, rather than being unique random values. Ensembl
identifiers are commonly used for identifying genomic sequences in gene expression
experiments, but can also be used for identifying proteins, transcripts, or exons.
Determining the entity type behind the Ensembl identifier can be achieved using
the fact that the Ensembl identifier follows a strict structure, where one letter of
the identifier encodes the entity type. For example, the letter G, found on the
fourth position of the identifier ENSG00000141510 encodes gene entity type while
identifier ENST00000509496.1 represents a transcript (T) identifier. Additionally,
the Ensembl identifiers of objects that are of non-human origin also encode the
species reference using three-letter codes. The identifier of a gene sequence (G)
of the TP53 gene from species Canis lupus familiaris (CAF) has a format of
ENSCAFG00000016714.1. Unfortunately, Ensemble identifiers are used only in the
domain of protein and genetic sequences and not as general-purpose identifiers for
arbitrary biological entities.

Storing bioinformatics data 29

3.3 Storing bioinformatics data

There are no strict rules on how bioinformatics data should be stored. The way
of storing and organizing the data is highly dependent on the data type, size, and
intended way of accessing the data. It is important to note that the underlying
database used for data storage does not necessarily induce the format of the retrieved
data. A database management system for storing data may be a relational database,
but the data can be retrieved in JSON or even CSV format. Some databases pro-
vide REST (REpresentational State Transfer) API1 [61] for accessing and querying
the data, while others may allow downloading whole datasets in CSV or TSV file
format. On the other hand, there are databases that do not explicitly allow data
downloading but can display data on a web page that can only be downloaded in
raw HTML format scraped, requiring additional processing before being ready for
querying and analyzing. Another commonly used format for the internal represen-
tation of databases, especially for knowledge databases supporting semantic search
are RDF [57] triplets, consisting of subject, relation, and object. Besides general-

purpose data formats, such are JSON, CSV, and TSV, there are specialized data
formats that require specialized parsers. Examples of such specialized formats are
PDB (Protein DataBase) text format for representing the 3D structure of proteins,
and SOFT (Simple Omnibus in Text Format) and MINiML (MIAME Notation in
Markup Language) formats that are used for describing gene expression data found
in NCBI GEO (Gene Expression Omnibus) [6]. Gene and protein sequences can
be stored in FASTA and GenBank text formats, where FASTA is the basic format
for text sequence representation while GenBank format supports additional annota-
tions of the sequence segments as well as metadata regarding the sequence source,
authors, and related organism taxonomy. Similar to FASTA, the FASTQ format is
used to represent raw reads from sequencers. Specialized searching methods have
been developed for searching DNA and protein sequence databases. The most pop-
ular searching method is BLAST [3], which performs efficient alignments between
query sequences and sequences stored in the database.

3.4 Accessing and searching bioinformatics data

Many bioinformatic tools, such as NCBI E-utilities [73], can be run as command-
line applications. A more user-friendly way of accessing data from bioinformatics
databases is using a graphical user interface exposed through the database website.
Users navigate through the interface using a Web browser and input queries in the
input fields of the interface. For collecting small amounts of data for specific pur-
poses, the graphical interface is the simplest way of accessing and querying the data.
The queries can be keyword-based, where the user specifies a list of keywords that

1Application programming interface

30 Searching bioinformatics databases

are independently matched with the database records, and the results are sorted
based on the number of matches. This approach is useful when searching by entity
identifiers. Another type of querying is by using structured queries, where the user
specifies the query using strictly defined language rules. One of the structured lan-
guages used in bioinformatics databases is SPARQL [66]. Finally, some databases
support natural language queries, where the user inputs the query in free form, using
natural language.

Manual searching for data from multiple databases and combining the results is a
difficult and time-consuming task. Automation of the data access is enabled us-
ing database APIs. Databases often expose the APIs for searching the data using
HTTP requests which enables implementing applications in arbitrary programming
languages with the ability to access data from a remote application using a general-
purpose protocol. In some cases, API responses may be difficult to parse, due to
specificity in the response structure and data format of the received payload. To
help with programmatical access to individual bioinformatics databases and inter-
preting specialized data formats, programming libraries were developed for some
of the most commonly used programming languages in the bioinformatics domain.
BioPython [19] library enables parsing and processing various bioinformatics data
formats using Python programming language and also enables API access to services
such are BLAST and Exonerate [79]. Entrezpy [16] library for Python programming
language allows programmatical access to Entrez [74] databases. Ensembl provides
Perl language API [96] for accessing their databases. BlasterJS [13] is a JavaScript-
based library for interactive visualization of BLAST alignment results.

Research articles also represent a data source that can be used for extracting use-
ful information. The articles are often used as inputs for text mining and natural
language processing algorithms for extracting knowledge from text data. Data from
the articles can be seen as a meta-source utilizing summarized results and comments
from multiple analyses in different biomedical domains without interacting with the
raw data of the individual experiments. Text descriptions of biological entities and
their interactions derived from the articles give meaning to the biological entities
mentioned in texts in various circumstances, observed from many angles. The ac-
quired information, in the form of relations between the entities in different contexts,
can be used for constructing a knowledge base, giving a more generalized view of
the mechanisms where the entities are involved, instead of analyzing the entities on
the individual level. Such relations can also be discovered not only from the text
attributes but also from general metadata related to the entity using a variety of
data mining algorithms.

Searching data from multiple databases is possible only by querying each individ-
ual database and combining the results into a final, joint result. To enable such
simultaneous searching and seamless joining of the query results, one approach is to

Accessing and searching bioinformatics data 31

create a generalized searching method that can be mapped to each data querying
method of the individual databases. The first problem with such an approach is the
continuous maintenance of the query method adapters, which may become obsolete
with every update of the database API, thus breaking the system until the new
adapter is developed. The second problem is the lack of joint data indexing and
cross-database queries that would enable query optimizations, which can result in
significantly slower queries due to separate steps of data fetching and data joining
without efficient use of indexes.

32 Searching bioinformatics databases

Chapter 4

New Data Joining Model Proposal

Bioinformatics data stored in separate databases, with heterogeneous data schemas
and formats, are not suitable for direct use in semantic searches. The bioinformatics
databases also include metadata, or data about data, which provides additional
context to the data entries. The bioinformatics data represent results from biological
experiments, nucleotide and protein sequences, expression profiles, and similar, while
metadata contains information such as collection date, location, descriptions of the
analysis steps, additional notes, and comments. This thesis will primarily focus on
utilizing metadata for semantic searching but also providing the ability to access the
data itself.

The key motivation for this decision is creating a lightweight indexing network for
finding relations between data objects that are stored in the original databases,
instead of collecting all data. The second reason to choose metadata is the richness
of the information contained in metadata valuable for detecting semantic similarities,
in relation to data. Information on how a certain gene interacts with other genes is
more valuable for understanding the semantic similarities between genes than the
raw nucleotide sequence. And finally, the third, practical, reason to focus more on
metadata instead of data is the differences in their size in the general case. The
data objects, such as nucleotide and protein sequences may have a size of hundreds
of megabytes or more, as well as high-resolution images from biomedical domain
or crystallography experiments. On the other side, metadata size is commonly
expressed in hundreds of kilobytes or a few megabytes. Because of that asymmetry
in size, maintaining the metadata database in a local environment on a workstation
computer is much more feasible than storing copies of all data objects.

Efficient searching of unified metadata requires a specialized database for storing
the unified metadata. Such a database also requires a specific data model. Such a
model should be as general as possible to properly map and store metadata from
diverse data schemas found in the original databases. Besides storing metadata, the
model needs to provide a foundation for efficient searching, by having a structure
that allows efficient use of indexing. Finally, the model should be database agnostic

33

34 New Data Joining Model Proposal

so that it can be implemented by an arbitrary DBMS.

Biological data contains information about biological entities and their properties.
Those entities were recognized as the primary building blocks of the new model called
BioGraph. An important remark is that the name of the model, unintentionally,
matches the name of an unrelated project in a different domain [53]. Entities are
not isolated objects but are highly interconnected in many ways. The relations
between the entities have various origins, from biological processes to taxonomical
relations and mutual similarities. The association of entities from multiple datasets
is enabled by connecting relation paths among them. As many types of entities
exist, creating specific model schemas for each biological entity and their relations
is inefficient on the level of model definition. It violates the requirement of unified
representation, and there is no feasible way of predicting all future properties and
relations associated with every entity type. That is why the decision was made to
design a model that enables storing metadata of arbitrary entity types in a generic
form. Details regarding entity type-specific information are delegated to higher-level
data schemas. It is essential to mention that the model links metadata related to
biological entities in a way that can be used for efficient data location and retrieval
from the original data sources. An example of gene metadata might be its identifier,
while the data is a DNA sequence representing the gene. The gene sequence is not
handled by the model but can be easily retrieved directly from the external source
database, such as the NCBI gene, using the metadata linked in the model. The
model structure and its implementation are published in [88]

4.1 BioGraph data model

The proposed model consists of three object types – entity objects, identifier ob-
jects, data objects, and relations that connect the objects. Model objects and their
individual relationships are shown in Figure 4.1. Metadata is loaded from arbitrary
data formats, from which entities, identifiers, and data objects are extracted along
with respective relations. The extracted objects and relations form a unified knowl-
edge graph where all relations are represented as directed edges of the graph. An
example of a network of biological objects from five different sources (DisProt[89],
DisGeNET[68], Tantigen[97], IEDB[39], and HGNC[75]) represented using the Bio-
Graph model elements is displayed in Figure 4.2.

BioGraph data model 35

Figure 4.1: A schema of the BioGraph model. Entities of specified types, identified
using primary identifiers, have connections with all of their identifiers and data objects, as
well as with other entities. The identifier objects contain information about the nature of
the identifier and the identifier values, while data objects store metadata collected from
datasets along with the label of the dataset source. Relations between entities are defined
using the relation type and additional data that can further explain the nature and strength
of the relationship.

4.1.1 Entity objects

Biological entities have different types. Some are associated with biological func-
tions, like genes or proteins, while others can be more general, like habitats and
coverage areas. Regardless of the type, at least one unique identifier can be assigned
to each entity, denoted as a primary identifier. When multiple unique identifiers ex-
ist, an identifier shared among most biological databases is selected as the primary
identifier. An example of a primary identifier for a gene entity is a gene name. It
is important to note that the data model is not restricted to human genetic data,
but can also support data from arbitrary biological domains regardless of the data
source. Entity type names and primary identifiers were used to construct entity
objects in the BioGraph data model. An entity object represents a single biological
entity. The same entity objects can be found in different databases. For each entity,
idealy, only one entity object is created. In some cases, no identifiers in a dataset
are used in any other database. In those cases, a new entity object is created,
which can be subsequently connected to the other objects representing the same
entity using “IS EQUAL TO” relation. Figure 4.2 shows concrete examples of bio-
logical objects (sourced from DisProt (Disorder Protein database) [89], DisGeNET
(Disease Gene Network) [68], Tantigen 2.0 [97], IEDB (Immune Epitope Database)
[39], and HGNC (HUGO Gene Nomenclature Committee) [75] datasets) and their
relations. Five different entities are in blue boxes along with their type label and
primary identifiers. Those entities, with their respective primary identifiers, are gene

36 New Data Joining Model Proposal

“CDKN1A”, protein “P38936”, disease “C0038356”, antigen “Ag002102”, and epitope
with the sequence “FAWERVRGL”.

Figure 4.2: Network of objects from five different sources (DisProt, DisGeNET, Tantigen
2.0, IEDB, and HGNC) represented using the BioGraph model. The example shows protein
data collected from DisProt dataset, with identifiers assigned by DisProt and UniProt along
with disorder content value. Gene data, collected from HGNC dataset, is connected with
protein data from DisProt dataset assigning the gene NCBI identifier. Disease data from
DisGeNET is connected to the corresponding gene with an assigned relation score from
DisGeNET dataset. Tantigen 2.0 and IEDB datasets add context to the antigen nature of
the gene, including information on the epitope of the antigen.

4.1.2 Identifiers

All available entity identifiers, including the primary identifier, are collected and
represented in the BioGraph model using identifier objects. The identifier objects
are connected to their respective entity objects using identifier relations labeled as
“HAS ID” relations. Each identifier contains information about the identifier type,
title, and value. The identifier type defines the nature of the identifier. The model
proposes three types of identifiers – a name, a URL, or a generic identifier without
any specific type. The identifier title is used to determine the meaning of the iden-
tifier, such as “gene name” or “NCBI ID”, which can also be useful when an external
application displays the data from the model. Finally, the third component of the
identifier contains a value of the identifier stored as a string data type. One identifier
can be shared between multiple entities, so one identifier object can be connected
to multiple entity objects. Additionally, one entity object may also have multiple
identifiers. Identifiers do not list the source database from which they originated,
as one identifier can originate from multiple databases but represented using only
one identifier object. Figure 4.2 shows six identifiers in yellow boxes, connected to

BioGraph data model 37

five entities. The example protein entity is connected with two identifiers, where
“P38936” is the identifier of the protein in the UniProt database (also used as a
primary identifier) and “DP00016” is the identifier of the same protein in DisProt
database.

4.1.3 Data objects

Besides identifiers, datasets may contain additional metadata about the entities,
like protein regions, location coordinates, or gene positions on chromosomes. Those
metadata values can be stored in data objects, along with the source label so that
the metadata can be easily tracked and verified against the original dataset. Data
objects, which contain entity metadata other than identifiers, are associated with
their respective entities using data relations labeled as “HAS DATA”. One entity
object can contain multiple data objects, with metadata originating from different
databases. Also, one data object can be shared between multiple entity objects. A
unified representation of a data object, compatible with most of the DBMS software
is a key-value representation, where the keys are attribute names and values are the
values of the corresponding attributes. In relational database management systems,
key-value pairs can be stored in a data object table or in attributes with JSON data
type. Example in Figure 4.2 shows data objects that provide additional information
to entities. Data object connected to protein entity contains disorder content value,
gene metadata contains gene location on chromosome, disease metadata contains
disease type annotation, antigen metadata contains the full name of the antigen,
and epitope data contains type annotation for the epitope.

4.1.4 Entity relations

Relations can also exist between entities. A protein can be associated with its
source gene, and a gene can be associated with the chromosome. As the entity
relations are various, they are defined for each specific use case, but a general
structure of an entity-entity relation is supported by the model. All relations in
the proposed model share the same structure. The structure of a relation contains
relation type, “derived” flag indicating if the relation is a similarity relation derived
from data using data mining algorithms (explained in the following sections) and
key-value pairs of metadata associated with that relation. A relation between genes
and diseases has a certain score, which is a value associated with the relation and
not with the individual entities. Therefore, the disease relation score for a gene has
to be stored in a key-value pair of the gene-disease relation. The basic relationships
between entities are shown in Table 4.1. The relations between entities are dynamic,
meaning that new relations can be defined and added in updates without affecting
the existing data. A pair of entities can share multiple relations.

38 New Data Joining Model Proposal

4.1.5 Duplicate entries

Duplicate entries can have a negative impact on search results and overall per-
formance. An object or relation is considered a duplicate when its entire content
matches the content of an object or relation that is already stored in a database. An
entity object contains a primary identifier and an entity type. If two entity objects
share the same primary identifier, there are two possibilities: the two objects also
share the same entity type – it is a duplicate object and only one representation
should be stored in the database; the two objects have different entity types – both
objects should be stored in the database. The entity objects in the example should
also be connected with “HAS ID” relations to the respective identifier objects storing
the primary identifier value. As the identifier objects are duplicate entries, in this
case, only one identifier object should be stored while both entity objects should
point to it with their “HAS ID” relations.

To detect duplicate entries, the proposed model assigns specific identifiers to objects
and relations based on their content. The method for generating such identifiers is
called content addressing. Data stored in an object or relation is serialized to a
string representation, containing all object and relation information, and mapped
to a value from a large interval using a hash function, such as SHA256[33]. In the
example of an entity object, both entity type and primary identifier are used in
hashing. The probability of having multiple different data objects mapped to the
same value, also known as hash collision, using an industry-standard hash function
is very low. If the same object is serialized and hashed multiple times, it will always
result in the same value. The processing of hash collision where the objects are
different is not currently implemented in the system, as it is a highly unlikely event,
but the proposed solution includes adding specific salt values to objects which are
by default set to 0 value and incremented for the objects that are in collision with
the existing objects in the database.

4.1.6 Data updates

Thanks to an efficient handling of duplicate entries, updating the data can be easily
performed by inserting new data objects and relations. All duplicate entries will be
ignored while the relations will still seamlessly connect to all newly stored or already
existing objects in the database.

4.1.7 Mapping BioGraph model to graph and relational
database

The BioGraph data model is designed to be database agnostic, meaning that it
can be implemented using any database management software. Although graph
database systems are the most suited for the model implementation, this section

BioGraph data model 39

will describe the versatility of the model by mapping it to a relational database
model, but a similar pattern is utilized for implementing the data model using a
graph database where tables are replaced with nodes of different types. The model
objects (entities, identifiers, and data objects) can be represented as graph nodes in
a graph database system while the relations are naturally represented using graph
edges. The relational database can also be used to represent graph-like structured
data by having tables “Node” and “Relation”. As there are three different types of
nodes, each type is represented using individual tables related to the “Node” table
as a specialization of the generic nodes. Attributes of the entity, identifier, and data
nodes are defined in their respective tables while the identifier attribute “id” in the
specialized tables matches the identifier of the generic node in the “nodes” table.
A diagram of the proposed mapping is shown in Figure 4.3. Data node attribute
containing key-value pairs is represented using JSON-type attribute. Relations have
two foreign keys, “from_node_id” and “to_node_id”, representing identifiers of the
end nodes of the directed relation.

Figure 4.3: Diagram of the BioGraph data model mapped to a relational model.

40 New Data Joining Model Proposal

4.1.8 Efficient indexing

Proper indexing is crucial for the efficiency of data loading and querying operations
especially when the join queries are heavily utilized for querying paths in the graph
represented in the described way using relational database tables. Indexing should
be applied to attributes that play a crucial role in connecting tables, such as primary
table identifiers, but also those that are heavily used in searching data, such as
the “identifier_value” attribute of the identifier node and “primary_id” and “type”
attributes of the entity node.

4.2 Generalized method for deriving semantic rela-
tions

As discussed before, semantic similarities can be used for adding relations to the
knowledge graphs. The goal was to design a generic method for extracting new
semantic relations from the unified data knowledge graph represented using the pro-
posed data model. The designed method enables deriving new relations in a generic
way, regardless of the analyzed entities, based on the existing relations found in the
knowledge graph. The new relations are added to the knowledge graph and ready
to be used along with the previously stored relations for generating new sets of se-
mantic relations in an iterative manner.

Two entities are represented as nodes of the knowledge graph. A similarity be-
tween them can be estimated based on matching metadata values of the mutual
attributes, found in their respective attribute key-value pairs stored in data objects.
This approach can generate similarity relations, but the heterogeneity of the data
objects makes the process difficult to generalize. Matching the identifiers and text
descriptions can also be a foundation for computing the similarity. One of the issues
with this approach is the lack of text descriptions for all entities found in original
databases. The second problem is the generic form of identifiers where two iden-
tifiers may have very similar values, like “P01234” and “P01235”, but the entities
identified by the values may be very different.

The approach to computing semantic similarity between the entities is based on
the relations connecting the observed entities and other entities in the graph. The
motivation for this approach can be seen in the fact that two similar entities would
express similar behavior, have similar interactions with other entities, or be re-
lated to similar concepts. For example, genes that produce cytokine proteins, which
represent messages emitted by the immune system cells, may be involved in the
inflammation processes and thus have relations with similar sets of diseases. The
relation-based similarity can be specified in a certain context, as is the case with
gene-disease relations, or be a general similarity between entities, where the sets of
all relations of the compared entities are used in the computation.

Generalized method for deriving semantic relations 41

Table 4.1: Basic types of the relations between entity objects in BioGraph data model.

Relation Description Example
IS EQUAL Relation representing equality

between objects, where object
A, on one side of the relation
can also be represented as B in
general or specific circumstances.
The relation can contain details
specifying the equality relation.

Protein A IS EQUAL TO
Protein B, where two pro-
teins are the same proteins
represented using different
entity objects not unified at
the time of importing.

IS INSTANCE Relation between objects where
one of the objects is an instance
of a larger class.

TP53 protein in humans IS
INSTANCE of TP53 pro-
tein.

IS VARIANT Representing relation between
objects where one object is an iso-
form of the other.

Antigen A IS VARIANT of
Antigen B.

FROM Describes the connection between
an entity object and another en-
tity object that symbolizes its
source.

Protein A FROM gene B.
Gene C FROM organism D.

CONTAINS Represents the relation between
the object and its part, like
a composition in object-oriented
programming.

Antigen A CONTAINS Epi-
tope B.

HAS ROLE Relation between entity objects
where one object represents a
functional definition of the other
entity.

Gene A is HAS ROLE of
antigen A1.

RELATED
WITH

General relationship between ob-
jects. A weight, or relation score,
of the relation can be defined in
relation parameters.

Gene A is RELATED
WITH disease B, with a
relation score of 0.9. The
relation score parameter
is a user-provided relation
parameter.

SIMILAR TO Semantic similarity relation be-
tween the objects in a given con-
text.

Gene A is SIMILAR TO
gene B, within the context
of relations with diseases.

42 New Data Joining Model Proposal

The process of deriving new relations based on the existing relations found in the
proposed data model consists of five steps:

1. Selecting a subset of relation types that would be used for computing similar-
ities between selected entity types.

2. Generating relation matrix from the selected relations and connected entities.

3. Applying data mining algorithms to extract new relations.

4. Selecting relevant relations, for example, similarity scores values above a given
threshold.

5. Generating similarity relations based on the selected values and storing them
in the knowledge graph.

4.2.1 Selecting a subset of relations

Although the most confident similarity results would be obtained by observing all
available relation types, extracting the full set of relations and performing computa-
tions on it is a highly computationally intensive task, requiring significant resources.
Relations between genes, proteins, and antigens would not be significant for evaluat-
ing the similarity between genes in the context of similar subsets of related diseases.
The choice of the relation subsets should reflect the aimed context of the similarity.

4.2.2 Generating relation matrix

The selected set of relation types contains information about the connected entity
types, on both ends and, potentially, a relation weight. All relations of the given
types, among the selected types of entities, are collected from the data model and
used for creating a vectorized representation of the entities. The vectorization is
performed by constructing a matrix with rows representing instances of the entity
types, for which the similarity is computed, and columns representing the adjacent
entities connected to the selected entities using the relations from the set. The values
in the matrix correspond to the relation weights between the row and column entities.
The matrix can be seen as a biadjacency matrix, where row entities and column
entities represent nodes of a bipartite graph. If the relations do not contain the
weight information, the matrix is a binary matrix, where 1 represents the presence
of the relation between the row and column entities and 0 otherwise. It can be
noticed that such a matrix may become large due to a large number of entities and
relations used for the construction, so careful selection of the relations in the first
step is essential. The resulting matrix will be in the rest of the text referred to as
the relation matrix.

Generalized method for deriving semantic relations 43

4.2.3 Deriving semantic similarity relations

Direct extraction of the similarity relations between the pairs of objects can be
achieved by computing pairwise cosine similarities between the rows of the relation
matrix. The semantic similarity measures, defined in the introduction, are also ap-
plicable in this case, as the ontology information is implicitly stored in the knowledge
graph. However, the relation matrix can be further utilized for deriving new con-
cepts and new semantic relations between the entities and concepts. Different data
mining algorithms can uncover different types of semantic relations. A greater focus
will be on unsupervised methods, that do not require any additional information
besides the data found in the knowledge base.

Deriving semantic similarity relations using clustering

Clustering algorithms organize data objects into groups based on the distances, or
similarities, between the objects. The basic properties of good clustering are small
distances between the objects inside the same cluster and larger distances between
the objects in different clusters. A cluster found in the relation matrix can indicate
the presence of a new concept. Membership of an object in a cluster represents
the semantic relation between the object and the concept represented by the cluster
[10]. New concepts can be added to the knowledge base along with the semantic
relations of the objects that belong to the concept. The concept implicitly induces
semantic similarity between all entities that are part of the concept.

Nearest neighbor graphs (NNG)

Nearest neighbor graphs are graphs constructed using the distances between the
objects and their k-closest neighbors [63]. The relation matrix provides the vector
representation of the entities suitable for constructing neighbor graphs using the
cosine distance metric. Algorithms for community detection applied to the NNG
constructed from the relation matrix can discover densely connected groups of nodes
that can represent new concepts. The community detection algorithms are special
cases of clustering algorithms, adapted for graphical data.

Deriving relations using association rules mining

Association rules mining is used for deriving common groups of items that are com-
monly involved in transactions. Applying association rules mining algorithms to the
relation matrix is possible by observing entities from one axis of the matrix as the
transaction and the entities from the other axis as item entities [76]. For example,
the relation matrix consisting of gene rows and disease columns can also be seen as
a list of diseases with potentially overlapping sets of related genes. Genes that are
commonly found as jointly related to a significant number of diseases uncover new

44 New Data Joining Model Proposal

semantic similarities between the genes. Different sets of genes may be considered
interesting depending on the parameters of the algorithm.

Deriving relations using latent semantic analysis (LSA)

As mentioned in the introduction, LSA [24] performs decomposition of the term-
document matrix which results in a matrix with a reduced number of dimensions
where individual word columns are substituted by the topics found in the documents.
The algorithm can be applied to the non-weighted, binary relation matrix, where
entities of one axis are analogous to documents and the entities of the other axis
are analogous to the terms. In the example of the gene-disease relation matrix, a
natural analogy would be the one where the diseases are analogous to documents
while genes are analogous to terms. Deriving topics in the relation matrix using LSA
discovers new concepts and semantic relations between the genes and the concepts,
but also the relations between the concepts and the diseases.

4.2.4 Automated method for deriving semantic similarity re-
lations

A novel method is designed for the automated deriving of new semantic similarity
relations, based on data from the BioGraph data model that utilizes clustering and
association rules mining to derive new semantic similarity relations. The key prop-
erty of the approach is the automation of the process that includes extraction of
required data from the data model, using the data for deriving new semantic simi-
larity relations using different data mining techniques, and importing the relations
back to the model. The approach can be represented as a pipeline starting with
stored BioGraph model data and ending as a new set of semantic relations ready
to be imported back into the BioGraph data model. The goal of the automated
method is to use minimum user inputs at the beginning of the process and auto-
matically analyze stored data and output new semantic similarity relations between
the objects. The general pipeline of the automated method consists of 5 steps:

1. context definition;

2. data extraction;

3. data preprocessing;

4. relation deriving;

5. importing relations.

A diagram of the general pipeline is shown in Figure 4.4. The method for au-
tomated deriving of new semantic relations can use two approaches for finding the
relations – clustering-based and approach based on association rules mining. The

Generalized method for deriving semantic relations 45

two approaches follow the steps of the general pipeline but have different relation-
deriving steps. Clustering-based relation deriving substeps are shown in Figure 4.5,
while the substeps for the approach based on the association rules mining are shown
in Figure 4.6

Figure 4.4: General pipeline for automated deriving of new semantic relations.

Figure 4.5: Relation deriving substeps of the pipeline for automated deriving of new
semantic relations based on clustering method.

Context definition step

Two entity objects can be similar in some contexts, while very dissimilar in others.
For this reason, it is essential to define a context in which semantic similarity rela-
tions will be sought. Two genes may be similar in the context of mutual involvement
in similar sets of diseases. In that case, relations and their weights between gene

46 New Data Joining Model Proposal

Figure 4.6: Relation deriving substeps of the pipeline for automated deriving of new
semantic relations based on association rules mining.

and disease entity objects can be used to evaluate the similarity between genes. In
the general case, the similarity between entity objects can be based on a set of re-
lations between entity objects of a given type and entity objects of any other type.
The context is defined as a set of relation types that are selected as important for
deriving new semantic similarity relations.

Data extraction step

When the context is defined using the relations types on which the similarity will
be computed, the data needs to be extracted from the database. Graph-friendly
structure of the BioGraph data model enables efficient finding of relations, of the
given types. The implemented method for automatic data extraction requires only
a list of relation types as input and outputs the list of found relations. An example
showing a selection of “RELATED WITH” type relations between genes and diseases,
omitting other available relations, is shown in Figure 4.7.

Data preprocessing step

Data preprocessing uses extracted relations to construct a data matrix which will
be used as input for the relation deriving step. The data matrix rows represent
entity objects between which the relation-deriving algorithm will attempt to find
new semantic similarity relations. Data matrix cells contain weights of the relations
extracted in the previous step. If the relations don’t have explicitly defined weights,
or the relation deriving step will use association rule mining, the matrix is a binary
matrix where a value of 1 in a cell (i, j) indicates the existence of the relation
between objects i and j. Conversion of weighted relations to binary ones is done
by thresholding the values, having values above a certain threshold transformed to
1, otherwise to 0. An example of a constructed data matrix based on the selected
“RELATED WITH” relations between genes and diseases and the ”score“ attribute

Generalized method for deriving semantic relations 47

selected as weights is shown in Figure 4.8.

Figure 4.7: Example of selecting relations as inputs for deriving similarity relations. The
example shows selecting “RELATED WITH” type relations between genes (black lines)
and diseases, omitting the other available relations (dashed lines).

Relation deriving step

In the relation deriving step, the data matrix is used to find new semantic similarity
(“IS SIMILAR TO” type) relations in data using clustering or association rules
mining method. Direct deriving of semantic similarity relations can be done by
computing various similarity measures, appropriate for high-dimensional data, on
the rows of the constructed data matrix. However, such results may require user-
input parameters that are not always objective enough to testify quality of the
relations. That is why this chapter focuses on two general-purpose methods using
clustering and association rules mining.

Deriving relations based on clustering

The clustering-based method for relation deriving uses a previously computed data
matrix for finding clusters in data. A cluster found in the data matrix composed
of the extracted relations represents a hyperedge of a hypergraph connecting all
mutually similar entity objects. As most graph database systems do not support
hyperedges, the cluster hyperedges are represented using special cluster entity ob-
jects connecting all entities linked with the hyperedge. Cluster entity objects are
created for each cluster. Parallel overview of clusters, hyperedges, and cluster entity
objects are shown in Figure 4.9. The clustering algorithm used in this step is not

fixed and may require additional algorithm-specific data preprocessing before it can
be used. The number of clusters in the data needs to be estimated and evaluated

48 New Data Joining Model Proposal

Figure 4.8: Example of constructed data matrix based on the selected relations and their
weights. The example shows values of the ”score“ attribute of “RELATED WITH” relations
between genes and diseases, selected as weight (a) and a matrix with thresholded values
using a threshold value of 0.5 (b).

and the best value is selected for the final output of cluster labels. For each clus-
ter label a new cluster entity object is created along with the edges connecting the
cluster entity with all elements belonging to the cluster.

Figure 4.9: Parallel overview of clusters (a), hyperedges (b), and cluster entity objects
(c).

Deriving relations based on association rules mining

The method for deriving semantic similarity relations based on association rules
mining uses a binary data matrix, constructed in the previous step, and views data
as a set of transactions. Depending on the use case, the data matrix may need to
be transposed before further analysis. There are no restrictions on which algorithm
should be used for finding frequent sets or association rules, but the values of mini-
mum support, lift, and confidence should be provided as user inputs.

Generalized method for deriving semantic relations 49

The derived association rules follow the structure of X −→ Y , interpreted as if
elements of a set X are present then elements from a set Y are also present in the
same transaction. These facts can be used to extract semantic similarity relations.
Association rules having set X of cardinality 1 reveal semantic similarity relations
between an element in X and all elements in Y .

Importing relations

All relations generated in the previous step are transformed and prepared for import-
ing back into the BioGraph data model, or individual analysis using any external
software. The new relations can be further combined with the relations already
stored in the data model for extracting additional relations using the same proposed
pipeline. All derived relations imported back to the BioGraph data model have a
”derived“ attribute set to “true”.

50 New Data Joining Model Proposal

Chapter 5

Model implementation and validation

For the purposes of validating the proposed BioGraph model, a BioGraph software
system was implemented. The implementation utilizes the BioGraph data model
for unifying metadata from external datasets and semantic search using the seman-
tic relations found in metadata as well as new relations derived by the system.
The system collects metadata from the external databases and stores the extracted
metadata according to the BioGraph model in graph data storage. Additionally, in
order to provide information about data imports and efficient indexing for keyword
searches, the data is recorded in a ledger. The implemented system provides data
searching methods exposed through an HTTP REST API which processes queries
written using an internal query language designed specifically for the BioGraph sys-
tem. The system is created using Javascript programming language and NodeJS
v19 runtime environment [62].

5.1 Software architecture

The BioGraph software system consists of five key components:

• data importers;

• core service;

• indexers;

• graph database adapters;

• HTTP REST API.

5.1.1 Data importers

The entry points for data into the BioGraph system are the data importers. Im-
porters transform data from the original formats of their external databases into

51

52 Model implementation and validation

objects in the BioGraph data model. A specialized importer is assigned to each ex-
ternal database. The initial list of importers can be extended to support data from
an arbitrary number of external databases. Importers fetch data from the external
source by sending API requests, download files, or even scrape Web pages, and load
the data for further processing. The entities, identifiers, data nodes, and relations
are recognized and extracted from the loaded using methods provided by the core
service. The outputs of the importers are arrays of BioGraph data model objects
prepared for storing in a local database. The scripts for importing data from all
supported databases are listed in the appendix.

5.1.2 Core service

Core service is the central component of the BioGraph system. The role of the core
service is to provide the importer service interface for creating BioGraph data model
objects and relations and preparing data received from the importers for indexing
and recording in the ledger. Additionally, the core service provides data storage
services by utilizing database adapters. Core service maintains a transactional way
of data inserts in the graph database and the ledger to maintain data consistency.
There are six core methods exposed from the core service and provided to the im-
porters for labeling and importing the metadata:

• beginImport

Method for starting new import. The method starts new transactions in both
the graph and ledger database and initializes a new import by assigning it a
unique identifier.

• createEntityNode

Method for creating entity model object based on the entity type and its
primary id.

• createIdentifierNode

Method for creating identifier model object based on the identifier type, title,
and value.

• createDataNode

Creating data object of the BioGraph data model. A certain attribute can be
noted as a description attribute so the description text value can be indexed
with a proper index for keyword searches.

• createEntityEdge

Method for creating relations of a given type, with a given payload, between
entity objects.

Software architecture 53

• finishImport

Method for finalizing the active import. The data is prepared for storage in
both the graph and ledger database and the transactions are committed.

5.1.3 Indexers

Indexers provide services for storing and indexing import data in the ledger database.
There are four types of indexers:

• import indexer;

• entity indexer;

• identifier indexer;

• description indexer.

The import indexer stores information about the imports, such as the import times-
tamp or type of importer used for importing the data. The entity indexer logs all
entity types and primary identifiers contained within a given import, preventing
duplicate entries. The identifier indexer logs all entity identifiers, including the pri-
mary identifier, and creates an index structure for efficient entity search based on
the identifier values. The description indexer stores text descriptions of the entities
using an indexed structure designed for efficient keyword searches. The internal text
index was designed as an inverted index, a list of words where individual words refer
to a list of documents where they are mentioned.

5.1.4 Database adapters

Multiple database systems have been tested for storing metadata objects. Although
the model was successfully mapped to a relation database, querying speeds were
not satisfying, the decision was made to use a graph database system as the un-
derlying database. However, as the system was designed as database agnostic, it
is possible to use an arbitrary database management system for data storage. The
graph database adapters enable the connection between the BioGraph system and
arbitrary graph database systems. Each graph adapter exposes the same interface
facing the BioGraph system and transforms system requests to specific database
implementation calls. For the initial implementation of the BioGraph system, the
decision was to use the Neo4J [60] database management system, as it provides high
efficiency for performing data storage and retrieval of graph data structures.

A relational database was used as a ledger database to store the import metadata of
all objects and relations, preprocessed text metadata for semantic searches, and en-
tity identifiers for quicker entity lookups. Both graph and ledger databases are kept
synchronized, and data modification is done exclusively in transaction mode. For

54 Model implementation and validation

the specific implementation, we used the MySQL relational database management
system, but support is provided for connecting different relational databases.

5.1.5 HTTP REST API

HTTP Representational State Transfer (REST) [61] API enables querying the data
from the BioGraph system using user-implemented programs. The API supports
two types of queries:

• graph queries;

• keyword queries.

The graph queries are queries where the input is a pattern that should be matched
from the graph database and the results are represented as subgraphs of the stored
knowledge graph. The format of the graph queries follows the internal query lan-
guage schema.

Keyword queries are queries that fetch entities of a given from the graph database
type by matching the given list of keywords against the text descriptions and iden-
tifiers of the stored entities. Data indexes are heavily utilized with both types of
queries.

5.1.6 Internal query language

To remain database-agnostic, a simple and generic internal query language was
designed that can be easily transformed into any of the native languages of the
underlying database systems to support easy and efficient searches through metadata
following the structure of the proposed model. The search is performed using query
objects in JSON [67] format, divided into two segments – “match” and “params”.
The “match” segment lists the relations between the searched entities, while the
“params” segment lists the identifiers and attributes of the searched objects and
relations. The query language was inspired by the Cypher [28] query language used
with the Neo4J database management system. An example of a query using internal
BioGraph query language is shown in Figure 5.1.

5.1.7 Data flows

To give a complete picture of the BioGraph system, Figure 5.2 shows enumerated
steps for data transformation and retrieval, from importing data into the graph and
ledger database to fetching the query results in the Web user interface. The central
group of services, shown in Figure 5.2, enclosed in a blue dashed rectangle, is the
core of the BioGraph system. Importers, enclosed in a green dashed rectangle, are

Software architecture 55

{
"match": [

"(A:Protein)-[geneProteinRelation:FROM]-(B:Gene)"
],
"params": {

"A": {
"data": [

{
"field": "disorder_content",
"op": "GTE",
"value": 0.9,
"isNumber": true

}
]

}
}

}

Figure 5.1: Example of an internal BioGraph query in JSON format. The query fetches
all genes and related proteins where the protein disorder content is 0.9 or higher.

dynamic services, that can be modified to fit any external data source. The first
step of the process (step 1) is the collection of raw data from external databases.

The raw data are collected from external data sources (step 1) and a subset of
the collected data is labeled and transformed into BioGraph model elements using
importers specialized for the selected external data source. The list of importers
shown in the figure is not final, it represents the current state of the system and
can be easily extended for different data sources. Labeled metadata and relations
(step 2) are then sent to the BioGraph core service, which prepares graph nodes
and edges based on the BioGraph model elements and sends them to indexers for
storing in the ledger database (step 3). Indexers individually log all objects into the
ledger database (step 4), preventing duplicate entries. New, non-duplicate, entries
are sent to the graph database adapter (step 5) which converts graph elements into
storage queries in the native language of the underlying graph database and executes
them (step 6). External applications, like BioGraph Web UI, communicate with the
BioGraph services using exposed API (step 7). The applications send queries in the
form of the internal JSON query language. API sends parsed queries to either the
indexers (step 8a), in case of keyword queries, or the graph database adapter (step
8b), in case of graph queries. Graph queries are executed on the graph database
(step 9a) while keyword queries are executed on the ledger database (step 9b).
New graph database adapters can be implemented for many of the existing graph
database management systems.

56 Model implementation and validation

Figure 5.2: Diagram representing the architecture of the system which implements Bio-
Graph data model. The data is downloaded using APIs of the external data sources, FTP
access or even scraping the Web pages (step 1). The subset of collected data is labeled
within the import service and mapped to BioGraph objects and relations. In the next step
(step 2), labeled objects and relations go to the BioGraph Core service where the objects
are first logged in the ledger database using indexers (step 3). Identifiers, descriptions,
and general import information are indexed individually and stored in the ledger database
(step 4). Duplicate entries are skipped, while non-duplicate objects and relations are sent
to the graph database adapter (step 5). The graph database adapter transforms objects
and relations into native storage queries of the underlying graph database and executes
the queries on the graph database (step 6). Storing both graph and ledger data is done in
transaction mode, to prevent data inconsistencies.

5.2 Material

For validating the model, we collected metadata from five different data sources:

• DisProt;

• HGNC;

• IEDB;

• Tantigen 2.0;

• DisGeNET.

Material 57

Metadata from the DisProt database was collected from DisProt API in JSON for-
mat, and metadata from the HGNC and DisGeNET databases were downloaded
as JSON documents from the website. Metadata from the IEDB database were
downloaded as CSV documents while metadata from Tantigen 2.0 database were
collected by scraping the website in HTML format. All collected metadata were
successfully transformed, connected, and imported into the BioGraph system. The
extracted metadata contained more than 16 million model objects, of which more
than 2,500,000 individual entity objects, interconnected with more than 21 million
relations. An example of the mapping of metadata between gene A1BG and Ade-
nocarcinoma disease from the DisGeNET dataset is shown in Figure 5.3.

Figure 5.3: Diagram representing metadata from DisGeNET dataset record mapped to
BioGraph model.

5.2.1 DisProt dataset

DisProt (Database of Disordered Proteins) dataset contains data on intrinsically
disordered proteins from different species. The dataset currently consists of over
2,300 protein entries, containing information on:

• protein sequence;

• entry curator information;

• identifiers in DisProt and UniProt dataset;

58 Model implementation and validation

• source organism taxonomy information;

• source genes;

• computed disorder content percentage;

• structural annotations and evidence for the annotations in the form of refer-
ences to research publications confirming the annotations.

The importer dedicated to processing metadata from the DisProt dataset collects
protein identifiers, disorder content information, source organism taxons, and genes
related to proteins. Gene data contains primary symbols of the genes but also the
alias symbols, which are all included by the importer. The data from the DisProt
dataset is collected as a complete dataset in JSON format. The current size of the
dataset in JSON format (version 2023_06) is 19.1 MB, containing data on 2649
proteins. Disordered regions were not included in the metadata imported with the
current version of DisProt importer but there are no technical restrictions for adding
the support for disordered regions in the following updates.

5.2.2 HGNC dataset

The HGNC (HUGO Gene Nomenclature Committee, where HUGO stands for Hu-
man Genome Organization) dataset contains information on gene symbols, iden-
tifiers, gene chromosome locations, and their respective protein references for all
known human genes. The current dataset (data available on 08.2023) contains 43,621
entries of human genes and also includes the identifiers of the ortholog genes found
in mouse and rat genomes. Our importer collects all available identifiers, including
the orthologs, and UniProt protein references, and associates them with the proper
organism taxons.

5.2.3 IEDB dataset

IEDB (Immune Epitope Database) dataset contains data on immune epitopes from
different organisms. Each epitope is associated with its source antigen, including
identifier references to both protein and non-protein antigens, and source organism
taxon. Although the dataset contains more information, like those related to dis-
eases, we decided for our model verification to use only the subset of information
containing the relations between epitopes and antigens. The dataset is downloaded
by the importer from the website https://www.iedb.org/database_export_v3.php
in TSV format. The size of the data depends on the data that is present in the
database at the time of download.

Material 59

5.2.4 Tantigen 2.0 dataset

Tantigen 2.0 dataset contains data on human tumor antigens containing HLA ligands
and immune T-cell epitopes. The data contains:

• antigen accession ID;

• antigen sequence;

• protein reference from UniProt dataset;

• source gene reference from NCBI data set;

• antigen full name and synonyms;

• links to the antigen mutation and isoform entries;

• list of T-cell epitopes and HLA ligands of the antigen.

The database website does not provide API access or downloadable files. The im-
porter scrapes the content of the website and transforms the collected HTML pages
into JSON documents as a preprocessing step. The information collected from the
Tantigen 2.0 and transformed into BioGraph model objects includes all available in-
formation except the antigen sequences. The current total number of antigen entries
in the Tantigen 2.0 dataset (valid version date 09 March 2017) is 4,297.

5.2.5 DisGeNET dataset

DisGeNet (Disease Gene Network) dataset contains information on the relations
between genes and human diseases collected from multiple sources. The dataset
consists of 1,134,942 gene-disease relation entries. Each relation contains information
on:

• gene symbol;

• disease concept identifier;

• dPI - Disease pleiotropy index;

• dSI - Disease specificity index;

• disGeNET gene-disease association score.

The data are downloaded as a TSV file by the importer. All the information available
in the file is collected by the importer and transformed into BioGraph model objects.

60 Model implementation and validation

5.3 Deriving new semantic similarity relations in
BioGraph data model

The pipeline for deriving new semantic similarity relations, described in the pre-
vious chapter, is implemented following both the clustering-based method and the
method based on association rules mining. The spectral clustering algorithm was
selected for the clustering-based method, as it provides good flexibility for clusters
of arbitrary shapes and is a natural choice when dealing with graph data. The input
for spectral clustering is a graph, so a neighbor graph was computed using the data
matrix. For each entity object, k nearest neighbors were found and connected in the
neighbor graph. As the data matrix is a sparse matrix, cosine similarity was used as
a proximity measure. The resulting graph was represented using the affinity matrix.

The affinity matrix was then used for computing the graph Laplacian matrix for
which the eigenvalues and eigenvectors were computed. The eigenvectors were sorted
by their respective eigenvalues in ascending order and used as inputs for the K-means
clustering algorithm. To estimate the number of clusters, the elbow method was used
with the Sum Squared Error (SSE) measure. Finally, the K-means algorithm with
the selected optimal number of clusters was used to label data objects. Cluster labels
were used for creating cluster entity objects with relations to all data objects within
the respective cluster. Implemented clustering method substeps of the relation de-
riving step are shown in Figure 5.4. Another clustering algorithm that can be used
for deriving semantic relations within hierarchical data is agglomerative clustering.

The relation deriving based on association rules mining starts with a data matrix

Figure 5.4: Diagram representing spectral clustering substeps for relation deriving.

User interface 61

which is transformed into an itemset matrix. The set of frequent items was com-
puted using the FP-Growth algorithm. Association rules were then extracted from
the frequent set using selected minimum support, confidence, and lift parameters.

All steps of the pipeline were implemented as individual Python language scripts.
The outputs of each script were written in temporary output files and the param-
eters were set as command-line arguments. All scripts were listed in the particular
order as a pipeline in a shell script.

5.4 User interface

Users with technical experience can write their own applications to submit queries
to BioGraph and use BioGraph as a backend system. Even though the integrated
query language is simple and intuitive for users with technical backgrounds, it still
may not be friendly enough for users with little or no technical experience. That
is why we have also implemented a Web-based graphical user interface, developed
using ReactJS [71] framework, that communicates with BioGraph and can be used
to create graph and keyword queries using the graphical interface. It enables users
to select predefined entity types and relations between the selected entities to draw
a pattern that will be matched against the metadata graph. Graphical queries allow
users without significant technical experience to intuitively create complex queries
and discover indirect links between entities. Users can further explore the metadata
of the entities from the query results and navigate through the graph following
relations to neighboring entities. Additionally, the Web interface offers example
queries and a help section to enable quicker onboarding of new users and a better
understanding of the data retrieval process using graphical queries. All executed
queries and results can be exported to files for further reuse and analysis. Queries
can be exported in JSON, while the results can be exported in CSV format.

An example of a graphical query and the query results can be seen in Figure 5.5.
The graphical query describes a pattern connecting genes and related diseases with
a relation score greater than 0.5, where the genes are also related to proteins with a
disorder content percentage greater than 0.9. The relation score between the gene
and the disease is the DisGeNET gene-disease association score [68]. Additionally,
the requirement was that genes are also tumor antigens, and to match all epitopes
related to those tumor antigens. All matched patterns for the given graphical query
are shown in Figure 5.6 displays. As the patterns are often not linear, the result
patterns were decomposed into linear disjoint paths. The results of the query are
shown in Figure 5.6, where the first results match the example shown in Figure 4.2.

Writing this type of query can be challenging in native database languages while
drawing a graphical pattern that the query should match is easy and intuitive.

62 Model implementation and validation

Figure 5.5: Example of a graphical query drawn using BioGraph Web interface. The
data is fetched from imported metadata from the currently supported data sources. The
query attempts to find links between Diseases and Genes with a DisGeNET relation score
of 0.5 and greater, where genes are transcribed into proteins, with disorder content of 0.9
or higher and genes are also tumor antigens. Protein metadata comes from the DisProt
dataset, gene metadata comes from the HGNC dataset, and disease metadata comes from
the DisGeNet database. Epitopes, from Tantigen 2.0 and IEDB are also fetched for the
matched tumor antigens. The query pattern matches the structure of the example shown
in Figure 4.2

.

User interface 63

Figure 5.6: List of results received when querying the genes which are transcribed into
highly disordered proteins (disorder content greater than or equal to 0.9) and linked with
diseases with DisGeNET relation score of 0.5 and greater. It was requested that the genes
in the results are also tumor antigens and fetch all epitopes related to the antigens. The
results are displayed as matched paths in the knowledge graph. The example shown in
Figure 4.2 matches the first result in the list.

The results show paths from the matched patterns. Selecting any node from any
path displays details about the specific entity and lists all the connected data and
identifiers from all datasets. By following the relations listed in the entity, the
user can easily traverse the graph and track the relations between the entities. An
example of details for a specific gene is displayed in Figure 5.7. Besides using
pattern matching, entities can also be searched using keyword searches through input
fields located in entity nodes. An example of searching disease entity matching the
keyword “pneumonia” is displayed in Figure 5.8.

64 Model implementation and validation

Figure 5.7: Details of a single gene entity, displaying information collected from multiple
data sources.

Figure 5.8: Searching diseases using keyword “pneumonia”.

Chapter 6

Results and discussion

The thesis presents a formal definition of the novel BioGraph data model, a proposed
software architecture that enables the implementation of a system based on the data
model, and a generalized automatic pipeline for extracting new semantic similarity
relations between objects from the proposed data model.

The described data model is a general-purpose data model, suitable for various
use cases, but primarily designed for biological data. It enables the unification
of heterogeneous data from various external sources as well as a unified semantic
search over the unified data. The model specifies three core object types that form
the backbone of the model which can be used to represent objects and their relations
from an arbitrary domain. All domain-specific definitions are specified in higher-
level schemas without modification of the model or the search functions. The model’s
ability to represent heterogeneous data was tested by unifying data from five different
databases - DisProt, HGNC, IEDB, Tantigen 2.0, and DisGeNET, testifying to the
flexibility and expressiveness of the model. The resulting graph included more than
17 million nodes of which 2.5 individual biological entities with over 21 million
relationships. The model specification and the system architecture proposal were
published in [88] and [83] and also presented at [86], and [87]

The system was designed as a modular, database-agnostic system easily adaptable
to any underlying database management system. The list of importers used for
data loading is extensible, allowing the system to support importing data from
any data source by adding new import scripts using only several methods exposed
from the core library. Content addressing and multiple indices indexing enables the
detection of duplicate data and quick data searching using complex graph queries.
The keyword queries utilize a reverse lookup index to quickly retrieve identifiers
matching partial query strings.

Discovering semantically similar objects in big datasets is a difficult challenge, due
to the large volume of data and the requirement for using or writing custom software
for a specific data analysis. On the other side, being able to find new relations in the
base knowledge provides the ability to extract new knowledge which reveals hidden

65

66 Results and discussion

patterns in data and gives a wider context to the domain. The pipeline for the
automated discovery of new semantic similarity relations, introduced in this thesis,
is an unsupervised process that finds new semantic similarity relations in data stored
in the BioGraph data model. It is implemented in a way that requires only a small
number of parameters, depending on the selected analysis algorithm. The output
of the pipeline is a set of relations and objects prepared for importing back into the
data model and ready to be used in a new analysis.

6.1 Comparison with the existing data unification
and querying systems

For any software system to be accepted by the research community, the availability
of the system is the key property. Open-source and free-to-use systems are reaching a
wider audience and providing their utility at a much higher degree than payware sys-
tems. On the other hand, deploying a sophisticated system on a platform available to
researchers worldwide is unfeasible without any financial support. The decision was
to maintain the free availability of the system and its open-source properties by en-
abling the users to deploy the system components locally on their machines easily.
The source code for the system can be found at https://github.com/aleksandar-
veljkovic/biograph and the deployed version of the BioGraph Web UI can be found
at http://andromeda.matf.bg.ac.rs:54321/. The Monarch [77] and ROBOKOP [12]
systems also follow the idea of open-source availability, while the Elsevier Biology
graph [25] is a closed-source software.

The following important property for the broader adoption of a software system in
the research community is simplicity. The intention was to create a simple, easy-
to-use system that allows users with almost no technical know-how to express their
data searching requests in the simplest possible way, enabled by the simplicity of the
underlying data model. Simple data searching is enabled by graphical queries, where
users draw the patterns between entities while also having the ability to run keyword
searches to find specific entities that should be included in the search. Monarch al-
lows users to run keyword searches but not pattern queries. ROBOKOP system
allows drawing queries in graphical form but in a generalized and unintuitive way,
making the system’s usage difficult for regular users. GeneCards.org [29] provides
keyword-based search tools and does not support matching patterns between mul-
tiple entities. It also has support for queries using natural language. The decision
was not to support natural language queries in the initial version of the querying
interface. Natural language queries, while being easy to use by the users, introduce
unnecessary ambiguity in queries and uncertainty in results.

Extensibility is another key property. The easy extensibility of the data model and
the overall software system is necessary for continuous development and upgrades of

Comparison with the existing data unification and querying systems 67

the system, not only by the authors but also by the research community members.
The proposed system and data model, being open-source, along with the easy ad-
dition of new import scripts, allow users to develop new scripts for importing data
from countless data sources. Besides developing import scripts and other upgrades
for themselves, developers can share their upgrades with other community members
worldwide and further expand the adoption. Both Monarch and ROBOKOP, as
open-source systems, enable the extensibility of their systems.

It is often the case that the results of one research are inputs for the others. That is
why saving the search results is also a feature of our system. Besides saving the re-
sults, the BioGraph system also allows saving and loading queries, so the researchers
can share their queries and run them on different machines instead of transferring
the results, which are orders of magnitude larger than the queries. ROBOKOP
system also allows saving and loading queries from files, while Monarch does not
provide those features.

A comparison between existing solutions and the BioGraph model, with the corre-
sponding querying system, is presented in Table 6.1.

Table 6.1: Comparison between the BioGraph system and currently existing solutions.
The BioGraph system fulfills all the given criteria, except natural language queries when
compared to similar systems. The question marks in the table represent the states where
the criteria could not be evaluated.

Criterion BioGraph ROBOKOP Monarch GeneCards BKG1

Open-source ✓ ✓ ✓ ✗ ✗

Local deployment ✓ ✓ ✓ ✗ ✗

Pattern querying ✓ ✓ ✗ ✗ ?

Graphical queries ✓ ✓ ✗ ✗ ?

Extensibility ✓ ✗ ✗ ? ?

Natural Language
Queries

✗ ✓ ✗ ✗ ?

Loading and Stor-
ing Queries

✓ ✓ ✗ ✗ ?

User-friendly ✓ ✗ ✓ ✓ ?

1Elsevier Biology Knowledge Graph

68 Results and discussion

6.2 Advantages and disadvantages

The BioGraph system presents a compelling framework for semantic data unifica-
tion in the domain of bioinformatics, offering several notable advantages, as well
as encountering certain challenges. One of the primary benefits of the BioGraph
system lies in its capacity to unify heterogeneous data sources, a longstanding issue
in bioinformatics. Structuring the metadata within a knowledge graph, the system
enables the integration and normalization of information from diverse bioinformatics
databases. This property mitigates issues created using disconnected data silos and
enables a more holistic understanding of biological systems. The result is heightened
research efficiency, as it enables the analysis of data originating from a multitude
of sources, thereby providing deeper insights. The BioGraph UI application pro-
vides a seamless querying functionality for metadata across various bioinformatics
databases. Researchers can access and retrieve metadata without the need to learn
the intricacies of each database’s interface, thus significantly streamlining the re-
search process. Automated process for deriving new semantic similarity relations
enables discovery of new knowledge with minimal user intervention, hidden in large
heterogeneous datasets.

However, the flexibility and generality of the BioGraph system come with a cost.
Adding metadata from a new database requires implementing a new import script,
created specifically for the new database without the ability to reuse the script in
general cases for additional databases. Luckily, import scripts are easily imple-
mented with the help of simple API exposed by the core service. Another challenge
of the BioGraph system is the time required for loading the initial data, which
depends on the hardware resources of the machine that performs the import and
can take several hours to complete. Similar time requirements apply for the auto-
mated deriving of new relations, especially when a large set of the existing relations
is selected for deriving new semantic similarity relations. Although the system is
designed as database-agnostic, different implementations of the system on different
database systems may require careful analysis of the choice of indexing techniques
and attributes, as the efficiency of the querying system heavily relies on proper
indexing and data joining and traversal methods.

6.3 Examples of biomedical applications

6.3.1 Genes related to Parkinson’s disease

To show the usefulness of the BioGraph model for researchers in the field of bioinfor-
matics the following example will describe the process of finding all genes that are
closely related to Parkinson’s disease [65] using the BioGraph web interface. The
gene data is extracted from the HGNC [75] database and diseases along with their

Examples of biomedical applications 69

associations with the genes are extracted from the DisGeNET [68] database. A user
can query the system in a unified manner, without the knowledge of the specific
database from which the data originates. The scripts used for importing data from
the two databases into the BioGraph data model are listed in the appendix.

When the BioGraph web interface is loaded, the user is presented with a blank can-
vas where a graph query should be created. The start screen with a blank canvas is
shown in Figure 6.1.

Figure 6.1: Blank canvas of the BioGraph Web interface waiting for the user to design a
graph query.

A user can create nodes of the graph query by clicking on the canvas using a left
mouse click. As a result, a generic node will appear on the canvas waiting for the
user to select the entity type that the node will represent. For this example, the
first node to be created will be a disease entity node that will represent Parkinson’s
disease. The steps required for the user to create the disease entity node are shown
in Figure 6.2.

In this state, the created disease node represents any disease found in any of the
underlying databases. To specify that the node represents Parkinson’s disease, the
user can enter the name of the disease in the search field or directly list the disease
id in the node properties. When the user enters even the part of the disease name
in the search input field of the disease node, a list of found diseases matching the
keyword query appears under the search input field. The user then selects the item
in the list and the disease node now represents only the selected disease. An example
of the process of associating the disease node to a specific disease is shown in Figure
6.3.

70 Results and discussion

Figure 6.2: Steps required for the user to create the disease entity node. The user clicks
on the blank part of the canvas using a left mouse click and a generic node appears (a).
The user then selects the required entity type from the "Entity type" dropdown of the
generic node (b), in this case, the "Disease" type. Finally, the generic node is transformed
into a disease entity node (c)

Figure 6.3: Example of the process of associating the disease node to a specific disease.
The user inputs part of the disease name into the search input field, in this case, the word
"Parkinson" (a). A list of matched diseases with their identifiers is shown in the list below
the input field (b). The user selects the item on the list and the node is now associated
with Parkinson’s disease (c).

When the disease node is associated with Parkinson’s disease, the next step
is getting genes associated with the disease. To do that, the user creates a gene
entity node following the same flow described for the disease entity node, with the

Examples of biomedical applications 71

exception that the entity type is now gene. An example of this process is shown in
Figure 6.4. The user does not know which genes will be represented by the node
as that is to be answered by the query results, no identifier is specified for the gene
node.

Figure 6.4: Steps required for the user to create the gene entity node. The user clicks on
the blank part of the canvas using a left mouse click and a generic node appears (a). The
user then selects the required entity type from the "Entity type" dropdown of the generic
node (b), in this case, the "Gene" type. Finally, the generic node is transformed into a
gene entity node (c)

The requested association between the genes and the disease needs to be explic-
itly listed in the query. In the case of this example, the query should return all
genes that have a high association score with Parkinson’s disease. To do this, the
user connects the gene and the disease node using a proper relation. The relation
between the nodes is created by holding a left mouse click over the relation handle
circle below the one entity node and dragging it to the relation circle below the
other entity node. The generic relation will appear between the two nodes. The
user selects the relation type from the relation’s dropdown list. In this case, the
relation type will be "Disease gene relation". This relation type has a parameter
"Relation score" which indicates the strength of the association between the genes
and the disease expressed as the DisGeNET score. The input parameters for the
relation properties are displayed by clicking the "Add property" label below the re-
lation type dropdown. For this example, the user sets the relation score property to
be greater than or equal to 0.7. The relation score value in this case corresponds to
the DisGeNET association score between genes and diseases. An example showing
the creation of the relations between the gene and disease nodes is shown in Figure
6.5

72 Results and discussion

Figure 6.5: Creating relation between gene and disease nodes. The user creates the
relation by dragging the relation line from the relation circle handle of one node and
dropping it on the circle relation handle of the other node (a and b). The user then selects
the relation type (c). Relation properties are added by clicking on the "Add property" label
(d) and the property list inputs are displayed (e). The user selects from the inputs the
"Relation score" property, the DisGeNET association score between genes and diseases,
and sets it to greater than or equal to 0.7.

The constructed query is now ready to be executed by clicking the "Run query"
button located at the bottom of the screen. The final query is displayed in Figure
6.6. The results of the query are shown in the table below the query and, for this
example, they include one specific result – a gene highly associated with Parkinson’s
disease. The result shows that the gene highly associated with Parkinson’s disease
is PLA2G6. The validity of this result is verified in [78]. Clicking on the label
PLA2G6-9606 in the results, where the suffix “-9606” signals that the gene came
from the Homo Sapiens organism (taxon identifier 9606), more details about the
gene PLA2G6 are displayed. Figure 6.7 shows the results table for the given
query and details of the PLA2G6 gene. The gene details include all identifiers and
metadata collected from all available databases as well as the relations between the
PLA2G6 and other entity objects.

Examples of biomedical applications 73

Figure 6.6: Query for extracting all genes highly related to Parkinson’s disease.

Figure 6.7: Results of the query for extracting all genes highly related to Parkinson’s
disease (a) and details of the PLA2G6 gene (b).

6.3.2 Genes related to pancreatic cancer

Another example that demonstrates the usability of the BioGraph system is finding
the genes highly associated with specific types of tumors, such as pancreatic cancer.
A query is constructed in a similar way as it was the case with genes related to
Parkinson’s disease, with the exception that the relation score threshold between
genes and pancreatic cancer disease is set to greater than or equal to 0.3. The query
is shown in Figure 6.8.

74 Results and discussion

Figure 6.8: Query for extracting all genes highly related to pancreatic cancer.

The results for the given query contain 9 different genes: RABL3, BRCA1,
BRCA2, CDKN2A, KRAS, SMAD4, TP53, PALLD, and PALB2. All genes are
scientifically proven to be related to pancreatic cancer [38]. The results for the
given query are shown in Figure 6.9. If the threshold value for association between
genes and diseases is omitted, the system finds 43 related genes. All 43 genes are
shown in Table 6.2.

Table 6.2: Genes found to be related to pancreatic cancer.

MAGT1 H3P10 H3P8 GTF2H5 RABL3
IDO2 ALPP ALPI ATM BRCA1
BRCA2 CD47 CDK2 CFTR CDKN2A
CDKN1A CDH10 CPB1 ERCC2 FANCC
FANCG MSH6 IAPP KRAS LCN2
SMAD4 MSH2 PKHD1 RNASEL S100A9
SPINK1 STK11 TIMP1 TP53 CDK2AP2
SUB1 RPP14 CHEK2 PALLD
PALD1 LAMTOR2 SF3B6 PALB2

Examples of biomedical applications 75

Figure 6.9: Results of the query for extracting all genes highly related to pancreatic
cancer.

76 Results and discussion

Chapter 7

Conclusion

This thesis presents challenges of unification and search of bioinformatics data and
proposes solutions for the given challenges. The most significant contributions of
the thesis are the definition and implementation of the BioGraph data model for
the unification of metadata from heterogeneous bioinformatics databases and the
automated pipeline for deriving new semantic similarity relations based on a set of
existing relations found in the unified data.

The unification of heterogeneous data from many data sources provides a holistic
view of intricate relationships between entities observed collectively instead of indi-
vidually in isolated databases. The knowledge graphs provide the backbone struc-
ture for supporting such data unification but also unified searching of the unified
data using complex graph query patterns. Implementation of a scalable knowledge
graph system with a robust and flexible data model that supports efficient query-
ing was a challenge that the work presented in this thesis attempted to solve. The
results of the work are encouraging and provide motivation for further efforts for
improvement and wider adoption of the BioGraph system in the scientific commu-
nity.

The pipeline for automated discovery of semantic similarity relations is a promising
base point for the development of knowledge-based bioinformatics systems with the
ability to perform unsupervised learning of new relations between the objects stored
in the knowledge database. Such a system would provide great assistance in many
domains, but most significantly in the biomedical domain. Discovering hidden re-
lations between diseases and various clinical parameters would enable the detection
of new molecular pathways that could be used for drug discovery purposes.

The technical disadvantages associated with the BioGraph system, as discussed in
the previous chapter, undoubtedly present a significant challenge to its broader
adoption. However, it is important to view these limitations as a necessary step on
the path toward developing a more efficient and comprehensive system. Having the
system with an open source code allows the assistance of a broad community in solv-
ing the challenges but also proposing new features and applications of the system.

77

78 Conclusion

As there is currently no repository of community-developed importers, a reasonable
assumption is that different community members may develop importers with slight
differences in attribute naming or entity object selection for metadata originating
from the same databases, resulting in multiple variations of essentially the same
importers. Solving this issue will require standardization of the import script devel-
opment process with precise guidelines and the creation of a central repository of
import scripts.

The steps following the presented research include further improvements in the ef-
ficiency of the software architecture, testing the model for unification of data from
even more data sources, improving the automated pipeline for detecting more types
of semantic relations, and exploring possibilities of designing additional software
systems that would use the BioGraph core system and its powerful data model in a
vast number of applications in the bioinformatics domain.

Bibliography

[1] R. Agarwal, R. Srikant, et al. “Fast algorithms for mining association rules”.
In: Proc. of the 20th VLDB Conference. Vol. 487. 1994, p. 499.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. “Automatic subspace
clustering of high dimensional data for data mining applications”. In: Proceed-
ings of the 1998 ACM SIGMOD international conference on Management of
data. 1998, pp. 94–105.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. “Basic
local alignment search tool”. In: Journal of molecular biology 215.3 (1990),
pp. 403–410.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. “OPTICS: Ordering
points to identify the clustering structure”. In: ACM Sigmod record 28.2 (1999),
pp. 49–60.

[5] D. Barbará and P. Chen. “Using the fractal dimension to cluster datasets”. In:
Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining. 2000, pp. 260–264.

[6] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Toma-
shevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko, et al.
“NCBI GEO: archive for functional genomics data sets—update”. In: Nucleic
acids research 41.D1 (2012), pp. D991–D995.

[7] A. Ben-Dor and Z. Yakhini. “Clustering gene expression patterns”. In: Proceed-
ings of the third annual international conference on Computational molecular
biology. 1999, pp. 33–42.

[8] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin.
“Lowest common ancestors in trees and directed acyclic graphs”. In: Journal
of Algorithms 57.2 (2005), pp. 75–94.

[9] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler.
“GenBank”. In: Nucleic acids research 31.1 (2003), p. 23.

[10] A. Bertels and D. Speelman. “Clustering for semantic purposes: Exploration
of semantic similarity in a technical corpus”. In: Terminology. International
Journal of Theoretical and Applied Issues in Specialized Communication 20.2
(2014), pp. 279–303.

[11] J. C. Bezdek, R. Ehrlich, and W. Full. “FCM: The fuzzy c-means clustering
algorithm”. In: Computers & geosciences 10.2-3 (1984), pp. 191–203.

79

80 Bibliography

[12] C. Bizon, S. Cox, J. Balhoff, Y. Kebede, P. Wang, K. Morton, K. Fecho, and
A. Tropsha. “ROBOKOP KG and KGB: Integrated Knowledge Graphs from
Federated Sources”. In: Journal of Chemical Information and Modeling 59.12
(2019). PMID: 31769676, pp. 4968–4973.

[13] A. Blanco-Mı́guez, F. Fdez-Riverola, B. Sánchez, and A. Lourenço. “BlasterJS:
A novel interactive JavaScript visualisation component for BLAST alignment
results”. In: PLoS One 13.10 (2018), e0205286.

[14] A. Bookstein, V. A. Kulyukin, and T. Raita. “Generalized hamming distance”.
In: Information Retrieval 5 (2002), pp. 353–375.

[15] G. R. Brown, V. Hem, K. S. Katz, M. Ovetsky, C. Wallin, O. Ermolaeva,
I. Tolstoy, T. Tatusova, K. D. Pruitt, D. R. Maglott, et al. “Gene: a gene-
centered information resource at NCBI”. In: Nucleic acids research 43.D1
(2015), pp. D36–D42.

[16] J. P. Buchmann and E. C. Holmes. “Entrezpy: a Python library to dynamically
interact with the NCBI Entrez databases”. In: Bioinformatics 35.21 (2019),
pp. 4511–4514.

[17] S. K. Burley, H. M. Berman, G. J. Kleywegt, J. L. Markley, H. Nakamura,
and S. Velankar. “Protein Data Bank (PDB): the single global macromolecular
structure archive”. In: Protein crystallography: methods and protocols (2017),
pp. 627–641.

[18] D. Chandrasekaran and V. Mago. “Evolution of semantic similarity—a survey”.
In: ACM Computing Surveys (CSUR) 54.2 (2021), pp. 1–37.

[19] B. Chapman and J. Chang. “Biopython: Python tools for computational biol-
ogy”. In: ACM Sigbio Newsletter 20.2 (2000), pp. 15–19.

[20] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang,
and I. Cohen. “Pearson correlation coefficient”. In: Noise reduction in speech
processing (2009), pp. 1–4.

[21] U. Consortium. “UniProt: a hub for protein information”. In: Nucleic acids
research 43.D1 (2015), pp. D204–D212.

[22] R. N. Dave and K. Bhaswan. “Adaptive fuzzy c-shells clustering and detection
of ellipses”. In: IEEE Transactions on Neural Networks 3.5 (1992), pp. 643–
662.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of
deep bidirectional transformers for language understanding”. In: arXiv preprint
arXiv:1810.04805 (2018).

[24] S. T. Dumais. “Latent semantic analysis”. In: Annual Review of Information
Science and Technology (ARIST) 38 (2004), pp. 189–230.

[25] Elsevier. Biology knowledge graph. https://www.elsevier.com/solutions/
biology-knowledge-graph. Accessed: 2022-12-28.

[26] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. “A density-based algorithm
for discovering clusters in large spatial databases with noise.” In: kdd. Vol. 96.
34. 1996, pp. 226–231.

https://www.elsevier.com/solutions/biology-knowledge-graph
https://www.elsevier.com/solutions/biology-knowledge-graph

Bibliography 81

[27] J. S. Farris. “On the cophenetic correlation coefficient”. In: Systematic Zoology
18.3 (1969), pp. 279–285.

[28] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. “Cypher: An evolving
query language for property graphs”. In: Proceedings of the 2018 international
conference on management of data. 2018, pp. 1433–1445.

[29] GeneCards®: The Human Gene Database. https://www.genecards.org/).
accessed on 10 April 2023.

[30] S. Guha, R. Rastogi, and K. Shim. “ROCK: A robust clustering algorithm for
categorical attributes”. In: Information systems 25.5 (2000), pp. 345–366.

[31] B. Ha, J. A. Greenbaum, B. J. Shmiedel, D. Singh, A. Madrigal, A. G.
Valdovino-Gonzalez, B. M. White, J. Zapardiel-Gonzalo, G. Altay, G.
McVicker, et al. “Database of Immune Cell EQTLs, Expression, Epigenomics”.
In: The Journal of Immunology 202.1_Supplement (2019), pp. 131–18.

[32] J. Han, J. Pei, and Y. Yin. “Mining frequent patterns without candidate gen-
eration”. In: ACM sigmod record 29.2 (2000), pp. 1–12.

[33] H Handschub and H. Gilbert. “Evaluation report security level of
cryptography–sha-256”. In: (Issy-les-Moulineaux) Technical Report (2002).

[34] J Hartigan. “The k-means algorithm”. In: Clustering algorithms 4 (1975).

[35] B. Hopkins and J. G. Skellam. “A new method for determining the type of
distribution of plant individuals”. In: Annals of Botany 18.2 (1954), pp. 213–
227.

[36] A. Huang et al. “Similarity measures for text document clustering”. In: Pro-
ceedings of the sixth new zealand computer science research student conference
(NZCSRSC2008), Christchurch, New Zealand. Vol. 4. 2008, pp. 9–56.

[37] T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen, L Clark, T. Cox,
J Cuff, V. Curwen, T. Down, et al. “The Ensembl genome database project”.
In: Nucleic acids research 30.1 (2002), pp. 38–41.

[38] S. Idachaba, O. Dada, O. Abimbola, O. Olayinka, A. Uma, E. Olunu, and
A. O. J. Fakoya. “A review of pancreatic cancer: epidemiology, genetics, screen-
ing, and management”. In: Open access Macedonian journal of medical sciences
7.4 (2019), p. 663.

[39] IEDB. Retrieved from http://www.iedg.org. Accessed: 2023-02-06.

[40] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data clustering: a review”. In:
ACM computing surveys (CSUR) 31.3 (1999), pp. 264–323.

[41] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu. “A Survey on Knowl-
edge Graphs: Representation, Acquisition, and Applications”. In: IEEE Trans-
actions on Neural Networks and Learning Systems 33.2 (2022), pp. 494–514.

[42] C. Kanz, P. Aldebert, N. Althorpe, W. Baker, A. Baldwin, K. Bates, P.
Browne, A. van den Broek, M. Castro, G. Cochrane, et al. “The EMBL nu-
cleotide sequence database”. In: Nucleic acids research 33.suppl_1 (2005),
pp. D29–D33.

 https://www.genecards.org/)
http://www.iedg.org

82 Bibliography

[43] G. Karypis, E.-H. Han, and V. Kumar. “Chameleon: Hierarchical clustering
using dynamic modeling”. In: computer 32.8 (1999), pp. 68–75.

[44] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to
cluster analysis. John Wiley & Sons, 2009.

[45] M. G. Kendall. “A new measure of rank correlation”. In: Biometrika 30.1/2
(1938), pp. 81–93.

[46] Y. Kim, C. Denton, L. Hoang, and A. M. Rush. “Structured attention net-
works”. In: arXiv preprint arXiv:1702.00887 (2017).

[47] T. Kohonen. “The self-organizing map”. In: Proceedings of the IEEE 78.9
(1990), pp. 1464–1480.

[48] P. Kotiranta, M. Junkkari, and J. Nummenmaa. “Performance of graph and
relational databases in complex queries”. In: Applied Sciences 12.13 (2022),
p. 6490.

[49] Koza. https://koza.monarchinitiative.org/. accessed on 28 December
2022.

[50] D. P. Lane. “p53 and human cancers”. In: British Medical Bulletin 50.3 (Sept.
1994), pp. 582–599. eprint: https://academic.oup.com/bmb/article-
pdf/50/3/582/7292468/50-3-582.pdf.

[51] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. “BioBERT:
a pre-trained biomedical language representation model for biomedical text
mining”. In: Bioinformatics 36.4 (2020), pp. 1234–1240.

[52] Y. Li, Z. A. Bandar, and D. McLean. “An approach for measuring seman-
tic similarity between words using multiple information sources”. In: IEEE
Transactions on knowledge and data engineering 15.4 (2003), pp. 871–882.

[53] A. M. Liekens, J. De Knijf, W. Daelemans, B. Goethals, P. De Rijk, and
J. Del-Favero. “BioGraph: unsupervised biomedical knowledge discovery via
automated hypothesis generation”. In: Genome biology 12.6 (2011), pp. 1–12.

[54] D. Lin et al. “An information-theoretic definition of similarity.” In: Icml.
Vol. 98. 1998. 1998, pp. 296–304.

[55] J. Liu and J. Han. “Spectral clustering”. In: Data clustering. Chapman and
Hall/CRC, 2018, pp. 177–200.

[56] L. Ma, D. Zou, L. Liu, H. Shireen, A. A. Abbasi, A. Bateman, J. Xiao, W.
Zhao, Y. Bao, and Z. Zhang. “Database Commons: A Catalog of Worldwide
Biological Databases”. In: Genomics, Proteomics Bioinformatics (2022).

[57] B. McBride. “The resource description framework (RDF) and its vocabu-
lary description language RDFS”. In: Handbook on ontologies. Springer, 2004,
pp. 51–65.

[58] A. H. Murphy. “The Finley affair: A signal event in the history of forecast
verification”. In: Weather and forecasting 11.1 (1996), pp. 3–20.

[59] M. Nei and S. Kumar. Molecular evolution and phylogenetics. Oxford Univer-
sity Press, USA, 2000.

 https://koza.monarchinitiative.org/
https://academic.oup.com/bmb/article-pdf/50/3/582/7292468/50-3-582.pdf
https://academic.oup.com/bmb/article-pdf/50/3/582/7292468/50-3-582.pdf

Bibliography 83

[60] Neo4j Graph Database. Retrieved from: https : / / neo4j . com / product /
neo4j-graph-database/. Accessed: 2023-02-06.

[61] A. Neumann, N. Laranjeiro, and J. Bernardino. “An analysis of public REST
web service APIs”. In: IEEE Transactions on Services Computing 14.4 (2018),
pp. 957–970.

[62] NodeJS. Retrieved from: https://nodejs.org/. Accessed: 2023-02-06.

[63] A. Panchenko, S. Adeykin, A. Romanov, and P. Romanov. “Extraction of
semantic relations between concepts with knn algorithms on wikipedia”. In:
Concept Discovery in Unstructured Data Workshop (CDUD) of International
Conference On Formal Concept Analysis, Belgium. Citeseer. 2012, pp. 78–88.

[64] H.-S. Park and C.-H. Jun. “A simple and fast algorithm for K-medoids clus-
tering”. In: Expert systems with applications 36.2 (2009), pp. 3336–3341.

[65] J. Parkinson. “An essay on the shaking palsy”. In: The Journal of neuropsy-
chiatry and clinical neurosciences 14.2 (2002), pp. 223–236.

[66] J. Pérez, M. Arenas, and C. Gutierrez. “Semantics and complexity of
SPARQL”. In: ACM Transactions on Database Systems (TODS) 34.3 (2009),
pp. 1–45.

[67] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. “Foundations of
JSON schema”. In: Proceedings of the 25th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee.
2016, pp. 263–273.

[68] J. Piñero, R.-A. Juan Manuel, F. R. Josep Saüch-Pitarch, F. S. Emilio Cen-
teno, and L. I. Furlong. “The DisGeNET knowledge platform for disease ge-
nomics: 2019 update”. In: Nucl. Acids Res. (2019).

[69] R. Rada, H. Mili, E. Bicknell, and M. Blettner. “Development and application
of a metric on semantic nets”. In: IEEE transactions on systems, man, and
cybernetics 19.1 (1989), pp. 17–30.

[70] C. Rasmussen. “The infinite Gaussian mixture model”. In: Advances in neural
information processing systems 12 (1999).

[71] P. Rawat and A. N. Mahajan. “ReactJS: A modern web development frame-
work”. In: International Journal of Innovative Science and Research Technol-
ogy 5.11 (2020), pp. 698–702.

[72] D. J. Rogers and T. T. Tanimoto. “A Computer Program for Classifying
Plants: The computer is programmed to simulate the taxonomic process of
comparing each case with every other case.” In: Science 132.3434 (1960),
pp. 1115–1118.

[73] E. Sayers. “A General Introduction to the E-utilities”. In: Entrez Programming
Utilities Help [Internet]. Bethesda (MD): National Center for Biotechnology
Information (US) (2010).

[74] G. D. Schuler, J. A. Epstein, H. Ohkawa, and J. A. Kans. “[10] Entrez: Molecu-
lar biology database and retrieval system”. In: Methods in enzymology. Vol. 266.
Elsevier, 1996, pp. 141–162.

https://neo4j.com/product/neo4j-graph-database/
https://neo4j.com/product/neo4j-graph-database/
https://nodejs.org/

84 Bibliography

[75] R. L. Seal, B. Braschi, K. Gray, T. E. M. Jones, S. Tweedie, L. Haim-
Vilmovsky, and E. A. Bruford. “Genenames.org: the HGNC resources in 2023”.
In: Nucleic Acids Research (Oct. 2022).

[76] P. Sethi and S. Alagiriswamy. “Association rule based similarity measures
for the clustering of gene expression data”. In: The open medical informatics
journal 4 (2010), p. 63.

[77] K. A. Shefchek, N. L. Harris, M. Gargano, N. Matentzoglu, D. Unni, M. Brush,
D. Keith, T. Conlin, N. Vasilevsky, X. A. Zhang, et al. “The Monarch Initiative
in 2019: an integrative data and analytic platform connecting phenotypes to
genotypes across species”. In: Nucleic acids research 48.D1 (2020), pp. D704–
D715.

[78] T. Shen, J. Hu, Y. Jiang, S. Zhao, C. Lin, X. Yin, Y. Yan, J. Pu, H.-Y. Lai,
and B. Zhang. “Early-onset Parkinson’s disease caused by PLA2G6 compound
heterozygous mutation, a case report and literature review”. In: Frontiers in
neurology 10 (2019), p. 915.

[79] G. S. C. Slater and E. Birney. “Automated generation of heuristics for biolog-
ical sequence comparison”. In: BMC bioinformatics 6 (2005), pp. 1–11.

[80] D. Szklarczyk, A. L. Gable, K. C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo,
N. T. Doncheva, M. Legeay, T. Fang, P. Bork, et al. “The STRING database in
2021: customizable protein–protein networks, and functional characterization
of user-uploaded gene/measurement sets”. In: Nucleic acids research 49.D1
(2021), pp. D605–D612.

[81] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Pearson
Education India, 2016.

[82] Y. Tateno, T. Imanishi, S. Miyazaki, K. Fukami-Kobayashi, N. Saitou, H.
Sugawara, and T. Gojobori. “DNA Data Bank of Japan (DDBJ) for genome
scale research in life science”. In: Nucleic acids research 30.1 (2002), pp. 27–30.

[83] “The 7th Congress of Biophysicists of Russia - conference proceedings”. In:
Biophysical Reviews 15.5 (2023), pp. 1877–1877.

[84] D. R. Unni, S. A. Moxon, M. Bada, M. Brush, R. Bruskiewich, J. H. Caufield,
P. A. Clemons, V. Dancik, M. Dumontier, K. Fecho, et al. “Biolink Model:
A universal schema for knowledge graphs in clinical, biomedical, and transla-
tional science”. In: Clinical and Translational Science (2022).

[85] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[86] A. N. Veljković and N. S. Mitić. “Semantic unification and search of bioinfor-
matics databases”. In: Belgrade BioInformatics Conference. 2023, p. 63.

[87] A. N. Veljković, Y. L. Orlov, and N. S. Mitić. “BioGraph: Data Model for
Linking and Querying Diverse Biological Metadata”. In: World congress Sys-
tems theory, algebraic biology, artificial intelligence: mathematical foundations
and applications. 2023.

Bibliography 85

[88] A. N. Veljković, Y. L. Orlov, and N. S. Mitić. “BioGraph: Data Model for
Linking and Querying Diverse Biological Metadata”. In: International Journal
of Molecular Sciences 24.8 (2023), p. 6954.

[89] S. Vucetic et al. “DisProt: a database of protein disorder”. en. In: Bioinfor-
matics 21.1 (2004), pp. 137–140.

[90] W. Wang, J. Yang, R. Muntz, et al. “STING: A statistical information grid
approach to spatial data mining”. In: Vldb. Vol. 97. 1997, pp. 186–195.

[91] J. H. Ward Jr. “Hierarchical grouping to optimize an objective function”. In:
Journal of the American statistical association 58.301 (1963), pp. 236–244.

[92] X. Wu, J. Duan, Y. Pan, and M. Li. “Medical knowledge graph: Data sources,
construction, reasoning, and applications”. In: Big Data Mining and Analytics
6.2 (2023), pp. 201–217.

[93] Z. Wu and M. Palmer. “Verb semantics and lexical selection”. In: arXiv preprint
cmp-lg/9406033 (1994).

[94] D. Xu and Y. Tian. “A comprehensive survey of clustering algorithms”. In:
Annals of Data Science 2 (2015), pp. 165–193.

[95] R. R. Yager and D. P. Filev. “Approximate clustering via the mountain
method”. In: IEEE Transactions on systems, man, and Cybernetics 24.8
(1994), pp. 1279–1284.

[96] A. Yates, K. Beal, S. Keenan, W. McLaren, M. Pignatelli, G. R. Ritchie, M.
Ruffier, K. Taylor, A. Vullo, and P. Flicek. “The Ensembl REST API: Ensembl
data for any language”. In: Bioinformatics 31.1 (2015), pp. 143–145.

[97] G. Zhang, L. Chitkushev, L. R. Olsen, D. B. Keskin, and V. Brusic. “TANTI-
GEN 2.0: a knowledge base of tumor T cell antigens and epitopes”. In: BMC
bioinformatics 22.8 (2021), pp. 1–8.

[98] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: an efficient data clus-
tering method for very large databases”. In: ACM sigmod record 25.2 (1996),
pp. 103–114.

[99] G. Zhu and C. A. Iglesias. “Computing semantic similarity of concepts in
knowledge graphs”. In: IEEE Transactions on Knowledge and Data Engineer-
ing 29.1 (2016), pp. 72–85.

86 Bibliography

Appendix A

Database importers

The import scripts for importing data from the original databases into the BioGraph
data model are listed here.

A.1 DisProt data importer

1 const axios = require(’axios ’);
2
3 class DisprotImporter {
4 constructor(bg) {
5 this.bg = bg;
6 this.importer = ’disprot ’;
7 this.importerVersion = ’1.0’;
8 this.dataSource = ’DisProt ’;
9 console.log(’Disprot importer loaded ’);

10 }
11
12 async run() {
13 const { bg } = this;
14
15 // Start new import
16 await bg.beginImport(this.importer , this.importerVersion ,

this.dataSource);
17
18 console.log(’Importing data from DisProt ...’);
19
20 // DisProt URL
21 const url = ’https :// disprot.org/api/search?release=current

&show_ambiguous=false&show_obsolete=false&format=json’
22
23 // Acc list of all imported proteins from disprot
24 const proteinAcc = [];
25
26 console.log(’Downloading DisProt data ...’);
27 const { data , size } = (await axios.get(url)).data;
28 console.log(’Download complete , preparing data ...’);
29
30 let i = 0;
31

87

88 Database importers

32 console.log(’Parsing import data’);
33 for (const protein of data) {
34 i += 1;
35
36 // Logging progres
37 if (i > 0 && i % 100 == 0) {
38 console.log(‘DisProt: ${i}/${data.length}‘);
39 }
40
41 const {
42 acc ,
43 disprot_id ,
44 name ,
45 genes ,
46 } = protein;
47
48 proteinAcc.push(acc);
49
50 let uniref50 = null;
51 if (protein.uniref50 != null) {
52 uniref50 = protein.uniref50;
53 }
54
55 let uniref90 = null;
56 if (protein.uniref90 != null) {
57 uniref90 = protein.uniref90;
58 }
59
60 let uniref100 = null;
61 if (protein.uniref100 != null) {
62 uniref100 = protein.uniref100;
63 }
64
65 const proteinEntityId = await bg.createEntityNode(’

Protein ’, acc);
66 await bg.createIdentifierNode(proteinEntityId , ’id’, ’

DisProt ID’, disprot_id);
67 await bg.createIdentifierNode(proteinEntityId , ’id’, ’UniProt

ID’, acc);
68 await bg.createIdentifierNode(proteinEntityId , ’url’, ’

UniProt URL’, ‘https:// uniprot.org/uniprot/${disprot_id }‘)
;

69
70 if (uniref50 != null) {
71 await bg.createIdentifierNode(proteinEntityId , ’id’, ’

UniRef 50’, uniref50);
72 }
73
74 if (uniref90 != null) {
75 await bg.createIdentifierNode(proteinEntityId , ’id’, ’

UniRef 90’, uniref90);
76 }
77
78 if (uniref100 != null) {
79 await bg.createIdentifierNode(proteinEntityId , ’id’, ’

UniRef 100’, uniref100);

DisProt data importer 89

80 }
81
82 await bg.createIdentifierNode(proteinEntityId , ’url’, ’

DisProt URL’, ‘https:// disprot.org/${disprot_id }‘);
83 await bg.createIdentifierNode(proteinEntityId , ’name’, ’

Protein Name’, name);
84
85
86 // Taxonomy
87 // ==========================
88
89 const taxonId = ‘${protein.ncbi_taxon_id }‘;
90
91 const organismName = protein.organism;
92
93 const organismEntityId = await bg.createEntityNode(’Organism ’

, taxonId);
94
95 await bg.createIdentifierNode(organismEntityId , ’id’, ’Taxon

ID’, taxonId);
96 await bg.createIdentifierNode(organismEntityId , ’id’, ’

Taxon Name’, organismName);
97
98 // Gene
99 // =========================

100
101 if (genes != null) {
102 for (const gene of genes) {
103 let geneEntityId = null
104 let rootGeneEntityId = null
105 if (gene.name != null) {
106 const geneSymbol = gene.name.value;
107 rootGeneEntityId = await bg.createEntityNode(’Gene’,

geneSymbol);
108 geneEntityId = await bg.createEntityNode(’Gene’, ‘${

geneSymbol}-${taxonId}‘);
109
110 await bg.createEntityEdge(proteinEntityId , geneEntityId

, ’FROM’, {});
111 await bg.createEntityEdge(geneEntityId ,

organismEntityId , ’FROM’, {});
112 await bg.createEntityEdge(geneEntityId ,

rootGeneEntityId , ’IS_INSTANCE ’, {});
113 await bg.createIdentifierNode(geneEntityId , ’id’, ’Gene

symbol ’, geneSymbol);
114 await bg.createIdentifierNode(rootGeneEntityId , ’id’, ’

Gene symbol ’, geneSymbol);
115 }
116
117 if (geneEntityId != null && gene.synonyms != null) {
118 const geneSynonyms = gene.synonyms.map(el => el.value);
119 for (const synonym of geneSynonyms) {
120 await bg.createIdentifierNode(geneEntityId , ’id’, ’

Synonym ’, synonym);
121 await bg.createIdentifierNode(rootGeneEntityId , ’id’,

’Synonym ’, synonym);

90 Database importers

122 }
123 }
124 }
125 }
126
127 await bg.createDataNode(organismEntityId , ’DisProt ’, {

species: taxonId });
128
129 await bg.createEntityEdge(proteinEntityId , organismEntityId ,

’FROM’, {});
130
131 // Protein data
132 // ==========================
133
134 const disorderContent = parseFloat(protein.disorder_content);
135 const regionsCounter = parseInt(protein.regions_counter);
136
137 await bg.createDataNode(proteinEntityId , ’DisProt ’, {
138 disorder_content: disorderContent ,
139 regions_counter: regionsCounter ,
140 });
141 }
142
143 console.log(‘DisProt: ${size}/${size}‘)
144
145 // Finish and commit the import
146 await bg.finishImport ();
147 console.log(’Disprot import complete ’);
148 }
149 }
150
151 module.exports = DisprotImporter;

Listing A.1: DisProt data importer script

A.2 HGNC data importer

1 const axios = require(’axios ’);
2
3 class HGNCImporter {
4 constructor(bg) {
5 this.bg = bg;
6 this.importer = ’hgnc’;
7 this.importerVersion = ’1.0’;
8 this.dataSource = ’HGNC’;
9 console.log(’HGNC importer loaded ’);

10 }
11
12 async run() {
13 const { bg } = this;
14
15 // Start new import
16 await bg.beginImport(this.importer , this.importerVersion ,

this.dataSource);

HGNC data importer 91

17
18 console.log(’Importing data from HGNC ...’);
19
20 // HGNC URL
21 const url = ’http ://ftp.ebi.ac.uk/pub/databases/genenames/

hgnc/json/hgnc_complete_set.json’
22
23 console.log(’Downloading data ...’);
24 const { docs: data } = (await axios.get(url)).data.response;
25 const size = data.length;
26 console.log(’Download complete , preparing data ...’);
27
28 let i = 0;
29
30 console.log(’Parsing import data’);
31 const organismEntityId = await bg.createEntityNode(’

Organism ’, ‘9606‘);
32 await bg.createIdentifierNode(organismEntityId , ’id’, ’NCBI

ID’, ’9606’);
33
34
35 for (const gene of data) {
36 i += 1;
37
38 if (i % 100 == 0) {
39 console.log(‘HGNC: ${i}/${data.length}‘);
40 }
41
42 // Logging progres
43 if (i > 0 && i % 2000 == 0) {
44 console.log(‘HGNC: ${i}/${data.length}‘);
45 await bg.closeBatch ();
46 }
47
48 const {
49 symbol ,
50 alias_symbol: alias_symbols ,
51 alias_name: alias_names ,
52 name ,
53 omim_id: omim_ids ,
54 rgd_id: rgd_ids ,
55 ucsc_id: ucsc_id ,
56 entrez_id ,
57 ensembl_gene_id ,
58 gene_group: gene_groups ,
59 gene_group_id: gene_group_ids ,
60 location ,
61 locus_type ,
62 locus_group ,
63 status ,
64 vega_id ,
65 hgnc_id ,
66 ncbi_id ,
67 uniprot_ids ,
68 refseq_accession: refseq_accessions ,
69 pubmed_id: pubmed_ids ,

92 Database importers

70 gene_family_id: gene_family_ids ,
71 gene_family: gene_families ,
72 ccds_ids ,
73 mgd_id: mgd_ids ,
74 enzyme_id: enzyme_ids ,
75 mane_select ,
76 } = gene;
77
78 const rootGeneEntityId = await bg.createEntityNode(’

Gene’, symbol);
79 const geneEntityId = await bg.createEntityNode(’Gene’,

‘${symbol }-9606‘);
80 await bg.createEntityEdge(geneEntityId ,

rootGeneEntityId , ’IS_INSTANCE ’, {});
81 await bg.createEntityEdge(geneEntityId ,

organismEntityId , ’FROM’, {});
82
83 await bg.createIdentifierNode(geneEntityId , ’name’, ’

Gene Symbol ’, symbol);
84 await bg.createIdentifierNode(rootGeneEntityId , ’name’,

’Gene Symbol ’, symbol);
85
86 if (name != null) {
87 await bg.createIdentifierNode(geneEntityId , ’name’,

’Gene Name’, name);
88 await bg.createIdentifierNode(rootGeneEntityId , ’

name’, ’Gene Name’, name);
89 }
90
91 if (entrez_id != null) {
92 await bg.createIdentifierNode(geneEntityId , ’id’, ’

Entrez ID’, entrez_id);
93 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’Entrez ID’, entrez_id);
94 }
95
96 if (ensembl_gene_id != null) {
97 await bg.createIdentifierNode(geneEntityId , ’id’, ’

Ensembl Gene ID’, ensembl_gene_id);
98 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’Ensembl Gene ID’, ensembl_gene_id);
99 }

100
101 if (vega_id != null) {
102 await bg.createIdentifierNode(geneEntityId , ’id’, ’

Vega ID’, vega_id);
103 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’Vega ID’, vega_id);
104 }
105
106 if (hgnc_id != null) {
107 await bg.createIdentifierNode(geneEntityId , ’id’, ’

HGNC ID’, hgnc_id);
108 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’HGNC ID’, hgnc_id);
109 }

HGNC data importer 93

110
111 if (ncbi_id != null) {
112 await bg.createIdentifierNode(geneEntityId , ’id’, ’

NCBI ID’, ncbi_id);
113 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’HGNC ID’, hgnc_id);
114 }
115
116 if (enzyme_ids != null) {
117 for (const enzyme_id of enzyme_ids) {
118 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Enzyme ID’, enzyme_id);
119 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’Enzyme ID’, enzyme_id);
120 }
121 }
122
123 if (pubmed_ids != null) {
124 for (const pubmed_id of pubmed_ids) {
125 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Pubmed ID’, pubmed_id);
126 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’Enzyme ID’, pubmed_id);
127 }
128 }
129
130 if (omim_ids != null) {
131 for (const omim_id of omim_ids) {
132 await bg.createIdentifierNode(geneEntityId , ’id

’, ’OMIM ID’, omim_id);
133 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’OMIM ID’, omim_id);
134 }
135 }
136
137 if (rgd_ids != null) {
138 for (const rgd_id of rgd_ids) {
139 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Rat Gene Database ID’, rgd_id);
140 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’Rat Gene Database ID’, rgd_id);
141 }
142 }
143
144 if (ucsc_id != null) {
145 await bg.createIdentifierNode(geneEntityId , ’id’, ’

USCS ID’, ucsc_id);
146 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’USCS ID’, ucsc_id);
147 }
148
149 if (alias_symbols != null) {
150 for (const alias_symbol of alias_symbols) {
151 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Alias Symbol ’, alias_symbol);
152 await bg.createIdentifierNode(rootGeneEntityId ,

94 Database importers

’id’, ’Alias Symbol ’, alias_symbol);
153 }
154 }
155
156 if (alias_names != null) {
157 for (const alias_name of alias_names) {
158 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Alias Name’, alias_name);
159 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’Alias Symbol ’, alias_name);
160 }
161 }
162
163 if (mgd_ids != null) {
164 for (const mgd_id of mgd_ids) {
165 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Mouse Gene Database ID’, mgd_id);
166 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’Mouse Gene Database ID’, mgd_id);
167 }
168 }
169
170 if (ccds_ids != null) {
171 for (const ccd_id of ccds_ids) {
172 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Consensus CDS ID’, ccd_id);
173 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’Consensus CDS ID’, ccd_id);
174 }
175 }
176
177 if (refseq_accessions != null) {
178 for (const refseq_accession of refseq_accessions) {
179 await bg.createIdentifierNode(geneEntityId , ’id

’, ’RefSeq Accession ’, refseq_accession);
180 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’RefSeq Accession ’, refseq_accession)
;

181 }
182 }
183
184 if (gene_families != null) {
185 for (const gene_family of gene_families) {
186 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Gene Family ’, gene_family);
187 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’Gene Family ’, gene_family);
188 }
189 }
190
191 if (gene_family_ids != null) {
192 for (const gene_family_id of gene_family_ids) {
193 await bg.createIdentifierNode(geneEntityId , ’id

’, ’Gene Family ID’, gene_family_id);
194 await bg.createIdentifierNode(rootGeneEntityId ,

’id’, ’Gene Family ID’, gene_family_id);

HGNC data importer 95

195 }
196 }
197
198 if (mane_select != null) {
199 const [ens_id , rep_seq_id] = mane_select;
200 await bg.createIdentifierNode(geneEntityId , ’id’, ’

Representative Ensamble ID’, ens_id);
201 await bg.createIdentifierNode(geneEntityId , ’id’, ’

Representative Sequence ID’, rep_seq_id);
202 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’Representative Ensamble ID’, ens_id);
203 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’Representative Sequence ID’, rep_seq_id);
204 }
205
206 const locusEntityId = await bg.createEntityNode(’Locus ’

, location);
207 await bg.createDataNode(locusEntityId , ’HGNC’, {

location });
208 await bg.createIdentifierNode(locusEntityId , ’id’, ’

Location ’, location);
209 await bg.createEntityEdge(geneEntityId , locusEntityId ,

’FROM’, {});
210
211 const geneData = {
212 location ,
213 locus_type ,
214 locus_group ,
215 status ,
216 }
217
218 await bg.createDataNode(geneEntityId , ’HGNC’, geneData)

;
219
220 // UniProt ids
221 if (uniprot_ids != null) {
222 for (const uniprot_id of uniprot_ids) {
223 const proteinEntityId = await bg.

createEntityNode(’Protein ’, uniprot_id);
224 await bg.createIdentifierNode(proteinEntityId ,

’id’, ’UniProt ID’, uniprot_id);
225 await bg.createEntityEdge(proteinEntityId ,

geneEntityId , ’FROM’, {});
226 await bg.createEntityEdge(proteinEntityId ,

organismEntityId , ’FROM’, {});
227 }
228 }
229
230
231 }
232
233 console.log(‘HGNC: ${data.length }/${data.length}‘)
234
235 // Finish and commit the import
236 await bg.finishImport ();
237 console.log(’HGNC import complete ’);

96 Database importers

238 }
239 }
240
241 module.exports = HGNCImporter;

Listing A.2: HGNC data importer script

A.3 DisGeNET data importer

1 const { TSV } = require(’tsv’);
2 const fs = require(’fs’);
3
4 class DisGeNetImporter {
5 constructor(bg) {
6 this.bg = bg;
7 this.importer = ’disgenet ’;
8 this.importerVersion = ’1.0’;
9 this.dataSource = ’DisGeNet ’;

10 console.log(’DisGeNet importer loaded ’);
11 }
12
13 async run() {
14 const { bg } = this;
15
16 // Start new import
17 await bg.beginImport(this.importer , this.importerVersion ,

this.dataSource);
18
19 console.log(’Importing data from DisGeNet ...’);
20
21
22
23 // Load data
24 const tsvFile = fs.readFileSync(’./ importers/local -data/

disgenet.tsv’,’utf8’);
25 const parser = new TSV.Parser("\t", { header: true });
26 const data = parser.parse(tsvFile);
27
28 const organismEntityId = await bg.createEntityNode(’

Organism ’, ‘9606‘);
29 await bg.createIdentifierNode(organismEntityId , ’id’, ’NCBI

ID’, ’9606’);
30
31 let i = 0;
32 for (const disease of data) {
33 i += 1;
34
35 if (i % 1000 == 0 && i > 0) {
36 console.log(‘DisGeNet: ${i}/${data.length}‘);
37 }
38
39 if (i % 10000 == 0 && i !== 0) {
40 await bg.closeBatch ();
41 }

DisGeNET data importer 97

42
43 const {
44 diseaseId ,
45 diseaseName ,
46 diseaseType ,
47 diseaseClass ,
48 diseaseSemanticType ,
49 } = disease;
50
51 // Create disase
52 const diseaseEntityId = await bg.createEntityNode(’

Disease ’, diseaseId);
53 await bg.createEntityEdge(diseaseEntityId ,

organismEntityId , ’FROM’, {});
54
55 await bg.createIdentifierNode(diseaseEntityId , ’id’, ’

Condition ID’, diseaseId);
56 await bg.createIdentifierNode(diseaseEntityId , ’name’,

’Disease Type’, diseaseType);
57 await bg.createIdentifierNode(diseaseEntityId , ’name’,

’Disease Semantic Type’, diseaseSemanticType);
58 await bg.createIdentifierNode(diseaseEntityId , ’name’,

’Disease Name’, diseaseName);
59
60
61 await bg.createDataNode(diseaseEntityId , ’DisGeNet ’, {
62 disease_name: diseaseName ,
63 });
64
65 if (diseaseClass != null) {
66 for (const dclass of diseaseClass.split(’;’)) {
67 await bg.createIdentifierNode(diseaseEntityId ,

’id’, ’Disease Class ’, dclass);
68 const diseaseClassEntityId = await bg.

createEntityNode(’Disease_Class ’, dclass);
69 await bg.createIdentifierNode(

diseaseClassEntityId , ’id’, ’Disease Class’,
dclass);

70 await bg.createEntityEdge(diseaseEntityId ,
diseaseClassEntityId , ’IS_INSTANCE ’, {});

71 }
72
73 // TODO: Disease class names
74
75 const { geneId , geneSymbol , DSI , DPI , score } = disease;
76
77 const rootGeneEntityId = await bg.createEntityNode(

’Gene’, geneSymbol.trim());
78 const geneEntityId = await bg.createEntityNode(’

Gene’, ‘${geneSymbol.trim()}-9606‘);
79 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’NCBI ID’, geneId);
80 await bg.createIdentifierNode(rootGeneEntityId , ’id

’, ’Gene Symbol ’, geneSymbol.trim());
81
82 await bg.createIdentifierNode(geneEntityId , ’id’, ’

98 Database importers

NCBI ID’, geneId);
83 await bg.createIdentifierNode(geneEntityId , ’name’,

’Gene Symbol ’, geneSymbol.trim());
84
85 await bg.createEntityEdge(geneEntityId ,

rootGeneEntityId , ’IS_INSTANCE ’, {});
86 await bg.createEntityEdge(geneEntityId ,

organismEntityId , ’FROM’, {});
87
88 const edgeData = {
89 dsi: DSI || null ,
90 dpi: DPI || null ,
91 score: score ? parseFloat(score) : null
92 }
93
94 await bg.createEntityEdge(diseaseEntityId ,

geneEntityId , ’RELATED_WITH ’, edgeData);
95 }
96 }
97
98
99 console.log(‘DisGeNet: ${data.length }/${data.length}‘);

100
101 // Finish and commit the import
102 await bg.finishImport ();
103 console.log(’DisGeNet import complete ’);
104 }
105 }
106
107 module.exports = DisGeNetImporter;

Listing A.3: DisGeNET data importer script

A.4 IEDB data importer

1 const Papa = require(’papaparse ’);
2 const fs = require(’fs’);
3
4 class IEDBImporter {
5 constructor(bg) {
6 this.bg = bg;
7 this.importer = ’iedb’;
8 this.importerVersion = ’1.0’;
9 this.dataSource = ’IEDB’;

10 console.log(’IEDB importer loaded ’);
11 }
12
13 parseCSV(path , skipRows = null) {
14 return new Promise ((resolve , reject) => {
15 const loadedData = [];
16
17 console.log(’Parsing input file: ’, path);
18 const stream = fs.createReadStream(path , ’utf8’);

IEDB data importer 99

19 const parseStream = Papa.parse(Papa.NODE_STREAM_INPUT ,
{ header: false , });

20
21 stream.pipe(parseStream);
22
23 parseStream.on(’data’, (data) => loadedData.push(data))

;
24 parseStream.on(’finish ’, () => resolve(skipRows != null

? loadedData.slice(skipRows) : loadedData));
25 parseStream.on(’error ’, err => reject(err))
26
27 })
28 }
29
30 async processEpitope(
31 bg ,
32 epitopeIri ,
33 objectType ,
34 description ,
35 epitopeModifiedResidues ,
36 epitopeModifications ,
37 startingPosition ,
38 endingPosition ,
39 nonPeptidicEpitopeIri ,
40 epitopeSynonyms ,
41 antigenName ,
42 antigenIri ,
43 parentProtein ,
44 parentProteinIri ,
45 parentOrganism ,
46 parentOrganismIri ,
47 epitopeComments ,
48) {
49 const epitopeEntityId = await bg.createEntityNode(’Epitope ’

, ‘${epitopeIri.split(’/’).slice(-1)[0]} ‘);
50 await bg.createIdentifierNode(epitopeEntityId , ’id’, ‘IEDB

ID ‘, ‘${epitopeIri.split(’/’).slice (-1)[0]} ‘);
51 await bg.createIdentifierNode(epitopeEntityId , ’url’, ‘IEDB

URL ‘, ‘${epitopeIri }‘);
52 await bg.createIdentifierNode(epitopeEntityId , ’name’, ‘

Epitope description ‘, description);
53 await bg.createIdentifierNode(epitopeEntityId , ’id’, ‘IEDB

IRI ‘, ‘${epitopeIri }‘);
54
55 const epitopeData = {
56 ...(epitopeModifiedResidues.length > 0 && {

epitope_modified_residues: epitopeModifiedResidues
}),

57 ...(description.length > 0 && { epitope_description:
description }),

58 ...(startingPosition.length > 0 && { start_position:
startingPosition }),

59 ...(endingPosition.length > 0 && { end_position:
endingPosition }),

60 ...(objectType.length > 0 && { object_type: objectType
}),

100 Database importers

61 ...(epitopeModifications.length > 0 && {
epitope_modifications: epitopeModifications }),

62 ...(epitopeComments.length > 0 && { epitope_comments:
epitopeComments })

63 };
64
65 if (Object.keys(epitopeData).length > 0) {
66 await bg.createDataNode(epitopeEntityId , ’iedb’,

epitopeData , epitopeComments.length > 0 ? "
epitope_comments" : null);

67 }
68
69 if (nonPeptidicEpitopeIri.length > 0) {
70 const nonPeptidicMoleculeEntityId = await bg.

createEntityNode(’Molecule ’, nonPeptidicEpitopeIri.
split(’/’).slice (-1)[0]. split(’_’)[1]);

71 await bg.createIdentifierNode(
nonPeptidicMoleculeEntityId , ’sequence ’, ‘ChEBI ID‘,
nonPeptidicEpitopeIri.split(’/’).slice(-1)[0]. split

(’_’)[1]);
72 await bg.createEntityEdge(nonPeptidicMoleculeEntityId ,

epitopeEntityId , ’CONTAINS ’, {});
73
74 if (parentOrganismIri.length > 0) {
75 const moleculeOrganismId = parentOrganismIri.split(

’NCBITaxon_ ’)[1];
76 const moleculeOrganismEntityId = await bg.

createEntityNode(’Organism ’, ‘${
moleculeOrganismId }‘);

77 await bg.createEntityEdge(
nonPeptidicMoleculeEntityId ,
moleculeOrganismEntityId , ’FROM’);

78
79 await bg.createIdentifierNode(

moleculeOrganismEntityId , ’id’, ‘Taxon ID‘, ‘${
parentOrganismIri.split(’NCBITaxon_ ’)[1]} ‘);

80 await bg.createIdentifierNode(
moleculeOrganismEntityId , ’url’, ‘Taxon URL ‘, ‘$
{parentOrganismIri }‘);

81 await bg.createIdentifierNode(
moleculeOrganismEntityId , ’name’, ‘Taxon Name ‘,
‘${parentOrganism }‘);

82 }
83
84
85
86 }
87
88 if (epitopeSynonyms.length > 0) {
89 for (const synonym of epitopeSynonyms.split(’, ’)) {
90 await bg.createIdentifierNode(epitopeEntityId , ’

name’, ‘Synonym ‘, synonym);
91 }
92 }
93
94 if (antigenName.length > 0) {

IEDB data importer 101

95 let antigenIriType = ’Antigen ’;
96
97 if (antigenIri.includes(’uniprot ’)) {
98 antigenIriType = ’UniProt ’;
99 }

100
101 if (antigenIri.includes(’ncbi’)) {
102 antigenIriType = ’NCBI’;
103 }
104
105 const antigenEntityId = await bg.createEntityNode(’

Antigen ’, ‘${antigenIri.split(’/’).slice(-1)[0]}‘);
106 await bg.createIdentifierNode(antigenEntityId , ’id’, ‘$

{antigenIriType} ID‘, ‘${antigenIri.split(’/’).slice
(-1)[0]}‘);

107 await bg.createIdentifierNode(antigenEntityId , ’url’, ‘
${antigenIriType} URL ‘, ‘${antigenIri }‘);

108 await bg.createEntityEdge(epitopeEntityId ,
antigenEntityId , ’FROM’, {});

109
110 const proteinEntityId = await bg.createEntityNode(’

Protein ’, ‘${parentProteinIri.split(’/’).slice (-1)
[0]} ‘);

111 await bg.createIdentifierNode(proteinEntityId , ’id’, ‘$
{antigenIriType} ID‘, ‘${parentProteinIri.split(’/’)
.slice(-1)[0]}‘);

112 await bg.createIdentifierNode(proteinEntityId , ’id’, ’
UniProt ID’, ‘${parentProteinIri.split(’/’).slice
(-1)[0]}‘);

113 await bg.createIdentifierNode(proteinEntityId , ’url’, ’
UniProt URL’, ‘${parentProteinIri }‘);

114 await bg.createIdentifierNode(proteinEntityId , ’name’,
’Protein Name’, ‘${parentProtein }‘);

115 await bg.createEntityEdge(proteinEntityId ,
antigenEntityId , ’HAS_ROLE ’, { relationDetails: ’
PARENT_PROTEIN ’ });

116
117 const organismEntityId = await bg.createEntityNode(’

Organism ’, ‘${parentOrganismIri.split(’NCBITaxon_ ’)
[1]} ‘);

118 await bg.createIdentifierNode(organismEntityId , ’id’, ‘
Taxon ID ‘, ‘${parentOrganismIri.split(’NCBITaxon_ ’)
[1]} ‘);

119 await bg.createIdentifierNode(organismEntityId , ’url’,
‘Taxon URL ‘, ‘${parentOrganismIri }‘);

120 await bg.createIdentifierNode(organismEntityId , ’url’,
‘Taxon Name ‘, ‘${parentOrganism }‘);

121
122 }
123
124 return epitopeEntityId;
125 }
126
127
128 async run() {
129 const { bg } = this;

102 Database importers

130
131 // Start new import
132 await bg.beginImport(this.importer , this.importerVersion ,

this.dataSource);
133
134 console.log(’Importing data from IEDB ...’);
135
136
137
138 // Load data
139 const antigenCsvFile = fs.readFileSync(’./ importers/local -

data/iedb -antigen.csv’, ’utf8’);
140 const { data: antigenData } = Papa.parse(antigenCsvFile.

split(’\n’).slice (1).join(’\n’), { header: true });
141
142 console.log(’IEDB: Processing antigen data’);
143
144 let i = 0;
145 for (const antigen of antigenData) {
146 i += 1;
147
148 const antigenName = antigen[’Antigen Name’];
149 const rawId = antigen[’Antigen ID’];
150 if (rawId == null || rawId.length == 0) {
151 continue;
152 }
153
154 const antigenId = rawId.split(’/’).slice(-1)[0];
155 const organismName = antigen[’Organism Name’];
156 const organismTaxonId = antigen[’Organism ID’].split(’

NCBITaxon_ ’)[1];
157
158 let idType = ’Protein ’;
159 if (rawId.includes(’uniprot ’)) {
160 idType = ’UniProt ’;
161 }
162 if (rawId.includes(’allergen ’)) {
163 idType = ’Alergen.org’;
164 }
165 if (rawId.includes(’ontology.iedb’)) {
166 idType = ’IEDB ontology ’;
167 }
168
169 // console.log(organismNCBIId);
170 // break;
171
172 if (i % 1000 == 0 && i > 0) {
173
174 console.log(‘IEDB: ${i}/${antigenData.length} (

Antigen) ‘);
175 }
176
177 if (i % 10000 == 0 && i > 0) {
178 await bg.closeBatch ();
179 }
180

IEDB data importer 103

181 const antigenEntityId = await bg.createEntityNode(’
Antigen ’, antigenId);

182 await bg.createIdentifierNode(antigenEntityId , ’url’, ‘
${idType} URL ‘, rawId);

183 await bg.createIdentifierNode(antigenEntityId , ’id’, ‘$
{idType} ID‘, ‘${antigenId}‘);

184 await bg.createIdentifierNode(antigenEntityId , ’name’,
’Antigen Name’, ‘${antigenName }‘);

185
186 const proteinEntityId = await bg.createEntityNode(’

Protein ’, antigenId);
187 await bg.createIdentifierNode(proteinEntityId , ’url’,

‘${idType} URL ‘, rawId);
188 await bg.createIdentifierNode(proteinEntityId , ’id’, ‘$

{idType} ID‘, ‘${antigenId}‘);
189 await bg.createIdentifierNode(proteinEntityId , ’name’,

’Antigen Name’, ‘${antigenName }‘);
190
191 await bg.createEntityEdge(proteinEntityId ,

antigenEntityId , ’HAS_ROLE ’, {});
192
193 if (organismTaxonId != null) {
194 const organismEntityId = await bg.createEntityNode(

’Organism ’, organismTaxonId);
195
196 await bg.createIdentifierNode(organismEntityId , ’id

’, ’Taxon ID’, organismTaxonId);
197 await bg.createIdentifierNode(organismEntityId , ’id

’, ’Taxon Name’, organismName);
198 await bg.createDataNode(organismEntityId , ’iedb’, {

species: organismTaxonId });
199
200 await bg.createEntityEdge(antigenEntityId ,

organismEntityId , ’FROM’, {});
201 await bg.createEntityEdge(proteinEntityId ,

organismEntityId , ’FROM’, {});
202 }
203 }
204
205 const epitopeData = await this.parseCSV(’./ importers/local -

data/iedb -epitope.csv’, 2);
206
207 console.log(‘IEDB: ${antigenData.length }/${antigenData.

length}‘);
208 await bg.closeBatch ();
209
210 console.log(’IEDB: Processing epitope data’);
211 i = 0;
212 for (const epitope of epitopeData) {
213 const [
214 epitopeIri ,
215 objectType ,
216 description ,
217 epitopeModifiedResidues ,
218 epitopeModifications ,
219 startingPosition ,

104 Database importers

220 endingPosition ,
221 nonPeptidicEpitopeIri ,
222 epitopeSynonyms ,
223 antigenName ,
224 antigenIri ,
225 parentProtein ,
226 parentProteinIri ,
227 organismName ,
228 organismIri ,
229 parentOrganism ,
230 parentOrganismIri ,
231 epitopeComments ,
232 relatedObjectEpitopeRelationship ,
233 relatedObjectType ,
234 relatedObjectDescription ,
235 relatedObjectStartingPosition ,
236 relatedObjectEndingPosition ,
237 relatedObjectNonPeptidicEpitopeIri ,
238 relatedObjectSynonyms ,
239 relatedObjectAntigenName ,
240 relatedObjectAntigenIri ,
241 relatedObjectParentProtein ,
242 relatedObjectParentProteinIri ,
243 relatedObjectOrganismName ,
244 relatedObjectOrganismIri ,
245 relatedObjectParentOrganism ,
246 relatedObjectParentOrganismIri ,
247
248] = epitope;
249 i += 1;
250 // if (i < 40000) { continue; }
251
252
253 if (i % 10000 == 0 && i > 0) {
254
255 console.log(‘IEDB: ${i}/${epitopeData.length} (

Epitope) ‘);
256 }
257
258 if (i % 10000 == 0 && i > 0) {
259 await bg.closeBatch ();
260 }
261
262 await this.processEpitope(
263 bg ,
264 epitopeIri ,
265 objectType ,
266 description ,
267 epitopeModifiedResidues ,
268 epitopeModifications ,
269 startingPosition ,
270 endingPosition ,
271 nonPeptidicEpitopeIri ,
272 epitopeSynonyms ,
273 antigenName ,
274 antigenIri ,

DisGeNET data importer 105

275 parentProtein ,
276 parentProteinIri ,
277 parentOrganism ,
278 parentOrganismIri ,
279 epitopeComments ,
280);
281 }
282 // Finish and commit the import
283 await bg.finishImport ();
284 console.log(’IEDB import complete ’);
285 }
286 }
287
288 module.exports = IEDBImporter;

Listing A.4: IEDB data importer script

A.5 DisGeNET data importer

1 const fs = require(’fs’);
2 const tabletojson = require(’tabletojson ’).Tabletojson;
3
4
5 class TantigenImporter {
6 constructor(bg) {
7 this.bg = bg;
8 this.importer = ’tantigen ’;
9 this.importerVersion = ’1.0’;

10 this.dataSource = ’Tantigen ’;
11 console.log(’Tantigen importer loaded ’);
12 }
13
14 downloadTable(antigenId) {
15 const url = ’http :// projects.met -hilab.org/tadb/cgi/

displayAntigen.pl’;
16
17 return new Promise ((resolve , reject) => {
18 tabletojson.convertUrl(
19 ‘${url}?ACC=${antigenId}‘,
20 (tablesAsJson) => {
21 if (tablesAsJson [1]) {
22 fs.writeFileSync (‘/tmp/tantigen/${antigenId }.json ‘,

JSON.stringify(tablesAsJson [1], null , 2), { flag :
’w’});

23 }
24 resolve(tablesAsJson [1]);
25 })
26 })
27 }
28
29 async run() {
30 try {
31 const { bg } = this;
32

106 Database importers

33 // Start new import
34 await bg.beginImport(this.importer , this.

importerVersion , this.dataSource);
35
36 console.log(’Importing data from Tantigen ...’);
37
38 // for (let i = 1; i <= 4507; i+= 1) {
39 // try {
40 // await this.downloadTable(‘Ag${‘${i}‘.

padStart(6, ’0’)}‘)
41 // } catch (err) {
42 // console.log(‘Skipping Ag${‘${i}‘.padStart(6,

’0’)}‘);
43 // }
44 // }
45
46 const files = fs.readdirSync(’./ importers/local -data/

tantigen ’);
47 const organismEntityId = await bg.createEntityNode(’

Organism ’, ‘9606‘);
48 await bg.createIdentifierNode(organismEntityId , ’id’, ’

NCBI ID’, ’9606’);
49
50 let i = 0;
51 for (const filename of files) {
52 // const num = ‘${i}‘;
53 // const antigenId = ‘Ag${num.padStart(6, ’0’)}‘;
54 const antigenId = filename.split(’.’)[0];
55 const file = fs.readFileSync (‘./ importers/local -

data/tantigen/${filename}‘, { encoding: ’utf8’})
;

56 const table = JSON.parse(file);
57
58 i += 1;
59
60 if (i % 100 == 0 && i > 0) {
61 console.log(‘Tantigen: ${i}/${files.length}‘);
62 await bg.closeBatch ();
63 }
64
65 // if (i == 6) {
66 // break;
67 // }
68
69 const antigenEntityId = await bg.createEntityNode(’

Antigen ’, antigenId);
70 await bg.createIdentifierNode(antigenEntityId , ’id’

, ’Antigen ACC’, antigenId);
71
72 // objects.add(antigenEntityId);
73 let geneEntityId = null;
74 let rootGeneEntityId = null;
75
76 // epitopes = null;
77 // hlaLigands = null;
78

DisGeNET data importer 107

79 const antigenData = {};
80
81 for (const row of table) {
82 const key = row [0];
83
84 if (key == ’Antigen Name’) {
85 const antigenName = row [1]. trim();
86
87 rootGeneEntityId = await bg.

createEntityNode(’Gene’, antigenName);
88 geneEntityId = await bg.createEntityNode(’

Gene’, ‘${antigenName }-9606‘);
89 await bg.createIdentifierNode(geneEntityId ,

’name’, ’Gene Name’, antigenName);
90
91 await bg.createEntityEdge(geneEntityId ,

rootGeneEntityId , ’IS_INSTANCE ’, {});
92 await bg.createEntityEdge(geneEntityId ,

organismEntityId , ’FROM’, {});
93 await bg.createEntityEdge(geneEntityId ,

antigenEntityId , ’HAS_ROLE ’);
94 }
95
96 if (key == ’Common Name’) {
97 const commonName = row [1]. trim();
98 await bg.createIdentifierNode(geneEntityId ,

’name’, ’Common Name’, commonName);
99 }

100
101 if (key == ’Full name’) {
102 antigenData.fullName = row [1];
103 }
104
105 if (key == ’Comment ’) {
106 antigenData.comment = row [1];
107 }
108
109 if (key == ’Synonym ’) {
110 const synonyms = row [1]. split(’\n’)[0].

split(’another ’)[0]. split(’;’).map(el =>
el.trim());

111
112 for (const synonym of synonyms) {
113 await bg.createIdentifierNode(

antigenEntityId , ’name’, ’Synonym
Name’, synonym);

114 }
115 }
116
117 if (key == ’UniProt ID’) {
118 const uniprotId = row [1]. trim();
119 // proteins.add(uniprotId);
120 const proteinEntityId = await bg.

createEntityNode(’Protein ’, uniprotId);
121
122 // objects.add(proteinEntityId);

108 Database importers

123
124 await bg.createIdentifierNode(

proteinEntityId , ’id’, ’UniProt ID’,
uniprotId);

125 await bg.createIdentifierNode(
antigenEntityId , ’id’, ’UniProt ID’,
uniprotId);

126
127 await bg.createEntityEdge(proteinEntityId ,

antigenEntityId , ’HAS_ROLE ’);
128 await bg.createEntityEdge(proteinEntityId ,

organismEntityId , ’FROM’, {});
129
130 if (geneEntityId != null) {
131 await bg.createEntityEdge(

proteinEntityId , geneEntityId , ’FROM
’, {});

132 }
133 }
134
135 if (key == ’NCBI Gene ID’) {
136 const geneId = row [1]. trim();
137 if (geneEntityId != null) {
138 await bg.createIdentifierNode(

geneEntityId , ’id’, ’NCBI ID’,
geneId);

139 await bg.createIdentifierNode(
rootGeneEntityId , ’id’, ’NCBI ID’,
geneId);

140 }
141 }
142
143 if (key == ’Annotation ’) {
144 const annotation = row [1]. trim();
145 antigenData.annotation = annotation;
146 }
147
148 if (key == ’Isoforms ’) {
149 const isoforms = row [1]. split(’Alignment ’)

[0]. split(’\n’)[0]. split(’,’).map(el =>
el.trim().split(’Alignment ’)[0]);

150 for (const isoform of isoforms) {
151 const isoNodeId = await bg.

createEntityNode(’Antigen ’, isoform)
;

152
153 if (antigenEntityId != isoNodeId) {
154 await bg.createEntityEdge(

antigenEntityId , isoNodeId , ’
IS_VARIANT ’, { variationType: ’
ISOFORM ’ });

155 }
156 }
157 }
158
159 if (key == ’Mutation entries ’) {

DisGeNET data importer 109

160 const mutationEntries = row [1]. split(’view’
)[0]. split(’,’).map(el => el.trim().
split(’View’)[0]);

161
162 for (const entry of mutationEntries) {
163 const mutationNodeId = await bg.

createEntityNode(’Antigen ’, entry);
164 // objects.add(mutationNodeId);
165
166 if (antigenEntityId != mutationNodeId)

{
167 await bg.createEntityEdge(

antigenEntityId , mutationNodeId ,
’IS_VARIANT ’, { variationType:

’MUTATION ’});
168 }
169 }
170 }
171
172
173 if (key == ’RNA/protein expression profile ’) {
174 antigenData.rnaProteinExpressionProfile =

row [1];
175 }
176
177 if (key == ’T cell epitope ’) {
178 // First row / header
179 if (row [1]. trim() != "Epitope sequence") {
180 const positions = row [2]. split(’ ’);
181 // const [from , to] = row [2]. split(’-’)

;
182 const epitope = {
183 sequence: row [1]. trim(),
184 positions ,
185 hlaAllele: row [3]. trim(),
186 epitopeType: ’T-cell’,
187 };
188
189 const epitopeReferences = ‘${row[4]}‘.

split(’\n’).map(el => el.trim());
190
191 const epitopeEntityId = await bg.

createEntityNode(’Epitope ’, epitope.
sequence);

192
193 await bg.createIdentifierNode(

epitopeEntityId , ’sequence ’, ’
Epitope Sequence ’, epitope.sequence)
;

194 await bg.createIdentifierNode(
epitopeEntityId , ’id’, ’HLA Allele ’,
epitope.hlaAllele);

195
196 for (const reference of

epitopeReferences) {
197 await bg.createIdentifierNode(

110 Database importers

epitopeEntityId , ’id’, ’
Reference ID’, reference);

198 }
199
200 await bg.createDataNode(epitopeEntityId

, ’Tantigen ’, epitope);
201 await bg.createEntityEdge(

antigenEntityId , epitopeEntityId , ’
CONTAINS ’, {});

202 }
203 }
204
205 if (key == ’HLA ligand ’) {
206 // if (hlaLigands == null) {
207 // hlaLigands = true;
208 if (row[1] != ’Ligand Sequence ’ && row[1]

!= ’Predicted HLA binders ’ && row [1] !=
’Antigen sequence ’) {

209 const positions = row [2]. split(’ ’);
210
211 // console.log(row);
212 const hlaLigand = {
213 sequence: row [1]. trim(),
214 positions ,
215 hlaAllele: row [3]. trim(),
216 type: ’HLA ligand ’
217 }
218
219 const ligandReferences = ‘${row [4]}‘.

split(’\n’).map(el => el.trim());
220
221 const ligandEntityId = await bg.

createEntityNode(’HLA_Ligand ’,
hlaLigand.sequence);

222
223 await bg.createIdentifierNode(

ligandEntityId , ’sequence ’, ’Ligand
Sequence ’, hlaLigand.sequence);

224
225 for (const reference of

ligandReferences) {
226 await bg.createIdentifierNode(

ligandEntityId , ’id’, ’Reference
ID’, reference);

227 }
228
229 await bg.createDataNode(ligandEntityId ,

’Tantigen ’, hlaLigand);
230 await bg.createEntityEdge(

antigenEntityId , ligandEntityId , ’
CONTAINS ’, {});

231 }
232 }
233 }
234 }
235

DisGeNET data importer 111

236 console.log(‘Tantigen: ${files.length }/${files.length
}‘)

237
238 // Finish and commit the import
239 await bg.finishImport ();
240 console.log(’Tantigen import complete ’);
241 } catch (err) {
242 console.log(err);
243 throw err;
244 }
245 }
246 }
247
248 module.exports = TantigenImporter;

Listing A.5: Tantigen data importer script

112 Database importers

Биографиjа аутора

Александар Вељковић рођен jе 23. септембра 1992. године у Пожаревцу.
Завршио jе основну школу „Бранко Радичевић” у Голупцу као носилац Вукове
дипломе. Гимназиjу општег смера у Великом Градишту завршава као
ученик генерациjе и носилац Вукове дипломе. Основне академске студиjе
на Математичком факултету, Универзитета у Београду, смер информатика,
уписао jе 2011. године и завршио 2014. године са просечном оценом 9,73.
Мастер академске студиjе на Математичком факултету, смер информатика,
уписао jе 2014. године и завршио 2016. са просечном оценом 9,69, одбрањеном
мастер тезом под називом „Нова метода за асемблирање генома на основу PFG
електрофорезе” под менторством проф. др Ненада Митића. Докторске студиjе
на Математичком факултету уписао jе 2016. године и положио све испите
са просечном оценом 10,00. Од 2015. до 2017. године био jе запослен као
сарадник у настави на Математичком факултету, Универзитета у Београду,
на катедри за рачунарство и информатику. Од 2017. изабран jе у звање
асистента на катедри за рачунарство и информатику Математичког факултета.
Области интересовања су му истраживање података, биоинформатика и
криптографиjа.

113

114 Database importers

Прилог 1.

Изјава о ауторству

Потписани-a ______________________

број индекса _______________________________

Изјављујем

да је докторска дисертација под насловом

 резултат сопственог истраживачког рада,
 да предложена дисертација у целини ни у деловима није била предложена

за добијање било које дипломе према студијским програмима других
високошколских установа,

 да су резултати коректно наведени и
 да нисам кршио/ла ауторска права и користио интелектуалну својину

других лица.

 Потпис докторанда

У Београду, _________________

Прилог 2.

Изјава o истоветности штампане и електронске
верзије докторског рада

Име и презиме аутора ___

Број индекса ___

Студијски програм __

Наслов рада ___

Ментор ___

Потписани/а __

Изјављујем да је штампана верзија мог докторског рада истоветна електронској
верзији коју сам предао/ла за објављивање на порталу Дигиталног
репозиторијума Универзитета у Београду.

Дозвољавам да се објаве моји лични подаци везани за добијање академског
звања доктора наука, као што су име и презиме, година и место рођења и датум
одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне
библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

 Потпис докторанда

У Београду, ________________________

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку „Светозар Марковић“ да у Дигитални
репозиторијум Универзитета у Београду унесе моју докторску дисертацију под
насловом:

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном
за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у
Београду могу да користе сви који поштују одредбе садржане у одабраном типу
лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

1. Ауторство

2. Ауторство - некомерцијално

3. Ауторство – некомерцијално – без прераде

4. Ауторство – некомерцијално – делити под истим условима

5. Ауторство – без прераде

6. Ауторство – делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис
лиценци дат је на полеђини листа).

Потпис докторанда

У Београду, ________________________

1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање
дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора
или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих
лиценци.

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно
саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од
стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну
употребу дела.

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање,
дистрибуцију и јавно саопштавање дела, без промена, преобликовања или
употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране
аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу
дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи
обим права коришћења дела.

 4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате
умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе
име аутора на начин одређен од стране аутора или даваоца лиценце и ако се
прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не
дозвољава комерцијалну употребу дела и прерада.

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно
саопштавање дела, без промена, преобликовања или употребе дела у свом делу,
ако се наведе име аутора на начин одређен од стране аутора или даваоца
лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. Ауторство - делити под истим условима. Дозвољавате умножавање,
дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на
начин одређен од стране аутора или даваоца лиценце и ако се прерада
дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава
комерцијалну употребу дела и прерада. Слична је софтверским лиценцама,
односно лиценцама отвореног кода.

	Introduction
	Proximity measures
	Proximity measures of simple attributes
	Proximity measures of data objects

	Semantic similarities
	Related work
	Related topics

	Cluster analysis and association rules mining
	Cluster analysis
	Cluster types
	Properties of clustering methods
	Categorization of clustering methods
	Measuring quality of clustering results

	Association rules mining
	Apriori algorithm
	FP-growth algorithm

	Searching bioinformatics databases
	Primary and secondary databases
	Identifiers of bioinformatics data
	Storing bioinformatics data
	Accessing and searching bioinformatics data

	New Data Joining Model Proposal
	BioGraph data model
	Entity objects
	Identifiers
	Data objects
	Entity relations
	Duplicate entries
	Data updates
	Mapping BioGraph model to graph and relational database
	Efficient indexing

	Generalized method for deriving semantic relations
	Selecting a subset of relations
	Generating relation matrix
	Deriving semantic similarity relations
	Automated method for deriving semantic similarity relations

	Model implementation and validation
	Software architecture
	Data importers
	Core service
	Indexers
	Database adapters
	HTTP REST API
	Internal query language
	Data flows

	Material
	DisProt dataset
	HGNC dataset
	IEDB dataset
	Tantigen 2.0 dataset
	DisGeNET dataset

	Deriving new semantic similarity relations in BioGraph data model
	User interface

	Results and discussion
	Comparison with the existing data unification and querying systems
	Advantages and disadvantages
	Examples of biomedical applications
	Genes related to Parkinson's disease
	Genes related to pancreatic cancer

	Conclusion
	Bibliography
	Database importers
	DisProt data importer
	HGNC data importer
	DisGeNET data importer
	IEDB data importer
	DisGeNET data importer

